123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566 |
- #!/usr/bin/python
- from __future__ import print_function
- from keras.models import Sequential
- from keras.models import Model
- from keras.layers import Input
- from keras.layers import Dense
- from keras.layers import LSTM
- from keras.layers import GRU
- from keras.layers import SimpleRNN
- from keras.layers import Dropout
- from keras import losses
- import h5py
- from keras import backend as K
- import numpy as np
- print('Build model...')
- main_input = Input(shape=(None, 22), name='main_input')
- #x = Dense(44, activation='relu')(main_input)
- #x = GRU(44, dropout=0.0, recurrent_dropout=0.0, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
- x=main_input
- x = GRU(128, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x)
- #x = GRU(128, return_sequences=True)(x)
- #x = GRU(22, activation='relu', return_sequences=True)(x)
- x = Dense(22, activation='sigmoid')(x)
- #x = Dense(22, activation='softplus')(x)
- model = Model(inputs=main_input, outputs=x)
- batch_size = 32
- print('Loading data...')
- with h5py.File('denoise_data.h5', 'r') as hf:
- all_data = hf['denoise_data'][:]
- print('done.')
- window_size = 500
- nb_sequences = len(all_data)//window_size
- print(nb_sequences, ' sequences')
- x_train = all_data[:nb_sequences*window_size, :-22]
- x_train = np.reshape(x_train, (nb_sequences, window_size, 22))
- y_train = np.copy(all_data[:nb_sequences*window_size, -22:])
- y_train = np.reshape(y_train, (nb_sequences, window_size, 22))
- #y_train = -20*np.log10(np.add(y_train, .03));
- all_data = 0;
- x_train = x_train.astype('float32')
- y_train = y_train.astype('float32')
- print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
- # try using different optimizers and different optimizer configs
- model.compile(loss='mean_squared_error',
- optimizer='adam',
- metrics=['binary_accuracy'])
- print('Train...')
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=200,
- validation_data=(x_train, y_train))
- model.save("newweights.hdf5")
|