123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488 |
- #ifdef BUMP
- #extension GL_OES_standard_derivatives : enable
- #endif
- #ifdef LOGARITHMICDEPTH
- #extension GL_EXT_frag_depth : enable
- #endif
- precision highp float;
- // Constants
- #define RECIPROCAL_PI2 0.15915494
- #define FRESNEL_MAXIMUM_ON_ROUGH 0.25
- uniform vec3 vEyePosition;
- uniform vec3 vAmbientColor;
- uniform vec3 vReflectionColor;
- uniform vec4 vAlbedoColor;
- // CUSTOM CONTROLS
- uniform vec4 vLightingIntensity;
- uniform vec4 vCameraInfos;
- #ifdef OVERLOADEDVALUES
- uniform vec4 vOverloadedIntensity;
- uniform vec3 vOverloadedAmbient;
- uniform vec3 vOverloadedAlbedo;
- uniform vec3 vOverloadedReflectivity;
- uniform vec3 vOverloadedEmissive;
- uniform vec3 vOverloadedReflection;
- uniform vec3 vOverloadedMicroSurface;
- #endif
- #ifdef OVERLOADEDSHADOWVALUES
- uniform vec4 vOverloadedShadowIntensity;
- #endif
- #ifdef USESPHERICALFROMREFLECTIONMAP
- uniform vec3 vSphericalX;
- uniform vec3 vSphericalY;
- uniform vec3 vSphericalZ;
- uniform vec3 vSphericalXX;
- uniform vec3 vSphericalYY;
- uniform vec3 vSphericalZZ;
- uniform vec3 vSphericalXY;
- uniform vec3 vSphericalYZ;
- uniform vec3 vSphericalZX;
- vec3 EnvironmentIrradiance(vec3 normal)
- {
- // Note: 'normal' is assumed to be normalised (or near normalised)
- // This isn't as critical as it is with other calculations (e.g. specular highlight), but the result will be incorrect nonetheless.
- // TODO: switch to optimal implementation
- vec3 result =
- vSphericalX * normal.x +
- vSphericalY * normal.y +
- vSphericalZ * normal.z +
- vSphericalXX * normal.x * normal.x +
- vSphericalYY * normal.y * normal.y +
- vSphericalZZ * normal.z * normal.z +
- vSphericalYZ * normal.y * normal.z +
- vSphericalZX * normal.z * normal.x +
- vSphericalXY * normal.x * normal.y;
- return result.rgb;
- }
- #endif
- // PBR CUSTOM CONSTANTS
- const float kPi = 3.1415926535897932384626433832795;
- #ifdef PoissonSamplingEnvironment
- const int poissonSphereSamplersCount = 32;
- vec3 poissonSphereSamplers[poissonSphereSamplersCount];
- void initSamplers()
- {
- poissonSphereSamplers[0] = vec3( -0.552198926093, 0.801049753814, -0.0322487480415 );
- poissonSphereSamplers[1] = vec3( 0.344874796559, -0.650989584719, 0.283038477033 );
- poissonSphereSamplers[2] = vec3( -0.0710183703467, 0.163770497767, -0.95022416734 );
- poissonSphereSamplers[3] = vec3( 0.422221832073, 0.576613638193, 0.519157625948 );
- poissonSphereSamplers[4] = vec3( -0.561872200916, -0.665581249881, -0.131630473211 );
- poissonSphereSamplers[5] = vec3( -0.409905973809, 0.0250731510778, 0.674676954809 );
- poissonSphereSamplers[6] = vec3( 0.206829570551, -0.190199352704, 0.919073906156 );
- poissonSphereSamplers[7] = vec3( -0.857514664463, 0.0274425010091, -0.475068738967 );
- poissonSphereSamplers[8] = vec3( -0.816275009951, -0.0432916479141, 0.40394579291 );
- poissonSphereSamplers[9] = vec3( 0.397976181928, -0.633227519667, -0.617794410447 );
- poissonSphereSamplers[10] = vec3( -0.181484199014, 0.0155418272003, -0.34675720703 );
- poissonSphereSamplers[11] = vec3( 0.591734926919, 0.489930882201, -0.51675303188 );
- poissonSphereSamplers[12] = vec3( -0.264514973057, 0.834248662136, 0.464624235985 );
- poissonSphereSamplers[13] = vec3( -0.125845223505, 0.812029586099, -0.46213797731 );
- poissonSphereSamplers[14] = vec3( 0.0345715424639, 0.349983742938, 0.855109899027 );
- poissonSphereSamplers[15] = vec3( 0.694340492749, -0.281052190209, -0.379600605543 );
- poissonSphereSamplers[16] = vec3( -0.241055518078, -0.580199280578, 0.435381168431 );
- poissonSphereSamplers[17] = vec3( 0.126313722289, 0.715113642744, 0.124385788055 );
- poissonSphereSamplers[18] = vec3( 0.752862552387, 0.277075021888, 0.275059597549 );
- poissonSphereSamplers[19] = vec3( -0.400896300918, -0.309374534321, -0.74285782627 );
- poissonSphereSamplers[20] = vec3( 0.121843331941, -0.00381197918195, 0.322441835258 );
- poissonSphereSamplers[21] = vec3( 0.741656771351, -0.472083016745, 0.14589173819 );
- poissonSphereSamplers[22] = vec3( -0.120347565985, -0.397252703556, -0.00153836114051 );
- poissonSphereSamplers[23] = vec3( -0.846258835203, -0.433763808754, 0.168732209784 );
- poissonSphereSamplers[24] = vec3( 0.257765618362, -0.546470581239, -0.242234375624 );
- poissonSphereSamplers[25] = vec3( -0.640343473361, 0.51920903395, 0.549310644325 );
- poissonSphereSamplers[26] = vec3( -0.894309984621, 0.297394061018, 0.0884583225292 );
- poissonSphereSamplers[27] = vec3( -0.126241933628, -0.535151016335, -0.440093659672 );
- poissonSphereSamplers[28] = vec3( -0.158176440297, -0.393125021578, 0.890727226039 );
- poissonSphereSamplers[29] = vec3( 0.896024272938, 0.203068725821, -0.11198597748 );
- poissonSphereSamplers[30] = vec3( 0.568671758933, -0.314144243629, 0.509070768816 );
- poissonSphereSamplers[31] = vec3( 0.289665332178, 0.104356977462, -0.348379247171 );
- }
- vec3 environmentSampler(samplerCube cubeMapSampler, vec3 centralDirection, float microsurfaceAverageSlope)
- {
- vec3 result = vec3(0., 0., 0.);
- for(int i = 0; i < poissonSphereSamplersCount; i++)
- {
- vec3 offset = poissonSphereSamplers[i];
- vec3 direction = centralDirection + microsurfaceAverageSlope * offset;
- result += textureCube(cubeMapSampler, direction, 0.).rgb;
- }
- result /= 32.0;
- return result;
- }
- #endif
- // PBR HELPER METHODS
- float Square(float value)
- {
- return value * value;
- }
- float getLuminance(vec3 color)
- {
- return clamp(dot(color, vec3(0.2126, 0.7152, 0.0722)), 0., 1.);
- }
- float convertRoughnessToAverageSlope(float roughness)
- {
- // Calculate AlphaG as square of roughness; add epsilon to avoid numerical issues
- const float kMinimumVariance = 0.0005;
- float alphaG = Square(roughness) + kMinimumVariance;
- return alphaG;
- }
- // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007
- float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG)
- {
- float tanSquared = (1.0 - dot * dot) / (dot * dot);
- return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared));
- }
- float smithVisibilityG_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG)
- {
- return smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG);
- }
- // Trowbridge-Reitz (GGX)
- // Generalised Trowbridge-Reitz with gamma power=2.0
- float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG)
- {
- // Note: alphaG is average slope (gradient) of the normals in slope-space.
- // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have
- // a tangent (gradient) closer to the macrosurface than this slope.
- float a2 = Square(alphaG);
- float d = NdotH * NdotH * (a2 - 1.0) + 1.0;
- return a2 / (kPi * d * d);
- }
- vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90)
- {
- return reflectance0 + (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotH, 0., 1.), 5.0);
- }
- vec3 FresnelSchlickEnvironmentGGX(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness)
- {
- // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle
- float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness);
- return reflectance0 + weight * (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotN, 0., 1.), 5.0);
- }
- // Cook Torance Specular computation.
- vec3 computeSpecularTerm(float NdotH, float NdotL, float NdotV, float VdotH, float roughness, vec3 specularColor)
- {
- float alphaG = convertRoughnessToAverageSlope(roughness);
- float distribution = normalDistributionFunction_TrowbridgeReitzGGX(NdotH, alphaG);
- float visibility = smithVisibilityG_TrowbridgeReitzGGX_Walter(NdotL, NdotV, alphaG);
- visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integated in viibility to avoid issues when visibility function changes.
- vec3 fresnel = fresnelSchlickGGX(VdotH, specularColor, vec3(1., 1., 1.));
- float specTerm = max(0., visibility * distribution) * NdotL;
- return fresnel * specTerm * kPi; // TODO: audit pi constants
- }
- float computeDiffuseTerm(float NdotL, float NdotV, float VdotH, float roughness)
- {
- // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of
- // of general coupled diffuse/specular models e.g. Ashikhmin Shirley.
- float diffuseFresnelNV = pow(clamp(1.0 - NdotL, 0.000001, 1.), 5.0);
- float diffuseFresnelNL = pow(clamp(1.0 - NdotV, 0.000001, 1.), 5.0);
- float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness;
- float diffuseFresnelTerm =
- (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) *
- (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV);
- return diffuseFresnelTerm * NdotL;
- // PI Test
- // diffuseFresnelTerm /= kPi;
- }
- float computeDefaultMicroSurface(float microSurface, vec3 reflectivityColor)
- {
- float kReflectivityNoAlphaWorkflow_SmoothnessMax = 0.95;
- float reflectivityLuminance = getLuminance(reflectivityColor);
- float reflectivityLuma = sqrt(reflectivityLuminance);
- microSurface = reflectivityLuma * kReflectivityNoAlphaWorkflow_SmoothnessMax;
- return microSurface;
- }
- vec3 toLinearSpace(vec3 color)
- {
- return vec3(pow(color.r, 2.2), pow(color.g, 2.2), pow(color.b, 2.2));
- }
- vec3 toGammaSpace(vec3 color)
- {
- return vec3(pow(color.r, 1.0 / 2.2), pow(color.g, 1.0 / 2.2), pow(color.b, 1.0 / 2.2));
- }
- #ifdef CAMERATONEMAP
- vec3 toneMaps(vec3 color)
- {
- color = max(color, 0.0);
- // TONE MAPPING / EXPOSURE
- color.rgb = color.rgb * vCameraInfos.x;
- float tuning = 1.5; // TODO: sync up so e.g. 18% greys are matched to exposure appropriately
- // PI Test
- // tuning *= kPi;
- vec3 tonemapped = 1.0 - exp2(-color.rgb * tuning); // simple local photographic tonemapper
- color.rgb = mix(color.rgb, tonemapped, 1.0);
- return color;
- }
- #endif
- #ifdef CAMERACONTRAST
- vec4 contrasts(vec4 color)
- {
- color = clamp(color, 0.0, 1.0);
- vec3 resultHighContrast = color.rgb * color.rgb * (3.0 - 2.0 * color.rgb);
- float contrast = vCameraInfos.y;
- if (contrast < 1.0)
- {
- // Decrease contrast: interpolate towards zero-contrast image (flat grey)
- color.rgb = mix(vec3(0.5, 0.5, 0.5), color.rgb, contrast);
- }
- else
- {
- // Increase contrast: apply simple shoulder-toe high contrast curve
- color.rgb = mix(color.rgb, resultHighContrast, contrast - 1.0);
- }
- return color;
- }
- #endif
- // END PBR HELPER METHODS
- uniform vec4 vReflectivityColor;
- uniform vec3 vEmissiveColor;
- // Input
- varying vec3 vPositionW;
- #ifdef NORMAL
- varying vec3 vNormalW;
- #endif
- #ifdef VERTEXCOLOR
- varying vec4 vColor;
- #endif
- // Lights
- #ifdef LIGHT0
- uniform vec4 vLightData0;
- uniform vec4 vLightDiffuse0;
- #ifdef SPECULARTERM
- uniform vec3 vLightSpecular0;
- #endif
- #ifdef SHADOW0
- #if defined(SPOTLIGHT0) || defined(DIRLIGHT0)
- varying vec4 vPositionFromLight0;
- uniform sampler2D shadowSampler0;
- #else
- uniform samplerCube shadowSampler0;
- #endif
- uniform vec3 shadowsInfo0;
- #endif
- #ifdef SPOTLIGHT0
- uniform vec4 vLightDirection0;
- #endif
- #ifdef HEMILIGHT0
- uniform vec3 vLightGround0;
- #endif
- #endif
- #ifdef LIGHT1
- uniform vec4 vLightData1;
- uniform vec4 vLightDiffuse1;
- #ifdef SPECULARTERM
- uniform vec3 vLightSpecular1;
- #endif
- #ifdef SHADOW1
- #if defined(SPOTLIGHT1) || defined(DIRLIGHT1)
- varying vec4 vPositionFromLight1;
- uniform sampler2D shadowSampler1;
- #else
- uniform samplerCube shadowSampler1;
- #endif
- uniform vec3 shadowsInfo1;
- #endif
- #ifdef SPOTLIGHT1
- uniform vec4 vLightDirection1;
- #endif
- #ifdef HEMILIGHT1
- uniform vec3 vLightGround1;
- #endif
- #endif
- #ifdef LIGHT2
- uniform vec4 vLightData2;
- uniform vec4 vLightDiffuse2;
- #ifdef SPECULARTERM
- uniform vec3 vLightSpecular2;
- #endif
- #ifdef SHADOW2
- #if defined(SPOTLIGHT2) || defined(DIRLIGHT2)
- varying vec4 vPositionFromLight2;
- uniform sampler2D shadowSampler2;
- #else
- uniform samplerCube shadowSampler2;
- #endif
- uniform vec3 shadowsInfo2;
- #endif
- #ifdef SPOTLIGHT2
- uniform vec4 vLightDirection2;
- #endif
- #ifdef HEMILIGHT2
- uniform vec3 vLightGround2;
- #endif
- #endif
- #ifdef LIGHT3
- uniform vec4 vLightData3;
- uniform vec4 vLightDiffuse3;
- #ifdef SPECULARTERM
- uniform vec3 vLightSpecular3;
- #endif
- #ifdef SHADOW3
- #if defined(SPOTLIGHT3) || defined(DIRLIGHT3)
- varying vec4 vPositionFromLight3;
- uniform sampler2D shadowSampler3;
- #else
- uniform samplerCube shadowSampler3;
- #endif
- uniform vec3 shadowsInfo3;
- #endif
- #ifdef SPOTLIGHT3
- uniform vec4 vLightDirection3;
- #endif
- #ifdef HEMILIGHT3
- uniform vec3 vLightGround3;
- #endif
- #endif
- // Samplers
- #ifdef ALBEDO
- varying vec2 vAlbedoUV;
- uniform sampler2D albedoSampler;
- uniform vec2 vAlbedoInfos;
- #endif
- #ifdef AMBIENT
- varying vec2 vAmbientUV;
- uniform sampler2D ambientSampler;
- uniform vec2 vAmbientInfos;
- #endif
- #ifdef OPACITY
- varying vec2 vOpacityUV;
- uniform sampler2D opacitySampler;
- uniform vec2 vOpacityInfos;
- #endif
- #ifdef EMISSIVE
- varying vec2 vEmissiveUV;
- uniform vec2 vEmissiveInfos;
- uniform sampler2D emissiveSampler;
- #endif
- #ifdef LIGHTMAP
- varying vec2 vLightmapUV;
- uniform vec2 vLightmapInfos;
- uniform sampler2D lightmapSampler;
- #endif
- #if defined(REFLECTIVITY)
- varying vec2 vReflectivityUV;
- uniform vec2 vReflectivityInfos;
- uniform sampler2D reflectivitySampler;
- #endif
- // Fresnel
- #ifdef FRESNEL
- float computeFresnelTerm(vec3 viewDirection, vec3 worldNormal, float bias, float power)
- {
- float fresnelTerm = pow(bias + abs(dot(viewDirection, worldNormal)), power);
- return clamp(fresnelTerm, 0., 1.);
- }
- #endif
- #ifdef OPACITYFRESNEL
- uniform vec4 opacityParts;
- #endif
- #ifdef EMISSIVEFRESNEL
- uniform vec4 emissiveLeftColor;
- uniform vec4 emissiveRightColor;
- #endif
- // Refraction Reflection
- #if defined(REFLECTIONMAP_SPHERICAL) || defined(REFLECTIONMAP_PROJECTION) || defined(REFRACTION)
- uniform mat4 view;
- #endif
- // Refraction
- #ifdef REFRACTION
- uniform vec4 vRefractionInfos;
- #ifdef REFRACTIONMAP_3D
- uniform samplerCube refractionCubeSampler;
- #else
- uniform sampler2D refraction2DSampler;
- uniform mat4 refractionMatrix;
- #endif
- #endif
- // Reflection
- #ifdef REFLECTION
- uniform vec2 vReflectionInfos;
- #ifdef REFLECTIONMAP_3D
- uniform samplerCube reflectionCubeSampler;
- #else
- uniform sampler2D reflection2DSampler;
- #endif
- #ifdef REFLECTIONMAP_SKYBOX
- varying vec3 vPositionUVW;
- #else
- #ifdef REFLECTIONMAP_EQUIRECTANGULAR_FIXED
- varying vec3 vDirectionW;
- #endif
- #if defined(REFLECTIONMAP_PLANAR) || defined(REFLECTIONMAP_CUBIC) || defined(REFLECTIONMAP_PROJECTION)
- uniform mat4 reflectionMatrix;
- #endif
- #endif
- vec3 computeReflectionCoords(vec4 worldPos, vec3 worldNormal)
- {
- #ifdef REFLECTIONMAP_EQUIRECTANGULAR_FIXED
- vec3 direction = normalize(vDirectionW);
- float t = clamp(direction.y * -0.5 + 0.5, 0., 1.0);
- float s = atan(direction.z, direction.x) * RECIPROCAL_PI2 + 0.5;
- return vec3(s, t, 0);
- #endif
- #ifdef REFLECTIONMAP_EQUIRECTANGULAR
- vec3 cameraToVertex = normalize(worldPos.xyz - vEyePosition);
- vec3 r = reflect(cameraToVertex, worldNormal);
- float t = clamp(r.y * -0.5 + 0.5, 0., 1.0);
- float s = atan(r.z, r.x) * RECIPROCAL_PI2 + 0.5;
- return vec3(s, t, 0);
- #endif
- #ifdef REFLECTIONMAP_SPHERICAL
- vec3 viewDir = normalize(vec3(view * worldPos));
- vec3 viewNormal = normalize(vec3(view * vec4(worldNormal, 0.0)));
- vec3 r = reflect(viewDir, viewNormal);
- r.z = r.z - 1.0;
- float m = 2.0 * length(r);
- return vec3(r.x / m + 0.5, 1.0 - r.y / m - 0.5, 0);
- #endif
- #ifdef REFLECTIONMAP_PLANAR
- vec3 viewDir = worldPos.xyz - vEyePosition;
- vec3 coords = normalize(reflect(viewDir, worldNormal));
- return vec3(reflectionMatrix * vec4(coords, 1));
- #endif
- #ifdef REFLECTIONMAP_CUBIC
- vec3 viewDir = worldPos.xyz - vEyePosition;
- vec3 coords = reflect(viewDir, worldNormal);
- #ifdef INVERTCUBICMAP
- coords.y = 1.0 - coords.y;
- #endif
- return vec3(reflectionMatrix * vec4(coords, 0));
- #endif
- #ifdef REFLECTIONMAP_PROJECTION
- return vec3(reflectionMatrix * (view * worldPos));
- #endif
- #ifdef REFLECTIONMAP_SKYBOX
- return vPositionUVW;
- #endif
- #ifdef REFLECTIONMAP_EXPLICIT
- return vec3(0, 0, 0);
- #endif
- }
- #endif
- // Shadows
- #ifdef SHADOWS
- float unpack(vec4 color)
- {
- const vec4 bit_shift = vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0);
- return dot(color, bit_shift);
- }
- #if defined(POINTLIGHT0) || defined(POINTLIGHT1) || defined(POINTLIGHT2) || defined(POINTLIGHT3)
- uniform vec2 depthValues;
- float computeShadowCube(vec3 lightPosition, samplerCube shadowSampler, float darkness, float bias)
- {
- vec3 directionToLight = vPositionW - lightPosition;
- float depth = length(directionToLight);
- depth = clamp(depth, 0., 1.0);
- directionToLight = normalize(directionToLight);
- directionToLight.y = - directionToLight.y;
- float shadow = unpack(textureCube(shadowSampler, directionToLight)) + bias;
- if (depth > shadow)
- {
- #ifdef OVERLOADEDSHADOWVALUES
- return mix(1.0, darkness, vOverloadedShadowIntensity.x);
- #else
- return darkness;
- #endif
- }
- return 1.0;
- }
- float computeShadowWithPCFCube(vec3 lightPosition, samplerCube shadowSampler, float mapSize, float bias, float darkness)
- {
- vec3 directionToLight = vPositionW - lightPosition;
- float depth = length(directionToLight);
- depth = clamp(depth, 0., 1.0);
- float diskScale = 2.0 / mapSize;
- directionToLight = normalize(directionToLight);
- directionToLight.y = -directionToLight.y;
- float visibility = 1.;
- vec3 poissonDisk[4];
- poissonDisk[0] = vec3(-1.0, 1.0, -1.0);
- poissonDisk[1] = vec3(1.0, -1.0, -1.0);
- poissonDisk[2] = vec3(-1.0, -1.0, -1.0);
- poissonDisk[3] = vec3(1.0, -1.0, 1.0);
- // Poisson Sampling
- float biasedDepth = depth - bias;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[0] * diskScale)) < biasedDepth) visibility -= 0.25;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[1] * diskScale)) < biasedDepth) visibility -= 0.25;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[2] * diskScale)) < biasedDepth) visibility -= 0.25;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[3] * diskScale)) < biasedDepth) visibility -= 0.25;
- #ifdef OVERLOADEDSHADOWVALUES
- return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x));
- #else
- return min(1.0, visibility + darkness);
- #endif
- }
- #endif
- #if defined(SPOTLIGHT0) || defined(SPOTLIGHT1) || defined(SPOTLIGHT2) || defined(SPOTLIGHT3) || defined(DIRLIGHT0) || defined(DIRLIGHT1) || defined(DIRLIGHT2) || defined(DIRLIGHT3)
- float computeShadow(vec4 vPositionFromLight, sampler2D shadowSampler, float darkness, float bias)
- {
- vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w;
- depth = 0.5 * depth + vec3(0.5);
- vec2 uv = depth.xy;
- if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0)
- {
- return 1.0;
- }
- float shadow = unpack(texture2D(shadowSampler, uv)) + bias;
- if (depth.z > shadow)
- {
- #ifdef OVERLOADEDSHADOWVALUES
- return mix(1.0, darkness, vOverloadedShadowIntensity.x);
- #else
- return darkness;
- #endif
- }
- return 1.;
- }
- float computeShadowWithPCF(vec4 vPositionFromLight, sampler2D shadowSampler, float mapSize, float bias, float darkness)
- {
- vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w;
- depth = 0.5 * depth + vec3(0.5);
- vec2 uv = depth.xy;
- if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0)
- {
- return 1.0;
- }
- float visibility = 1.;
- vec2 poissonDisk[4];
- poissonDisk[0] = vec2(-0.94201624, -0.39906216);
- poissonDisk[1] = vec2(0.94558609, -0.76890725);
- poissonDisk[2] = vec2(-0.094184101, -0.92938870);
- poissonDisk[3] = vec2(0.34495938, 0.29387760);
- // Poisson Sampling
- float biasedDepth = depth.z - bias;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[0] / mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[1] / mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[2] / mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[3] / mapSize)) < biasedDepth) visibility -= 0.25;
- #ifdef OVERLOADEDSHADOWVALUES
- return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x));
- #else
- return min(1.0, visibility + darkness);
- #endif
- }
- // Thanks to http://devmaster.net/
- float unpackHalf(vec2 color)
- {
- return color.x + (color.y / 255.0);
- }
- float linstep(float low, float high, float v) {
- return clamp((v - low) / (high - low), 0.0, 1.0);
- }
- float ChebychevInequality(vec2 moments, float compare, float bias)
- {
- float p = smoothstep(compare - bias, compare, moments.x);
- float variance = max(moments.y - moments.x * moments.x, 0.02);
- float d = compare - moments.x;
- float p_max = linstep(0.2, 1.0, variance / (variance + d * d));
- return clamp(max(p, p_max), 0.0, 1.0);
- }
- float computeShadowWithVSM(vec4 vPositionFromLight, sampler2D shadowSampler, float bias, float darkness)
- {
- vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w;
- depth = 0.5 * depth + vec3(0.5);
- vec2 uv = depth.xy;
- if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0 || depth.z >= 1.0)
- {
- return 1.0;
- }
- vec4 texel = texture2D(shadowSampler, uv);
- vec2 moments = vec2(unpackHalf(texel.xy), unpackHalf(texel.zw));
- #ifdef OVERLOADEDSHADOWVALUES
- return min(1.0, mix(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness, vOverloadedShadowIntensity.x));
- #else
- return min(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness);
- #endif
- }
- #endif
- #endif
- // Bump
- #ifdef BUMP
- varying vec2 vBumpUV;
- uniform vec2 vBumpInfos;
- uniform sampler2D bumpSampler;
- // Thanks to http://www.thetenthplanet.de/archives/1180
- mat3 cotangent_frame(vec3 normal, vec3 p, vec2 uv)
- {
- // get edge vectors of the pixel triangle
- vec3 dp1 = dFdx(p);
- vec3 dp2 = dFdy(p);
- vec2 duv1 = dFdx(uv);
- vec2 duv2 = dFdy(uv);
- // solve the linear system
- vec3 dp2perp = cross(dp2, normal);
- vec3 dp1perp = cross(normal, dp1);
- vec3 tangent = dp2perp * duv1.x + dp1perp * duv2.x;
- vec3 binormal = dp2perp * duv1.y + dp1perp * duv2.y;
- // construct a scale-invariant frame
- float invmax = inversesqrt(max(dot(tangent, tangent), dot(binormal, binormal)));
- return mat3(tangent * invmax, binormal * invmax, normal);
- }
- vec3 perturbNormal(vec3 viewDir)
- {
- vec3 map = texture2D(bumpSampler, vBumpUV).xyz;
- map = map * 255. / 127. - 128. / 127.;
- mat3 TBN = cotangent_frame(vNormalW * vBumpInfos.y, -viewDir, vBumpUV);
- return normalize(TBN * map);
- }
- #endif
- #ifdef CLIPPLANE
- varying float fClipDistance;
- #endif
- #ifdef LOGARITHMICDEPTH
- uniform float logarithmicDepthConstant;
- varying float vFragmentDepth;
- #endif
- // Fog
- #ifdef FOG
- #define FOGMODE_NONE 0.
- #define FOGMODE_EXP 1.
- #define FOGMODE_EXP2 2.
- #define FOGMODE_LINEAR 3.
- #define E 2.71828
- uniform vec4 vFogInfos;
- uniform vec3 vFogColor;
- varying float fFogDistance;
- float CalcFogFactor()
- {
- float fogCoeff = 1.0;
- float fogStart = vFogInfos.y;
- float fogEnd = vFogInfos.z;
- float fogDensity = vFogInfos.w;
- if (FOGMODE_LINEAR == vFogInfos.x)
- {
- fogCoeff = (fogEnd - fFogDistance) / (fogEnd - fogStart);
- }
- else if (FOGMODE_EXP == vFogInfos.x)
- {
- fogCoeff = 1.0 / pow(E, fFogDistance * fogDensity);
- }
- else if (FOGMODE_EXP2 == vFogInfos.x)
- {
- fogCoeff = 1.0 / pow(E, fFogDistance * fFogDistance * fogDensity * fogDensity);
- }
- return clamp(fogCoeff, 0.0, 1.0);
- }
- #endif
- // Light Computing
- struct lightingInfo
- {
- vec3 diffuse;
- #ifdef SPECULARTERM
- vec3 specular;
- #endif
- };
- lightingInfo computeLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) {
- lightingInfo result;
- vec3 lightVectorW;
- float attenuation = 1.0;
- if (lightData.w == 0.)
- {
- vec3 direction = lightData.xyz - vPositionW;
- attenuation = max(0., 1.0 - length(direction) / range);
- lightVectorW = normalize(direction);
- }
- else
- {
- lightVectorW = normalize(-lightData.xyz);
- }
- // diffuse
- vec3 H = normalize(viewDirectionW + lightVectorW);
- float NdotL = max(0.00000000001, dot(vNormal, lightVectorW));
- float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H));
- float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness);
- result.diffuse = diffuseTerm * diffuseColor * attenuation;
- #ifdef SPECULARTERM
- // Specular
- float NdotH = max(0.00000000001, dot(vNormal, H));
- vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor);
- result.specular = specTerm * attenuation;
- #endif
- return result;
- }
- lightingInfo computeSpotLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec4 lightDirection, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) {
- lightingInfo result;
- vec3 direction = lightData.xyz - vPositionW;
- vec3 lightVectorW = normalize(direction);
- float attenuation = max(0., 1.0 - length(direction) / range);
- // diffuse
- float cosAngle = max(0.0000001, dot(-lightDirection.xyz, lightVectorW));
- float spotAtten = 0.0;
- if (cosAngle >= lightDirection.w)
- {
- cosAngle = max(0., pow(cosAngle, lightData.w));
- spotAtten = clamp((cosAngle - lightDirection.w) / (1. - cosAngle), 0.0, 1.0);
- // Diffuse
- vec3 H = normalize(viewDirectionW - lightDirection.xyz);
- float NdotL = max(0.00000000001, dot(vNormal, -lightDirection.xyz));
- float VdotH = clamp(dot(viewDirectionW, H), 0.00000000001, 1.0);
- float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness);
- result.diffuse = diffuseTerm * diffuseColor * attenuation * spotAtten;
- #ifdef SPECULARTERM
- // Specular
- float NdotH = max(0.00000000001, dot(vNormal, H));
- vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor);
- result.specular = specTerm * attenuation * spotAtten;
- #endif
- return result;
- }
- result.diffuse = vec3(0.);
- #ifdef SPECULARTERM
- result.specular = vec3(0.);
- #endif
- return result;
- }
- lightingInfo computeHemisphericLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, vec3 groundColor, float roughness, float NdotV) {
- lightingInfo result;
- vec3 lightVectorW = normalize(lightData.xyz);
- // Diffuse
- float ndl = dot(vNormal, lightData.xyz) * 0.5 + 0.5;
- result.diffuse = mix(groundColor, diffuseColor, ndl);
- #ifdef SPECULARTERM
- // Specular
- vec3 H = normalize(viewDirectionW + lightVectorW);
- float NdotH = max(0.00000000001, dot(vNormal, H));
- float NdotL = max(0.00000000001, ndl);
- float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H));
- vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor);
- result.specular = specTerm;
- #endif
- return result;
- }
- void main(void) {
- #ifdef PoissonSamplingEnvironment
- initSamplers();
- #endif
- // Clip plane
- #ifdef CLIPPLANE
- if (fClipDistance > 0.0)
- discard;
- #endif
- vec3 viewDirectionW = normalize(vEyePosition - vPositionW);
- // Albedo
- vec4 surfaceAlbedo = vec4(1., 1., 1., 1.);
- vec3 surfaceAlbedoContribution = vAlbedoColor.rgb;
-
- // Alpha
- float alpha = vAlbedoColor.a;
- #ifdef ALBEDO
- surfaceAlbedo = texture2D(albedoSampler, vAlbedoUV);
- surfaceAlbedo = vec4(toLinearSpace(surfaceAlbedo.rgb), surfaceAlbedo.a);
- #ifndef LINKREFRACTIONTOTRANSPARENCY
- #ifdef ALPHATEST
- if (surfaceAlbedo.a < 0.4)
- discard;
- #endif
- #endif
- #ifdef ALPHAFROMALBEDO
- alpha *= surfaceAlbedo.a;
- #endif
- surfaceAlbedo.rgb *= vAlbedoInfos.y;
- #else
- // No Albedo texture.
- surfaceAlbedo.rgb = surfaceAlbedoContribution;
- surfaceAlbedoContribution = vec3(1., 1., 1.);
- #endif
- #ifdef VERTEXCOLOR
- surfaceAlbedo.rgb *= vColor.rgb;
- #endif
- #ifdef OVERLOADEDVALUES
- surfaceAlbedo.rgb = mix(surfaceAlbedo.rgb, vOverloadedAlbedo, vOverloadedIntensity.y);
- #endif
- // Bump
- #ifdef NORMAL
- vec3 normalW = normalize(vNormalW);
- #else
- vec3 normalW = vec3(1.0, 1.0, 1.0);
- #endif
- #ifdef BUMP
- normalW = perturbNormal(viewDirectionW);
- #endif
- // Ambient color
- vec3 ambientColor = vec3(1., 1., 1.);
- #ifdef AMBIENT
- ambientColor = texture2D(ambientSampler, vAmbientUV).rgb * vAmbientInfos.y;
-
- #ifdef OVERLOADEDVALUES
- ambientColor.rgb = mix(ambientColor.rgb, vOverloadedAmbient, vOverloadedIntensity.x);
- #endif
- #endif
- // Specular map
- float microSurface = vReflectivityColor.a;
- vec3 surfaceReflectivityColor = vReflectivityColor.rgb;
-
- #ifdef OVERLOADEDVALUES
- surfaceReflectivityColor.rgb = mix(surfaceReflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z);
- #endif
- #ifdef REFLECTIVITY
- vec4 surfaceReflectivityColorMap = texture2D(reflectivitySampler, vReflectivityUV);
- surfaceReflectivityColor = surfaceReflectivityColorMap.rgb;
- surfaceReflectivityColor = toLinearSpace(surfaceReflectivityColor);
- #ifdef OVERLOADEDVALUES
- surfaceReflectivityColor = mix(surfaceReflectivityColor, vOverloadedReflectivity, vOverloadedIntensity.z);
- #endif
- #ifdef MICROSURFACEFROMREFLECTIVITYMAP
- microSurface = surfaceReflectivityColorMap.a;
- #else
- microSurface = computeDefaultMicroSurface(microSurface, surfaceReflectivityColor);
- #endif
- #endif
- #ifdef OVERLOADEDVALUES
- microSurface = mix(microSurface, vOverloadedMicroSurface.x, vOverloadedMicroSurface.y);
- #endif
- // Compute N dot V.
- float NdotV = max(0.00000000001, dot(normalW, viewDirectionW));
- // Adapt microSurface.
- microSurface = clamp(microSurface, 0., 1.) * 0.98;
- // Call rough to not conflict with previous one.
- float rough = clamp(1. - microSurface, 0.000001, 1.0);
- // Lighting
- vec3 lightDiffuseContribution = vec3(0., 0., 0.);
-
- #ifdef OVERLOADEDSHADOWVALUES
- vec3 shadowedOnlyLightDiffuseContribution = vec3(1., 1., 1.);
- #endif
- #ifdef SPECULARTERM
- vec3 lightSpecularContribution= vec3(0., 0., 0.);
- #endif
- float notShadowLevel = 1.; // 1 - shadowLevel
- #ifdef LIGHT0
- #ifndef SPECULARTERM
- vec3 vLightSpecular0 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT0
- lightingInfo info = computeSpotLighting(viewDirectionW, normalW, vLightData0, vLightDirection0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV);
- #endif
- #ifdef HEMILIGHT0
- lightingInfo info = computeHemisphericLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightGround0, rough, NdotV);
- #endif
- #if defined(POINTLIGHT0) || defined(DIRLIGHT0)
- lightingInfo info = computeLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV);
- #endif
- #ifdef SHADOW0
- #ifdef SHADOWVSM0
- notShadowLevel = computeShadowWithVSM(vPositionFromLight0, shadowSampler0, shadowsInfo0.z, shadowsInfo0.x);
- #else
- #ifdef SHADOWPCF0
- #if defined(POINTLIGHT0)
- notShadowLevel = computeShadowWithPCFCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight0, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x);
- #endif
- #else
- #if defined(POINTLIGHT0)
- notShadowLevel = computeShadowCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight0, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef LIGHT1
- #ifndef SPECULARTERM
- vec3 vLightSpecular1 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT1
- info = computeSpotLighting(viewDirectionW, normalW, vLightData1, vLightDirection1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV);
- #endif
- #ifdef HEMILIGHT1
- info = computeHemisphericLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightGround1, rough, NdotV);
- #endif
- #if defined(POINTLIGHT1) || defined(DIRLIGHT1)
- info = computeLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV);
- #endif
- #ifdef SHADOW1
- #ifdef SHADOWVSM1
- notShadowLevel = computeShadowWithVSM(vPositionFromLight1, shadowSampler1, shadowsInfo1.z, shadowsInfo1.x);
- #else
- #ifdef SHADOWPCF1
- #if defined(POINTLIGHT1)
- notShadowLevel = computeShadowWithPCFCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight1, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x);
- #endif
- #else
- #if defined(POINTLIGHT1)
- notShadowLevel = computeShadowCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight1, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef LIGHT2
- #ifndef SPECULARTERM
- vec3 vLightSpecular2 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT2
- info = computeSpotLighting(viewDirectionW, normalW, vLightData2, vLightDirection2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV);
- #endif
- #ifdef HEMILIGHT2
- info = computeHemisphericLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightGround2, rough, NdotV);
- #endif
- #if defined(POINTLIGHT2) || defined(DIRLIGHT2)
- info = computeLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV);
- #endif
- #ifdef SHADOW2
- #ifdef SHADOWVSM2
- notShadowLevel = computeShadowWithVSM(vPositionFromLight2, shadowSampler2, shadowsInfo2.z, shadowsInfo2.x);
- #else
- #ifdef SHADOWPCF2
- #if defined(POINTLIGHT2)
- notShadowLevel = computeShadowWithPCFCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight2, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x);
- #endif
- #else
- #if defined(POINTLIGHT2)
- notShadowLevel = computeShadowCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight2, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef LIGHT3
- #ifndef SPECULARTERM
- vec3 vLightSpecular3 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT3
- info = computeSpotLighting(viewDirectionW, normalW, vLightData3, vLightDirection3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV);
- #endif
- #ifdef HEMILIGHT3
- info = computeHemisphericLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightGround3, rough, NdotV);
- #endif
- #if defined(POINTLIGHT3) || defined(DIRLIGHT3)
- info = computeLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV);
- #endif
- #ifdef SHADOW3
- #ifdef SHADOWVSM3
- notShadowLevel = computeShadowWithVSM(vPositionFromLight3, shadowSampler3, shadowsInfo3.z, shadowsInfo3.x);
- #else
- #ifdef SHADOWPCF3
- #if defined(POINTLIGHT3)
- notShadowLevel = computeShadowWithPCFCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight3, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x);
- #endif
- #else
- #if defined(POINTLIGHT3)
- notShadowLevel = computeShadowCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight3, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution *= vLightingIntensity.w;
- #endif
- #ifdef OPACITY
- vec4 opacityMap = texture2D(opacitySampler, vOpacityUV);
- #ifdef OPACITYRGB
- opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11);
- alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y;
- #else
- alpha *= opacityMap.a * vOpacityInfos.y;
- #endif
- #endif
- #ifdef VERTEXALPHA
- alpha *= vColor.a;
- #endif
- #ifdef OPACITYFRESNEL
- float opacityFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, opacityParts.z, opacityParts.w);
- alpha += opacityParts.x * (1.0 - opacityFresnelTerm) + opacityFresnelTerm * opacityParts.y;
- #endif
- // Refraction
- vec3 surfaceRefractionColor = vec3(0., 0., 0.);
- // Go mat -> blurry reflexion according to microSurface
- float bias = 20. * (1.0 - microSurface);
-
- #ifdef REFRACTION
- vec3 refractionVector = normalize(refract(-viewDirectionW, normalW, vRefractionInfos.y));
-
- #ifdef REFRACTIONMAP_3D
- refractionVector.y = refractionVector.y * vRefractionInfos.w;
- if (dot(refractionVector, viewDirectionW) < 1.0)
- {
- surfaceRefractionColor = textureCube(refractionCubeSampler, refractionVector, bias).rgb * vRefractionInfos.x;
- }
-
- #ifndef REFRACTIONMAPINLINEARSPACE
- surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb);
- #endif
- #else
- vec3 vRefractionUVW = vec3(refractionMatrix * (view * vec4(vPositionW + refractionVector * vRefractionInfos.z, 1.0)));
- vec2 refractionCoords = vRefractionUVW.xy / vRefractionUVW.z;
- refractionCoords.y = 1.0 - refractionCoords.y;
- surfaceRefractionColor = texture2D(refraction2DSampler, refractionCoords).rgb * vRefractionInfos.x;
- surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb);
- #endif
- #endif
- // Reflection
- vec3 environmentRadiance = vReflectionColor.rgb;
- vec3 environmentIrradiance = vReflectionColor.rgb;
- #ifdef REFLECTION
- vec3 vReflectionUVW = computeReflectionCoords(vec4(vPositionW, 1.0), normalW);
- #ifdef REFLECTIONMAP_3D
- environmentRadiance = textureCube(reflectionCubeSampler, vReflectionUVW, bias).rgb * vReflectionInfos.x;
-
- #ifdef PoissonSamplingEnvironment
- float alphaG = convertRoughnessToAverageSlope(rough);
- environmentRadiance = environmentSampler(reflectionCubeSampler, vReflectionUVW, alphaG) * vReflectionInfos.x;
- #endif
- #ifdef USESPHERICALFROMREFLECTIONMAP
- #ifndef REFLECTIONMAP_SKYBOX
- vec3 normalEnvironmentSpace = (reflectionMatrix * vec4(normalW, 1)).xyz;
- environmentIrradiance = EnvironmentIrradiance(normalEnvironmentSpace);
- #endif
- #else
- environmentRadiance = toLinearSpace(environmentRadiance.rgb);
-
- environmentIrradiance = textureCube(reflectionCubeSampler, normalW, 20.).rgb * vReflectionInfos.x;
- environmentIrradiance = toLinearSpace(environmentIrradiance.rgb);
- environmentIrradiance *= 0.2; // Hack in case of no hdr cube map use for environment.
- #endif
- #else
- vec2 coords = vReflectionUVW.xy;
- #ifdef REFLECTIONMAP_PROJECTION
- coords /= vReflectionUVW.z;
- #endif
- coords.y = 1.0 - coords.y;
- environmentRadiance = texture2D(reflection2DSampler, coords).rgb * vReflectionInfos.x;
- environmentRadiance = toLinearSpace(environmentRadiance.rgb);
- environmentIrradiance = texture2D(reflection2DSampler, coords, 20.).rgb * vReflectionInfos.x;
- environmentIrradiance = toLinearSpace(environmentIrradiance.rgb);
- #endif
- #endif
- #ifdef OVERLOADEDVALUES
- environmentIrradiance = mix(environmentIrradiance, vOverloadedReflection, vOverloadedMicroSurface.z);
- environmentRadiance = mix(environmentRadiance, vOverloadedReflection, vOverloadedMicroSurface.z);
- #endif
- environmentRadiance *= vLightingIntensity.z;
- environmentIrradiance *= vLightingIntensity.z;
- // Compute reflection specular fresnel
- vec3 specularEnvironmentR0 = surfaceReflectivityColor.rgb;
- vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0);
- vec3 specularEnvironmentReflectance = FresnelSchlickEnvironmentGGX(clamp(NdotV, 0., 1.), specularEnvironmentR0, specularEnvironmentR90, sqrt(microSurface));
- // Compute refractance
- vec3 refractance = vec3(0.0 , 0.0, 0.0);
- #ifdef REFRACTION
- vec3 transmission = vec3(1.0 , 1.0, 1.0);
- #ifdef LINKREFRACTIONTOTRANSPARENCY
- // Transmission based on alpha.
- transmission *= (1.0 - alpha);
-
- // Tint the material with albedo.
- // TODO. PBR Tinting.
- vec3 mixedAlbedo = surfaceAlbedoContribution.rgb * surfaceAlbedo.rgb;
- float maxChannel = max(max(mixedAlbedo.r, mixedAlbedo.g), mixedAlbedo.b);
- vec3 tint = clamp(maxChannel * mixedAlbedo, 0.0, 1.0);
-
- // Decrease Albedo Contribution
- surfaceAlbedoContribution *= alpha;
-
- // Decrease irradiance Contribution
- environmentIrradiance *= alpha;
-
- // Tint reflectance
- surfaceRefractionColor *= tint;
-
- // Put alpha back to 1;
- alpha = 1.0;
- #endif
-
- // Add Multiple internal bounces.
- vec3 bounceSpecularEnvironmentReflectance = (2.0 * specularEnvironmentReflectance) / (1.0 + specularEnvironmentReflectance);
- specularEnvironmentReflectance = mix(bounceSpecularEnvironmentReflectance, specularEnvironmentReflectance, alpha);
-
- // In theory T = 1 - R.
- transmission *= 1.0 - specularEnvironmentReflectance;
-
- // Should baked in diffuse.
- refractance = surfaceRefractionColor * transmission;
- #endif
- // Apply Energy Conservation taking in account the environment level only if the environment is present.
- float reflectance = max(max(surfaceReflectivityColor.r, surfaceReflectivityColor.g), surfaceReflectivityColor.b);
- surfaceAlbedo.rgb = (1. - reflectance) * surfaceAlbedo.rgb;
- refractance *= vLightingIntensity.z;
- environmentRadiance *= specularEnvironmentReflectance;
- // Emissive
- vec3 surfaceEmissiveColor = vEmissiveColor;
- #ifdef EMISSIVE
- vec3 emissiveColorTex = texture2D(emissiveSampler, vEmissiveUV).rgb;
- surfaceEmissiveColor = toLinearSpace(emissiveColorTex.rgb) * surfaceEmissiveColor * vEmissiveInfos.y;
- #endif
- #ifdef OVERLOADEDVALUES
- surfaceEmissiveColor = mix(surfaceEmissiveColor, vOverloadedEmissive, vOverloadedIntensity.w);
- #endif
- #ifdef EMISSIVEFRESNEL
- float emissiveFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, emissiveRightColor.a, emissiveLeftColor.a);
- surfaceEmissiveColor *= emissiveLeftColor.rgb * (1.0 - emissiveFresnelTerm) + emissiveFresnelTerm * emissiveRightColor.rgb;
- #endif
- // Composition
- #ifdef EMISSIVEASILLUMINATION
- vec3 finalDiffuse = max(lightDiffuseContribution * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
-
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #endif
- #else
- #ifdef LINKEMISSIVEWITHALBEDO
- vec3 finalDiffuse = max((lightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution = max((shadowedOnlyLightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #endif
- #else
- vec3 finalDiffuse = max(lightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #endif
- #endif
- #endif
- #ifdef OVERLOADEDSHADOWVALUES
- finalDiffuse = mix(finalDiffuse, shadowedOnlyLightDiffuseContribution, (1.0 - vOverloadedShadowIntensity.y));
- #endif
- #ifdef SPECULARTERM
- vec3 finalSpecular = lightSpecularContribution * surfaceReflectivityColor;
- #else
- vec3 finalSpecular = vec3(0.0);
- #endif
- #ifdef OVERLOADEDSHADOWVALUES
- finalSpecular = mix(finalSpecular, vec3(0.0), (1.0 - vOverloadedShadowIntensity.y));
- #endif
- #ifdef SPECULAROVERALPHA
- alpha = clamp(alpha + dot(finalSpecular, vec3(0.3, 0.59, 0.11)), 0., 1.);
- #endif
- // Composition
- // Reflection already includes the environment intensity.
- #ifdef EMISSIVEASILLUMINATION
- vec4 finalColor = vec4(finalDiffuse * ambientColor * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance + finalSpecular * vLightingIntensity.x + environmentRadiance + surfaceEmissiveColor * vLightingIntensity.y + refractance, alpha);
- #else
- vec4 finalColor = vec4(finalDiffuse * ambientColor * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance + finalSpecular * vLightingIntensity.x + environmentRadiance + refractance, alpha);
- #endif
- #ifdef LIGHTMAP
- vec3 lightmapColor = texture2D(lightmapSampler, vLightmapUV).rgb * vLightmapInfos.y;
- #ifdef USELIGHTMAPASSHADOWMAP
- finalColor.rgb *= lightmapColor;
- #else
- finalColor.rgb += lightmapColor;
- #endif
- #endif
- #ifdef FOG
- float fog = CalcFogFactor();
- finalColor.rgb = fog * finalColor.rgb + (1.0 - fog) * vFogColor;
- #endif
- finalColor = max(finalColor, 0.0);
- #ifdef CAMERATONEMAP
- finalColor.rgb = toneMaps(finalColor.rgb);
- #endif
- finalColor.rgb = toGammaSpace(finalColor.rgb);
- #ifdef CAMERACONTRAST
- finalColor = contrasts(finalColor);
- #endif
- // Normal Display.
- // gl_FragColor = vec4(normalW * 0.5 + 0.5, 1.0);
- // Ambient reflection color.
- // gl_FragColor = vec4(ambientReflectionColor, 1.0);
- // Reflection color.
- // gl_FragColor = vec4(reflectionColor, 1.0);
- // Base color.
- // gl_FragColor = vec4(surfaceAlbedo.rgb, 1.0);
- // Specular color.
- // gl_FragColor = vec4(surfaceReflectivityColor.rgb, 1.0);
- // MicroSurface color.
- // gl_FragColor = vec4(microSurface, microSurface, microSurface, 1.0);
- // Specular Map
- // gl_FragColor = vec4(reflectivityMapColor.rgb, 1.0);
-
- // Refractance
- // gl_FragColor = vec4(refractance.rgb, 1.0);
- //// Emissive Color
- //vec2 test = vEmissiveUV * 0.5 + 0.5;
- //gl_FragColor = vec4(test.x, test.y, 1.0, 1.0);
- gl_FragColor = finalColor;
- }
|