123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 |
- module BABYLON {
- /**
- * Class representing spherical polynomial coefficients to the 3rd degree
- */
- export class SphericalPolynomial {
- /**
- * The x coefficients of the spherical polynomial
- */
- public x: Vector3 = Vector3.Zero();
- /**
- * The y coefficients of the spherical polynomial
- */
- public y: Vector3 = Vector3.Zero();
- /**
- * The z coefficients of the spherical polynomial
- */
- public z: Vector3 = Vector3.Zero();
- /**
- * The xx coefficients of the spherical polynomial
- */
- public xx: Vector3 = Vector3.Zero();
- /**
- * The yy coefficients of the spherical polynomial
- */
- public yy: Vector3 = Vector3.Zero();
- /**
- * The zz coefficients of the spherical polynomial
- */
- public zz: Vector3 = Vector3.Zero();
- /**
- * The xy coefficients of the spherical polynomial
- */
- public xy: Vector3 = Vector3.Zero();
- /**
- * The yz coefficients of the spherical polynomial
- */
- public yz: Vector3 = Vector3.Zero();
- /**
- * The zx coefficients of the spherical polynomial
- */
- public zx: Vector3 = Vector3.Zero();
- /**
- * Adds an ambient color to the spherical polynomial
- * @param color the color to add
- */
- public addAmbient(color: Color3): void {
- var colorVector = new Vector3(color.r, color.g, color.b);
- this.xx = this.xx.add(colorVector);
- this.yy = this.yy.add(colorVector);
- this.zz = this.zz.add(colorVector);
- }
- /**
- * Scales the spherical polynomial by the given amount
- * @param scale the amount to scale
- */
- public scale(scale: number)
- {
- this.x = this.x.scale(scale);
- this.y = this.y.scale(scale);
- this.z = this.z.scale(scale);
- this.xx = this.xx.scale(scale);
- this.yy = this.yy.scale(scale);
- this.zz = this.zz.scale(scale);
- this.yz = this.yz.scale(scale);
- this.zx = this.zx.scale(scale);
- this.xy = this.xy.scale(scale);
- }
- /**
- * Gets the spherical polynomial from harmonics
- * @param harmonics the spherical harmonics
- * @returns the spherical polynomial
- */
- public static FromHarmonics(harmonics: SphericalHarmonics): SphericalPolynomial {
- var result = new SphericalPolynomial();
- result.x = harmonics.l11.scale(1.02333);
- result.y = harmonics.l1_1.scale(1.02333);
- result.z = harmonics.l10.scale(1.02333);
- result.xx = harmonics.l00.scale(0.886277).subtract(harmonics.l20.scale(0.247708)).add(harmonics.lL22.scale(0.429043));
- result.yy = harmonics.l00.scale(0.886277).subtract(harmonics.l20.scale(0.247708)).subtract(harmonics.lL22.scale(0.429043));
- result.zz = harmonics.l00.scale(0.886277).add(harmonics.l20.scale(0.495417));
- result.yz = harmonics.l2_1.scale(0.858086);
- result.zx = harmonics.l21.scale(0.858086);
- result.xy = harmonics.l2_2.scale(0.858086);
- result.scale(1.0 / Math.PI);
- return result;
- }
- /**
- * Constructs a spherical polynomial from an array.
- * @param data defines the 9x3 coefficients (x, y, z, xx, yy, zz, yz, zx, xy)
- * @returns the spherical polynomial
- */
- public static FromArray(data: ArrayLike<ArrayLike<number>>): SphericalPolynomial {
- const sp = new SphericalPolynomial();
- Vector3.FromArrayToRef(data[0], 0, sp.x);
- Vector3.FromArrayToRef(data[1], 0, sp.y);
- Vector3.FromArrayToRef(data[2], 0, sp.z);
- Vector3.FromArrayToRef(data[3], 0, sp.xx);
- Vector3.FromArrayToRef(data[4], 0, sp.yy);
- Vector3.FromArrayToRef(data[5], 0, sp.zz);
- Vector3.FromArrayToRef(data[6], 0, sp.yz);
- Vector3.FromArrayToRef(data[7], 0, sp.zx);
- Vector3.FromArrayToRef(data[8], 0, sp.xy);
- return sp;
- }
- }
- /**
- * Class representing spherical harmonics coefficients to the 3rd degree
- */
- export class SphericalHarmonics {
- /**
- * The l0,0 coefficients of the spherical harmonics
- */
- public l00: Vector3 = Vector3.Zero();
- /**
- * The l1,-1 coefficients of the spherical harmonics
- */
- public l1_1: Vector3 = Vector3.Zero();
- /**
- * The l1,0 coefficients of the spherical harmonics
- */
- public l10: Vector3 = Vector3.Zero();
- /**
- * The l1,1 coefficients of the spherical harmonics
- */
- public l11: Vector3 = Vector3.Zero();
- /**
- * The l2,-2 coefficients of the spherical harmonics
- */
- public l2_2: Vector3 = Vector3.Zero();
- /**
- * The l2,-1 coefficients of the spherical harmonics
- */
- public l2_1: Vector3 = Vector3.Zero();
- /**
- * The l2,0 coefficients of the spherical harmonics
- */
- public l20: Vector3 = Vector3.Zero();
- /**
- * The l2,1 coefficients of the spherical harmonics
- */
- public l21: Vector3 = Vector3.Zero();
- /**
- * The l2,2 coefficients of the spherical harmonics
- */
- public lL22: Vector3 = Vector3.Zero();
- /**
- * Adds a light to the spherical harmonics
- * @param direction the direction of the light
- * @param color the color of the light
- * @param deltaSolidAngle the delta solid angle of the light
- */
- public addLight(direction: Vector3, color: Color3, deltaSolidAngle: number): void {
- var colorVector = new Vector3(color.r, color.g, color.b);
- var c = colorVector.scale(deltaSolidAngle);
- this.l00 = this.l00.add(c.scale(0.282095));
- this.l1_1 = this.l1_1.add(c.scale(0.488603 * direction.y));
- this.l10 = this.l10.add(c.scale(0.488603 * direction.z));
- this.l11 = this.l11.add(c.scale(0.488603 * direction.x));
- this.l2_2 = this.l2_2.add(c.scale(1.092548 * direction.x * direction.y));
- this.l2_1 = this.l2_1.add(c.scale(1.092548 * direction.y * direction.z));
- this.l21 = this.l21.add(c.scale(1.092548 * direction.x * direction.z));
- this.l20 = this.l20.add(c.scale(0.315392 * (3.0 * direction.z * direction.z - 1.0)));
- this.lL22 = this.lL22.add(c.scale(0.546274 * (direction.x * direction.x - direction.y * direction.y)));
- }
- /**
- * Scales the spherical harmonics by the given amount
- * @param scale the amount to scale
- */
- public scale(scale: number): void {
- this.l00 = this.l00.scale(scale);
- this.l1_1 = this.l1_1.scale(scale);
- this.l10 = this.l10.scale(scale);
- this.l11 = this.l11.scale(scale);
- this.l2_2 = this.l2_2.scale(scale);
- this.l2_1 = this.l2_1.scale(scale);
- this.l20 = this.l20.scale(scale);
- this.l21 = this.l21.scale(scale);
- this.lL22 = this.lL22.scale(scale);
- }
- /**
- * Convert from incident radiance (Li) to irradiance (E) by applying convolution with the cosine-weighted hemisphere.
- *
- * ```
- * E_lm = A_l * L_lm
- * ```
- *
- * In spherical harmonics this convolution amounts to scaling factors for each frequency band.
- * This corresponds to equation 5 in "An Efficient Representation for Irradiance Environment Maps", where
- * the scaling factors are given in equation 9.
- */
- public convertIncidentRadianceToIrradiance(): void
- {
- // Constant (Band 0)
- this.l00 = this.l00.scale(3.141593);
- // Linear (Band 1)
- this.l1_1 = this.l1_1.scale(2.094395);
- this.l10 = this.l10.scale(2.094395);
- this.l11 = this.l11.scale(2.094395);
- // Quadratic (Band 2)
- this.l2_2 = this.l2_2.scale(0.785398);
- this.l2_1 = this.l2_1.scale(0.785398);
- this.l20 = this.l20.scale(0.785398);
- this.l21 = this.l21.scale(0.785398);
- this.lL22 = this.lL22.scale(0.785398);
- }
- /**
- * Convert from irradiance to outgoing radiance for Lambertian BDRF, suitable for efficient shader evaluation.
- *
- * ```
- * L = (1/pi) * E * rho
- * ```
- *
- * This is done by an additional scale by 1/pi, so is a fairly trivial operation but important conceptually.
- */
- public convertIrradianceToLambertianRadiance(): void
- {
- this.scale(1.0 / Math.PI);
- // The resultant SH now represents outgoing radiance, so includes the Lambert 1/pi normalisation factor but without albedo (rho) applied
- // (The pixel shader must apply albedo after texture fetches, etc).
- }
- /**
- * Gets the spherical harmonics from polynomial
- * @param polynomial the spherical polynomial
- * @returns the spherical harmonics
- */
- public static FromPolynomial(polynomial: SphericalPolynomial): SphericalHarmonics
- {
- var result = new SphericalHarmonics();
- result.l00 = polynomial.xx.scale(0.376127).add(polynomial.yy.scale(0.376127)).add(polynomial.zz.scale(0.376126));
- result.l1_1 = polynomial.y.scale(0.977204);
- result.l10 = polynomial.z.scale(0.977204);
- result.l11 = polynomial.x.scale(0.977204);
- result.l2_2 = polynomial.xy.scale(1.16538);
- result.l2_1 = polynomial.yz.scale(1.16538);
- result.l20 = polynomial.zz.scale(1.34567).subtract(polynomial.xx.scale(0.672834)).subtract(polynomial.yy.scale(0.672834));
- result.l21 = polynomial.zx.scale(1.16538);
- result.lL22 = polynomial.xx.scale(1.16538).subtract(polynomial.yy.scale(1.16538));
- result.scale(Math.PI);
- return result;
- }
- /**
- * Constructs a spherical harmonics from an array.
- * @param data defines the 9x3 coefficients (l00, l1-1, l10, l11, l2-2, l2-1, l20, l21, l22)
- * @returns the spherical harmonics
- */
- public static FromArray(data: ArrayLike<ArrayLike<number>>): SphericalHarmonics {
- const sh = new SphericalHarmonics();
- Vector3.FromArrayToRef(data[0], 0, sh.l00);
- Vector3.FromArrayToRef(data[1], 0, sh.l1_1);
- Vector3.FromArrayToRef(data[2], 0, sh.l10);
- Vector3.FromArrayToRef(data[3], 0, sh.l11);
- Vector3.FromArrayToRef(data[4], 0, sh.l2_2);
- Vector3.FromArrayToRef(data[5], 0, sh.l2_1);
- Vector3.FromArrayToRef(data[6], 0, sh.l20);
- Vector3.FromArrayToRef(data[7], 0, sh.l21);
- Vector3.FromArrayToRef(data[8], 0, sh.lL22);
- return sh;
- }
- }
- }
|