123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- // Constants
- #define RECIPROCAL_PI2 0.15915494
- #define FRESNEL_MAXIMUM_ON_ROUGH 0.25
- // PBR CUSTOM CONSTANTS
- const float kPi = 3.1415926535897932384626433832795;
- const float kRougnhessToAlphaScale = 0.1;
- const float kRougnhessToAlphaOffset = 0.29248125;
- float Square(float value)
- {
- return value * value;
- }
- float getLuminance(vec3 color)
- {
- return clamp(dot(color, vec3(0.2126, 0.7152, 0.0722)), 0., 1.);
- }
- float convertRoughnessToAverageSlope(float roughness)
- {
- // Calculate AlphaG as square of roughness; add epsilon to avoid numerical issues
- const float kMinimumVariance = 0.0005;
- float alphaG = Square(roughness) + kMinimumVariance;
- return alphaG;
- }
- // Based on Beckamm roughness to Blinn exponent + http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html
- float getMipMapIndexFromAverageSlope(float maxMipLevel, float alpha)
- {
- // do not take in account lower mips hence -1... and wait from proper preprocess.
- // formula comes from approximation of the mathematical solution.
- //float mip = maxMipLevel + kRougnhessToAlphaOffset + 0.5 * log2(alpha);
-
- // In the mean time
- // Always [0..1] goes from max mip to min mip in a log2 way.
- // Change 5 to nummip below.
- // http://www.wolframalpha.com/input/?i=x+in+0..1+plot+(+5+%2B+0.3+%2B+0.1+*+5+*+log2(+(1+-+x)+*+(1+-+x)+%2B+0.0005))
- float mip = kRougnhessToAlphaOffset + maxMipLevel + (maxMipLevel * kRougnhessToAlphaScale * log2(alpha));
-
- return clamp(mip, 0., maxMipLevel);
- }
- float getMipMapIndexFromAverageSlopeWithPMREM(float maxMipLevel, float alphaG)
- {
- float specularPower = clamp(2. / alphaG - 2., 0.000001, 2048.);
-
- // Based on CubeMapGen for cosine power with 2048 spec default and 0.25 dropoff
- return clamp(- 0.5 * log2(specularPower) + 5.5, 0., maxMipLevel);
- }
- // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007
- float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG)
- {
- float tanSquared = (1.0 - dot * dot) / (dot * dot);
- return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared));
- }
- float smithVisibilityG_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG)
- {
- return smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG);
- }
- // Trowbridge-Reitz (GGX)
- // Generalised Trowbridge-Reitz with gamma power=2.0
- float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG)
- {
- // Note: alphaG is average slope (gradient) of the normals in slope-space.
- // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have
- // a tangent (gradient) closer to the macrosurface than this slope.
- float a2 = Square(alphaG);
- float d = NdotH * NdotH * (a2 - 1.0) + 1.0;
- return a2 / (kPi * d * d);
- }
- vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90)
- {
- return reflectance0 + (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotH, 0., 1.), 5.0);
- }
- vec3 FresnelSchlickEnvironmentGGX(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness)
- {
- // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle
- float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness);
- return reflectance0 + weight * (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotN, 0., 1.), 5.0);
- }
- // Cook Torance Specular computation.
- vec3 computeSpecularTerm(float NdotH, float NdotL, float NdotV, float VdotH, float roughness, vec3 specularColor)
- {
- float alphaG = convertRoughnessToAverageSlope(roughness);
- float distribution = normalDistributionFunction_TrowbridgeReitzGGX(NdotH, alphaG);
- float visibility = smithVisibilityG_TrowbridgeReitzGGX_Walter(NdotL, NdotV, alphaG);
- visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integated in viibility to avoid issues when visibility function changes.
- vec3 fresnel = fresnelSchlickGGX(VdotH, specularColor, vec3(1., 1., 1.));
- float specTerm = max(0., visibility * distribution) * NdotL;
- return fresnel * specTerm * kPi; // TODO: audit pi constants
- }
- float computeDiffuseTerm(float NdotL, float NdotV, float VdotH, float roughness)
- {
- // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of
- // of general coupled diffuse/specular models e.g. Ashikhmin Shirley.
- float diffuseFresnelNV = pow(clamp(1.0 - NdotL, 0.000001, 1.), 5.0);
- float diffuseFresnelNL = pow(clamp(1.0 - NdotV, 0.000001, 1.), 5.0);
- float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness;
- float diffuseFresnelTerm =
- (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) *
- (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV);
- return diffuseFresnelTerm * NdotL;
- // PI Test
- // diffuseFresnelTerm /= kPi;
- }
- float adjustRoughnessFromLightProperties(float roughness, float lightRadius, float lightDistance)
- {
- // At small angle this approximation works.
- float lightRoughness = lightRadius / lightDistance;
- // Distribution can sum.
- float totalRoughness = clamp(lightRoughness + roughness, 0., 1.);
- return totalRoughness;
- }
- float computeDefaultMicroSurface(float microSurface, vec3 reflectivityColor)
- {
- float kReflectivityNoAlphaWorkflow_SmoothnessMax = 0.95;
- float reflectivityLuminance = getLuminance(reflectivityColor);
- float reflectivityLuma = sqrt(reflectivityLuminance);
- microSurface = reflectivityLuma * kReflectivityNoAlphaWorkflow_SmoothnessMax;
- return microSurface;
- }
- vec3 toLinearSpace(vec3 color)
- {
- return vec3(pow(color.r, 2.2), pow(color.g, 2.2), pow(color.b, 2.2));
- }
- vec3 toGammaSpace(vec3 color)
- {
- return vec3(pow(color.r, 1.0 / 2.2), pow(color.g, 1.0 / 2.2), pow(color.b, 1.0 / 2.2));
- }
- float computeLightFalloff(vec3 lightOffset, float lightDistanceSquared, float range)
- {
- #ifdef USEPHYSICALLIGHTFALLOFF
- float lightDistanceFalloff = 1.0 / ((lightDistanceSquared + 0.0001));
- return lightDistanceFalloff;
- #else
- float lightFalloff = max(0., 1.0 - length(lightOffset) / range);
- return lightFalloff;
- #endif
- }
- #ifdef CAMERATONEMAP
- vec3 toneMaps(vec3 color)
- {
- color = max(color, 0.0);
- // TONE MAPPING / EXPOSURE
- color.rgb = color.rgb * vCameraInfos.x;
- float tuning = 1.5; // TODO: sync up so e.g. 18% greys are matched to exposure appropriately
- // PI Test
- // tuning *= kPi;
- vec3 tonemapped = 1.0 - exp2(-color.rgb * tuning); // simple local photographic tonemapper
- color.rgb = mix(color.rgb, tonemapped, 1.0);
- return color;
- }
- #endif
- #ifdef CAMERACONTRAST
- vec4 contrasts(vec4 color)
- {
- color = clamp(color, 0.0, 1.0);
- vec3 resultHighContrast = color.rgb * color.rgb * (3.0 - 2.0 * color.rgb);
- float contrast = vCameraInfos.y;
- if (contrast < 1.0)
- {
- // Decrease contrast: interpolate towards zero-contrast image (flat grey)
- color.rgb = mix(vec3(0.5, 0.5, 0.5), color.rgb, contrast);
- }
- else
- {
- // Increase contrast: apply simple shoulder-toe high contrast curve
- color.rgb = mix(color.rgb, resultHighContrast, contrast - 1.0);
- }
- return color;
- }
- #endif
|