123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- #!/usr/bin/python
- from __future__ import print_function
- import keras
- from keras.models import Sequential
- from keras.models import Model
- from keras.layers import Input
- from keras.layers import Dense
- from keras.layers import LSTM
- from keras.layers import GRU
- from keras.layers import SimpleRNN
- from keras.layers import Dropout
- from keras.layers import concatenate
- from keras import losses
- from keras import regularizers
- from keras.constraints import min_max_norm
- import h5py
- from keras.constraints import Constraint
- from keras import backend as K
- import numpy as np
- #import tensorflow as tf
- #from keras.backend.tensorflow_backend import set_session
- #config = tf.ConfigProto()
- #config.gpu_options.per_process_gpu_memory_fraction = 0.42
- #set_session(tf.Session(config=config))
- def my_crossentropy(y_true, y_pred):
- return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
- def mymask(y_true):
- return K.minimum(y_true+1., 1.)
- def msse(y_true, y_pred):
- return K.mean(mymask(y_true) * K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
- def mycost(y_true, y_pred):
- return K.mean(mymask(y_true) * (10*K.square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sqrt(y_true)) + 0.01*K.binary_crossentropy(y_pred, y_true)), axis=-1)
- def my_accuracy(y_true, y_pred):
- return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1)
- class WeightClip(Constraint):
- '''Clips the weights incident to each hidden unit to be inside a range
- '''
- def __init__(self, c=2):
- self.c = c
- def __call__(self, p):
- return K.clip(p, -self.c, self.c)
- def get_config(self):
- return {'name': self.__class__.__name__,
- 'c': self.c}
- reg = 0.000001
- constraint = WeightClip(0.499)
- print('Build model...')
- main_input = Input(shape=(None, 42), name='main_input')
- tmp = Dense(24, activation='tanh', name='input_dense', kernel_constraint=constraint, bias_constraint=constraint)(main_input)
- vad_gru = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='vad_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(tmp)
- vad_output = Dense(1, activation='sigmoid', name='vad_output', kernel_constraint=constraint, bias_constraint=constraint)(vad_gru)
- noise_input = keras.layers.concatenate([tmp, vad_gru, main_input])
- noise_gru = GRU(48, activation='relu', recurrent_activation='sigmoid', return_sequences=True, name='noise_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(noise_input)
- denoise_input = keras.layers.concatenate([vad_gru, noise_gru, main_input])
- denoise_gru = GRU(96, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='denoise_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(denoise_input)
- denoise_output = Dense(22, activation='sigmoid', name='denoise_output', kernel_constraint=constraint, bias_constraint=constraint)(denoise_gru)
- model = Model(inputs=main_input, outputs=[denoise_output, vad_output])
- model.compile(loss=[mycost, my_crossentropy],
- metrics=[msse],
- optimizer='adam', loss_weights=[10, 0.5])
- batch_size = 32
- print('Loading data...')
- with h5py.File('training.h5', 'r') as hf:
- all_data = hf['data'][:]
- print('done.')
- window_size = 2000
- nb_sequences = len(all_data)//window_size
- print(nb_sequences, ' sequences')
- x_train = all_data[:nb_sequences*window_size, :42]
- x_train = np.reshape(x_train, (nb_sequences, window_size, 42))
- y_train = np.copy(all_data[:nb_sequences*window_size, 42:64])
- y_train = np.reshape(y_train, (nb_sequences, window_size, 22))
- noise_train = np.copy(all_data[:nb_sequences*window_size, 64:86])
- noise_train = np.reshape(noise_train, (nb_sequences, window_size, 22))
- vad_train = np.copy(all_data[:nb_sequences*window_size, 86:87])
- vad_train = np.reshape(vad_train, (nb_sequences, window_size, 1))
- all_data = 0;
- #x_train = x_train.astype('float32')
- #y_train = y_train.astype('float32')
- print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
- print('Train...')
- model.fit(x_train, [y_train, vad_train],
- batch_size=batch_size,
- epochs=120,
- validation_split=0.1)
- model.save("weights.hdf5")
|