12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394 |
- #ifdef BUMP
- #extension GL_OES_standard_derivatives : enable
- #endif
- #ifdef LODBASEDMICROSFURACE
- #extension GL_EXT_shader_texture_lod : enable
- #endif
- #ifdef LOGARITHMICDEPTH
- #extension GL_EXT_frag_depth : enable
- #endif
- precision highp float;
- // Constants
- #define RECIPROCAL_PI2 0.15915494
- #define FRESNEL_MAXIMUM_ON_ROUGH 0.25
- uniform vec3 vEyePosition;
- uniform vec3 vAmbientColor;
- uniform vec3 vReflectionColor;
- uniform vec4 vAlbedoColor;
- uniform vec4 vLightRadiuses;
- // CUSTOM CONTROLS
- uniform vec4 vLightingIntensity;
- uniform vec4 vCameraInfos;
- #ifdef OVERLOADEDVALUES
- uniform vec4 vOverloadedIntensity;
- uniform vec3 vOverloadedAmbient;
- uniform vec3 vOverloadedAlbedo;
- uniform vec3 vOverloadedReflectivity;
- uniform vec3 vOverloadedEmissive;
- uniform vec3 vOverloadedReflection;
- uniform vec3 vOverloadedMicroSurface;
- #endif
- #ifdef OVERLOADEDSHADOWVALUES
- uniform vec4 vOverloadedShadowIntensity;
- #endif
- #ifdef USESPHERICALFROMREFLECTIONMAP
- uniform vec3 vSphericalX;
- uniform vec3 vSphericalY;
- uniform vec3 vSphericalZ;
- uniform vec3 vSphericalXX;
- uniform vec3 vSphericalYY;
- uniform vec3 vSphericalZZ;
- uniform vec3 vSphericalXY;
- uniform vec3 vSphericalYZ;
- uniform vec3 vSphericalZX;
- vec3 EnvironmentIrradiance(vec3 normal)
- {
- // Note: 'normal' is assumed to be normalised (or near normalised)
- // This isn't as critical as it is with other calculations (e.g. specular highlight), but the result will be incorrect nonetheless.
- // TODO: switch to optimal implementation
- vec3 result =
- vSphericalX * normal.x +
- vSphericalY * normal.y +
- vSphericalZ * normal.z +
- vSphericalXX * normal.x * normal.x +
- vSphericalYY * normal.y * normal.y +
- vSphericalZZ * normal.z * normal.z +
- vSphericalYZ * normal.y * normal.z +
- vSphericalZX * normal.z * normal.x +
- vSphericalXY * normal.x * normal.y;
- return result.rgb;
- }
- #endif
- #if defined(REFLECTION) || defined(REFRACTION)
- uniform vec2 vMicrosurfaceTextureLods;
- #endif
- // PBR CUSTOM CONSTANTS
- const float kPi = 3.1415926535897932384626433832795;
- const float kRougnhessToAlphaScale = 0.1;
- const float kRougnhessToAlphaOffset = 0.29248125;
- #ifdef PoissonSamplingEnvironment
- const int poissonSphereSamplersCount = 32;
- vec3 poissonSphereSamplers[poissonSphereSamplersCount];
- void initSamplers()
- {
- poissonSphereSamplers[0] = vec3( -0.552198926093, 0.801049753814, -0.0322487480415 );
- poissonSphereSamplers[1] = vec3( 0.344874796559, -0.650989584719, 0.283038477033 );
- poissonSphereSamplers[2] = vec3( -0.0710183703467, 0.163770497767, -0.95022416734 );
- poissonSphereSamplers[3] = vec3( 0.422221832073, 0.576613638193, 0.519157625948 );
- poissonSphereSamplers[4] = vec3( -0.561872200916, -0.665581249881, -0.131630473211 );
- poissonSphereSamplers[5] = vec3( -0.409905973809, 0.0250731510778, 0.674676954809 );
- poissonSphereSamplers[6] = vec3( 0.206829570551, -0.190199352704, 0.919073906156 );
- poissonSphereSamplers[7] = vec3( -0.857514664463, 0.0274425010091, -0.475068738967 );
- poissonSphereSamplers[8] = vec3( -0.816275009951, -0.0432916479141, 0.40394579291 );
- poissonSphereSamplers[9] = vec3( 0.397976181928, -0.633227519667, -0.617794410447 );
- poissonSphereSamplers[10] = vec3( -0.181484199014, 0.0155418272003, -0.34675720703 );
- poissonSphereSamplers[11] = vec3( 0.591734926919, 0.489930882201, -0.51675303188 );
- poissonSphereSamplers[12] = vec3( -0.264514973057, 0.834248662136, 0.464624235985 );
- poissonSphereSamplers[13] = vec3( -0.125845223505, 0.812029586099, -0.46213797731 );
- poissonSphereSamplers[14] = vec3( 0.0345715424639, 0.349983742938, 0.855109899027 );
- poissonSphereSamplers[15] = vec3( 0.694340492749, -0.281052190209, -0.379600605543 );
- poissonSphereSamplers[16] = vec3( -0.241055518078, -0.580199280578, 0.435381168431 );
- poissonSphereSamplers[17] = vec3( 0.126313722289, 0.715113642744, 0.124385788055 );
- poissonSphereSamplers[18] = vec3( 0.752862552387, 0.277075021888, 0.275059597549 );
- poissonSphereSamplers[19] = vec3( -0.400896300918, -0.309374534321, -0.74285782627 );
- poissonSphereSamplers[20] = vec3( 0.121843331941, -0.00381197918195, 0.322441835258 );
- poissonSphereSamplers[21] = vec3( 0.741656771351, -0.472083016745, 0.14589173819 );
- poissonSphereSamplers[22] = vec3( -0.120347565985, -0.397252703556, -0.00153836114051 );
- poissonSphereSamplers[23] = vec3( -0.846258835203, -0.433763808754, 0.168732209784 );
- poissonSphereSamplers[24] = vec3( 0.257765618362, -0.546470581239, -0.242234375624 );
- poissonSphereSamplers[25] = vec3( -0.640343473361, 0.51920903395, 0.549310644325 );
- poissonSphereSamplers[26] = vec3( -0.894309984621, 0.297394061018, 0.0884583225292 );
- poissonSphereSamplers[27] = vec3( -0.126241933628, -0.535151016335, -0.440093659672 );
- poissonSphereSamplers[28] = vec3( -0.158176440297, -0.393125021578, 0.890727226039 );
- poissonSphereSamplers[29] = vec3( 0.896024272938, 0.203068725821, -0.11198597748 );
- poissonSphereSamplers[30] = vec3( 0.568671758933, -0.314144243629, 0.509070768816 );
- poissonSphereSamplers[31] = vec3( 0.289665332178, 0.104356977462, -0.348379247171 );
- }
- vec3 environmentSampler(samplerCube cubeMapSampler, vec3 centralDirection, float microsurfaceAverageSlope)
- {
- vec3 result = vec3(0., 0., 0.);
- for(int i = 0; i < poissonSphereSamplersCount; i++)
- {
- vec3 offset = poissonSphereSamplers[i];
- vec3 direction = centralDirection + microsurfaceAverageSlope * offset;
- result += textureCube(cubeMapSampler, direction, 0.).rgb;
- }
- result /= 32.0;
- return result;
- }
- #endif
- // PBR HELPER METHODS
- float Square(float value)
- {
- return value * value;
- }
- float getLuminance(vec3 color)
- {
- return clamp(dot(color, vec3(0.2126, 0.7152, 0.0722)), 0., 1.);
- }
- float convertRoughnessToAverageSlope(float roughness)
- {
- // Calculate AlphaG as square of roughness; add epsilon to avoid numerical issues
- const float kMinimumVariance = 0.0005;
- float alphaG = Square(roughness) + kMinimumVariance;
- return alphaG;
- }
- // Based on Beckamm roughness to Blinn exponent + http://casual-effects.blogspot.ca/2011/08/plausible-environment-lighting-in-two.html
- float getMipMapIndexFromAverageSlope(float maxMipLevel, float alpha)
- {
- // do not take in account lower mips hence -1... and wait from proper preprocess.
- // formula comes from approximation of the mathematical solution.
- //float mip = maxMipLevel + kRougnhessToAlphaOffset + 0.5 * log2(alpha);
-
- // In the mean time
- // Always [0..1] goes from max mip to min mip in a log2 way.
- // Change 5 to nummip below.
- // http://www.wolframalpha.com/input/?i=x+in+0..1+plot+(+5+%2B+0.3+%2B+0.1+*+5+*+log2(+(1+-+x)+*+(1+-+x)+%2B+0.0005))
- float mip = kRougnhessToAlphaOffset + maxMipLevel + (maxMipLevel * kRougnhessToAlphaScale * log2(alpha));
-
- return clamp(mip, 0., maxMipLevel);
- }
- float getMipMapIndexFromAverageSlopeWithPMREM(float maxMipLevel, float alphaG)
- {
- float specularPower = clamp(2. / alphaG - 2., 0.000001, 2048.);
-
- // Based on CubeMapGen for cosine power with 2048 spec default and 0.25 dropoff
- return clamp(- 0.5 * log2(specularPower) + 5.5, 0., maxMipLevel);
- }
- // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007
- float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG)
- {
- float tanSquared = (1.0 - dot * dot) / (dot * dot);
- return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared));
- }
- float smithVisibilityG_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG)
- {
- return smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG);
- }
- // Trowbridge-Reitz (GGX)
- // Generalised Trowbridge-Reitz with gamma power=2.0
- float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG)
- {
- // Note: alphaG is average slope (gradient) of the normals in slope-space.
- // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have
- // a tangent (gradient) closer to the macrosurface than this slope.
- float a2 = Square(alphaG);
- float d = NdotH * NdotH * (a2 - 1.0) + 1.0;
- return a2 / (kPi * d * d);
- }
- vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90)
- {
- return reflectance0 + (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotH, 0., 1.), 5.0);
- }
- vec3 FresnelSchlickEnvironmentGGX(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness)
- {
- // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle
- float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness);
- return reflectance0 + weight * (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotN, 0., 1.), 5.0);
- }
- // Cook Torance Specular computation.
- vec3 computeSpecularTerm(float NdotH, float NdotL, float NdotV, float VdotH, float roughness, vec3 specularColor)
- {
- float alphaG = convertRoughnessToAverageSlope(roughness);
- float distribution = normalDistributionFunction_TrowbridgeReitzGGX(NdotH, alphaG);
- float visibility = smithVisibilityG_TrowbridgeReitzGGX_Walter(NdotL, NdotV, alphaG);
- visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integated in viibility to avoid issues when visibility function changes.
- vec3 fresnel = fresnelSchlickGGX(VdotH, specularColor, vec3(1., 1., 1.));
- float specTerm = max(0., visibility * distribution) * NdotL;
- return fresnel * specTerm * kPi; // TODO: audit pi constants
- }
- float computeDiffuseTerm(float NdotL, float NdotV, float VdotH, float roughness)
- {
- // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of
- // of general coupled diffuse/specular models e.g. Ashikhmin Shirley.
- float diffuseFresnelNV = pow(clamp(1.0 - NdotL, 0.000001, 1.), 5.0);
- float diffuseFresnelNL = pow(clamp(1.0 - NdotV, 0.000001, 1.), 5.0);
- float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness;
- float diffuseFresnelTerm =
- (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) *
- (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV);
- return diffuseFresnelTerm * NdotL;
- // PI Test
- // diffuseFresnelTerm /= kPi;
- }
- float adjustRoughnessFromLightProperties(float roughness, float lightRadius, float lightDistance)
- {
- // At small angle this approximation works.
- float lightRoughness = lightRadius / lightDistance;
- // Distribution can sum.
- float totalRoughness = clamp(lightRoughness + roughness, 0., 1.);
- return totalRoughness;
- }
- float computeDefaultMicroSurface(float microSurface, vec3 reflectivityColor)
- {
- float kReflectivityNoAlphaWorkflow_SmoothnessMax = 0.95;
- float reflectivityLuminance = getLuminance(reflectivityColor);
- float reflectivityLuma = sqrt(reflectivityLuminance);
- microSurface = reflectivityLuma * kReflectivityNoAlphaWorkflow_SmoothnessMax;
- return microSurface;
- }
- vec3 toLinearSpace(vec3 color)
- {
- return vec3(pow(color.r, 2.2), pow(color.g, 2.2), pow(color.b, 2.2));
- }
- vec3 toGammaSpace(vec3 color)
- {
- return vec3(pow(color.r, 1.0 / 2.2), pow(color.g, 1.0 / 2.2), pow(color.b, 1.0 / 2.2));
- }
- float computeLightFalloff(vec3 lightOffset, float lightDistanceSquared, float range)
- {
- #ifdef USEPHYSICALLIGHTFALLOFF
- float lightDistanceFalloff = 1.0 / ((lightDistanceSquared + 0.0001));
- return lightDistanceFalloff;
- #else
- float lightFalloff = max(0., 1.0 - length(lightOffset) / range);
- return lightFalloff;
- #endif
- }
- #ifdef CAMERATONEMAP
- vec3 toneMaps(vec3 color)
- {
- color = max(color, 0.0);
- // TONE MAPPING / EXPOSURE
- color.rgb = color.rgb * vCameraInfos.x;
- float tuning = 1.5; // TODO: sync up so e.g. 18% greys are matched to exposure appropriately
- // PI Test
- // tuning *= kPi;
- vec3 tonemapped = 1.0 - exp2(-color.rgb * tuning); // simple local photographic tonemapper
- color.rgb = mix(color.rgb, tonemapped, 1.0);
- return color;
- }
- #endif
- #ifdef CAMERACONTRAST
- vec4 contrasts(vec4 color)
- {
- color = clamp(color, 0.0, 1.0);
- vec3 resultHighContrast = color.rgb * color.rgb * (3.0 - 2.0 * color.rgb);
- float contrast = vCameraInfos.y;
- if (contrast < 1.0)
- {
- // Decrease contrast: interpolate towards zero-contrast image (flat grey)
- color.rgb = mix(vec3(0.5, 0.5, 0.5), color.rgb, contrast);
- }
- else
- {
- // Increase contrast: apply simple shoulder-toe high contrast curve
- color.rgb = mix(color.rgb, resultHighContrast, contrast - 1.0);
- }
- return color;
- }
- #endif
- // END PBR HELPER METHODS
- uniform vec4 vReflectivityColor;
- uniform vec3 vEmissiveColor;
- // Input
- varying vec3 vPositionW;
- #ifdef NORMAL
- varying vec3 vNormalW;
- #endif
- #ifdef VERTEXCOLOR
- varying vec4 vColor;
- #endif
- // Lights
- #include<lightFragmentDeclaration>[0]
- #include<lightFragmentDeclaration>[1]
- #include<lightFragmentDeclaration>[2]
- #include<lightFragmentDeclaration>[3]
- // Samplers
- #ifdef ALBEDO
- varying vec2 vAlbedoUV;
- uniform sampler2D albedoSampler;
- uniform vec2 vAlbedoInfos;
- #endif
- #ifdef AMBIENT
- varying vec2 vAmbientUV;
- uniform sampler2D ambientSampler;
- uniform vec2 vAmbientInfos;
- #endif
- #ifdef OPACITY
- varying vec2 vOpacityUV;
- uniform sampler2D opacitySampler;
- uniform vec2 vOpacityInfos;
- #endif
- #ifdef EMISSIVE
- varying vec2 vEmissiveUV;
- uniform vec2 vEmissiveInfos;
- uniform sampler2D emissiveSampler;
- #endif
- #ifdef LIGHTMAP
- varying vec2 vLightmapUV;
- uniform vec2 vLightmapInfos;
- uniform sampler2D lightmapSampler;
- #endif
- #if defined(REFLECTIVITY)
- varying vec2 vReflectivityUV;
- uniform vec2 vReflectivityInfos;
- uniform sampler2D reflectivitySampler;
- #endif
- // Fresnel
- #include<fresnelFunction>
- #ifdef OPACITYFRESNEL
- uniform vec4 opacityParts;
- #endif
- #ifdef EMISSIVEFRESNEL
- uniform vec4 emissiveLeftColor;
- uniform vec4 emissiveRightColor;
- #endif
- // Refraction Reflection
- #if defined(REFLECTIONMAP_SPHERICAL) || defined(REFLECTIONMAP_PROJECTION) || defined(REFRACTION)
- uniform mat4 view;
- #endif
- // Refraction
- #ifdef REFRACTION
- uniform vec4 vRefractionInfos;
- #ifdef REFRACTIONMAP_3D
- uniform samplerCube refractionCubeSampler;
- #else
- uniform sampler2D refraction2DSampler;
- uniform mat4 refractionMatrix;
- #endif
- #endif
- // Reflection
- #ifdef REFLECTION
- uniform vec2 vReflectionInfos;
- #ifdef REFLECTIONMAP_3D
- uniform samplerCube reflectionCubeSampler;
- #else
- uniform sampler2D reflection2DSampler;
- #endif
- #ifdef REFLECTIONMAP_SKYBOX
- varying vec3 vPositionUVW;
- #else
- #ifdef REFLECTIONMAP_EQUIRECTANGULAR_FIXED
- varying vec3 vDirectionW;
- #endif
- #if defined(REFLECTIONMAP_PLANAR) || defined(REFLECTIONMAP_CUBIC) || defined(REFLECTIONMAP_PROJECTION)
- uniform mat4 reflectionMatrix;
- #endif
- #endif
- #include<reflectionFunction>
- #endif
- // Shadows
- #ifdef SHADOWS
- float unpack(vec4 color)
- {
- const vec4 bit_shift = vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0);
- return dot(color, bit_shift);
- }
- #if defined(POINTLIGHT0) || defined(POINTLIGHT1) || defined(POINTLIGHT2) || defined(POINTLIGHT3)
- uniform vec2 depthValues;
- float computeShadowCube(vec3 lightPosition, samplerCube shadowSampler, float darkness, float bias)
- {
- vec3 directionToLight = vPositionW - lightPosition;
- float depth = length(directionToLight);
- depth = clamp(depth, 0., 1.0);
- directionToLight = normalize(directionToLight);
- directionToLight.y = - directionToLight.y;
- float shadow = unpack(textureCube(shadowSampler, directionToLight)) + bias;
- if (depth > shadow)
- {
- #ifdef OVERLOADEDSHADOWVALUES
- return mix(1.0, darkness, vOverloadedShadowIntensity.x);
- #else
- return darkness;
- #endif
- }
- return 1.0;
- }
- float computeShadowWithPCFCube(vec3 lightPosition, samplerCube shadowSampler, float mapSize, float bias, float darkness)
- {
- vec3 directionToLight = vPositionW - lightPosition;
- float depth = length(directionToLight);
- depth = (depth - depthValues.x) / (depthValues.y - depthValues.x);
- depth = clamp(depth, 0., 1.0);
- directionToLight = normalize(directionToLight);
- directionToLight.y = -directionToLight.y;
- float visibility = 1.;
- vec3 poissonDisk[4];
- poissonDisk[0] = vec3(-1.0, 1.0, -1.0);
- poissonDisk[1] = vec3(1.0, -1.0, -1.0);
- poissonDisk[2] = vec3(-1.0, -1.0, -1.0);
- poissonDisk[3] = vec3(1.0, -1.0, 1.0);
- // Poisson Sampling
- float biasedDepth = depth - bias;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[0] * mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[1] * mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[2] * mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[3] * mapSize)) < biasedDepth) visibility -= 0.25;
- #ifdef OVERLOADEDSHADOWVALUES
- return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x));
- #else
- return min(1.0, visibility + darkness);
- #endif
- }
- #endif
- #if defined(SPOTLIGHT0) || defined(SPOTLIGHT1) || defined(SPOTLIGHT2) || defined(SPOTLIGHT3) || defined(DIRLIGHT0) || defined(DIRLIGHT1) || defined(DIRLIGHT2) || defined(DIRLIGHT3)
- float computeShadow(vec4 vPositionFromLight, sampler2D shadowSampler, float darkness, float bias)
- {
- vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w;
- depth = 0.5 * depth + vec3(0.5);
- vec2 uv = depth.xy;
- if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0)
- {
- return 1.0;
- }
- float shadow = unpack(texture2D(shadowSampler, uv)) + bias;
- if (depth.z > shadow)
- {
- #ifdef OVERLOADEDSHADOWVALUES
- return mix(1.0, darkness, vOverloadedShadowIntensity.x);
- #else
- return darkness;
- #endif
- }
- return 1.;
- }
- float computeShadowWithPCF(vec4 vPositionFromLight, sampler2D shadowSampler, float mapSize, float bias, float darkness)
- {
- vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w;
- depth = 0.5 * depth + vec3(0.5);
- vec2 uv = depth.xy;
- if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0)
- {
- return 1.0;
- }
- float visibility = 1.;
- vec2 poissonDisk[4];
- poissonDisk[0] = vec2(-0.94201624, -0.39906216);
- poissonDisk[1] = vec2(0.94558609, -0.76890725);
- poissonDisk[2] = vec2(-0.094184101, -0.92938870);
- poissonDisk[3] = vec2(0.34495938, 0.29387760);
- // Poisson Sampling
- float biasedDepth = depth.z - bias;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[0] * mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[1] * mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[2] * mapSize)) < biasedDepth) visibility -= 0.25;
- if (unpack(texture2D(shadowSampler, uv + poissonDisk[3] * mapSize)) < biasedDepth) visibility -= 0.25;
- #ifdef OVERLOADEDSHADOWVALUES
- return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x));
- #else
- return min(1.0, visibility + darkness);
- #endif
- }
- // Thanks to http://devmaster.net/
- float unpackHalf(vec2 color)
- {
- return color.x + (color.y / 255.0);
- }
- float linstep(float low, float high, float v) {
- return clamp((v - low) / (high - low), 0.0, 1.0);
- }
- float ChebychevInequality(vec2 moments, float compare, float bias)
- {
- float p = smoothstep(compare - bias, compare, moments.x);
- float variance = max(moments.y - moments.x * moments.x, 0.02);
- float d = compare - moments.x;
- float p_max = linstep(0.2, 1.0, variance / (variance + d * d));
- return clamp(max(p, p_max), 0.0, 1.0);
- }
- float computeShadowWithVSM(vec4 vPositionFromLight, sampler2D shadowSampler, float bias, float darkness)
- {
- vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w;
- depth = 0.5 * depth + vec3(0.5);
- vec2 uv = depth.xy;
- if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0 || depth.z >= 1.0)
- {
- return 1.0;
- }
- vec4 texel = texture2D(shadowSampler, uv);
- vec2 moments = vec2(unpackHalf(texel.xy), unpackHalf(texel.zw));
- #ifdef OVERLOADEDSHADOWVALUES
- return min(1.0, mix(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness, vOverloadedShadowIntensity.x));
- #else
- return min(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness);
- #endif
- }
- #endif
- #endif
- #include<bumpFragmentFunctions>
- #include<clipPlaneFragmentDeclaration>
- #include<logDepthDeclaration>
- // Fog
- #include<fogFragmentDeclaration>
- // Light Computing
- struct lightingInfo
- {
- vec3 diffuse;
- #ifdef SPECULARTERM
- vec3 specular;
- #endif
- };
- lightingInfo computeLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV, float lightRadius) {
- lightingInfo result;
- vec3 lightDirection;
- float attenuation = 1.0;
- float lightDistance;
-
- // Point
- if (lightData.w == 0.)
- {
- vec3 lightOffset = lightData.xyz - vPositionW;
- float lightDistanceSquared = dot(lightOffset, lightOffset);
- attenuation = computeLightFalloff(lightOffset, lightDistanceSquared, range);
-
- lightDistance = sqrt(lightDistanceSquared);
- lightDirection = normalize(lightOffset);
- }
- // Directional
- else
- {
- lightDistance = length(-lightData.xyz);
- lightDirection = normalize(-lightData.xyz);
- }
-
- // Roughness
- roughness = adjustRoughnessFromLightProperties(roughness, lightRadius, lightDistance);
-
- // diffuse
- vec3 H = normalize(viewDirectionW + lightDirection);
- float NdotL = max(0.00000000001, dot(vNormal, lightDirection));
- float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H));
- float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness);
- result.diffuse = diffuseTerm * diffuseColor * attenuation;
- #ifdef SPECULARTERM
- // Specular
- float NdotH = max(0.00000000001, dot(vNormal, H));
- vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor);
- result.specular = specTerm * attenuation;
- #endif
- return result;
- }
- lightingInfo computeSpotLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec4 lightDirection, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV, float lightRadius) {
- lightingInfo result;
- vec3 lightOffset = lightData.xyz - vPositionW;
- vec3 lightVectorW = normalize(lightOffset);
- // diffuse
- float cosAngle = max(0.000000000000001, dot(-lightDirection.xyz, lightVectorW));
-
- if (cosAngle >= lightDirection.w)
- {
- cosAngle = max(0., pow(cosAngle, lightData.w));
-
- // Inverse squared falloff.
- float lightDistanceSquared = dot(lightOffset, lightOffset);
- float attenuation = computeLightFalloff(lightOffset, lightDistanceSquared, range);
-
- // Directional falloff.
- attenuation *= cosAngle;
-
- // Roughness.
- float lightDistance = sqrt(lightDistanceSquared);
- roughness = adjustRoughnessFromLightProperties(roughness, lightRadius, lightDistance);
-
- // Diffuse
- vec3 H = normalize(viewDirectionW - lightDirection.xyz);
- float NdotL = max(0.00000000001, dot(vNormal, -lightDirection.xyz));
- float VdotH = clamp(dot(viewDirectionW, H), 0.00000000001, 1.0);
- float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness);
- result.diffuse = diffuseTerm * diffuseColor * attenuation;
- #ifdef SPECULARTERM
- // Specular
- float NdotH = max(0.00000000001, dot(vNormal, H));
- vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor);
- result.specular = specTerm * attenuation;
- #endif
- return result;
- }
- result.diffuse = vec3(0.);
- #ifdef SPECULARTERM
- result.specular = vec3(0.);
- #endif
- return result;
- }
- lightingInfo computeHemisphericLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, vec3 groundColor, float roughness, float NdotV, float lightRadius) {
- lightingInfo result;
- // Roughness
- // Do not touch roughness on hemispheric.
- // Diffuse
- float ndl = dot(vNormal, lightData.xyz) * 0.5 + 0.5;
- result.diffuse = mix(groundColor, diffuseColor, ndl);
- #ifdef SPECULARTERM
- // Specular
- vec3 lightVectorW = normalize(lightData.xyz);
- vec3 H = normalize(viewDirectionW + lightVectorW);
- float NdotH = max(0.00000000001, dot(vNormal, H));
- float NdotL = max(0.00000000001, ndl);
- float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H));
- vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor);
- result.specular = specTerm;
- #endif
- return result;
- }
- void main(void) {
- #include<clipPlaneFragment>
- #ifdef PoissonSamplingEnvironment
- initSamplers();
- #endif
- vec3 viewDirectionW = normalize(vEyePosition - vPositionW);
- // Albedo
- vec4 surfaceAlbedo = vec4(1., 1., 1., 1.);
- vec3 surfaceAlbedoContribution = vAlbedoColor.rgb;
-
- // Alpha
- float alpha = vAlbedoColor.a;
- #ifdef ALBEDO
- surfaceAlbedo = texture2D(albedoSampler, vAlbedoUV);
- surfaceAlbedo = vec4(toLinearSpace(surfaceAlbedo.rgb), surfaceAlbedo.a);
- #ifndef LINKREFRACTIONTOTRANSPARENCY
- #ifdef ALPHATEST
- if (surfaceAlbedo.a < 0.4)
- discard;
- #endif
- #endif
- #ifdef ALPHAFROMALBEDO
- alpha *= surfaceAlbedo.a;
- #endif
- surfaceAlbedo.rgb *= vAlbedoInfos.y;
- #else
- // No Albedo texture.
- surfaceAlbedo.rgb = surfaceAlbedoContribution;
- surfaceAlbedoContribution = vec3(1., 1., 1.);
- #endif
- #ifdef VERTEXCOLOR
- surfaceAlbedo.rgb *= vColor.rgb;
- #endif
- #ifdef OVERLOADEDVALUES
- surfaceAlbedo.rgb = mix(surfaceAlbedo.rgb, vOverloadedAlbedo, vOverloadedIntensity.y);
- #endif
- // Bump
- #ifdef NORMAL
- vec3 normalW = normalize(vNormalW);
- #else
- vec3 normalW = vec3(1.0, 1.0, 1.0);
- #endif
-
- #include<bumpFragment>
- // Ambient color
- vec3 ambientColor = vec3(1., 1., 1.);
- #ifdef AMBIENT
- ambientColor = texture2D(ambientSampler, vAmbientUV).rgb * vAmbientInfos.y;
-
- #ifdef OVERLOADEDVALUES
- ambientColor.rgb = mix(ambientColor.rgb, vOverloadedAmbient, vOverloadedIntensity.x);
- #endif
- #endif
- // Specular map
- float microSurface = vReflectivityColor.a;
- vec3 surfaceReflectivityColor = vReflectivityColor.rgb;
-
- #ifdef OVERLOADEDVALUES
- surfaceReflectivityColor.rgb = mix(surfaceReflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z);
- #endif
- #ifdef REFLECTIVITY
- vec4 surfaceReflectivityColorMap = texture2D(reflectivitySampler, vReflectivityUV);
- surfaceReflectivityColor = surfaceReflectivityColorMap.rgb;
- surfaceReflectivityColor = toLinearSpace(surfaceReflectivityColor);
- #ifdef OVERLOADEDVALUES
- surfaceReflectivityColor = mix(surfaceReflectivityColor, vOverloadedReflectivity, vOverloadedIntensity.z);
- #endif
- #ifdef MICROSURFACEFROMREFLECTIVITYMAP
- microSurface = surfaceReflectivityColorMap.a;
- #else
- #ifdef MICROSURFACEAUTOMATIC
- microSurface = computeDefaultMicroSurface(microSurface, surfaceReflectivityColor);
- #endif
- #endif
- #endif
- #ifdef OVERLOADEDVALUES
- microSurface = mix(microSurface, vOverloadedMicroSurface.x, vOverloadedMicroSurface.y);
- #endif
- // Compute N dot V.
- float NdotV = max(0.00000000001, dot(normalW, viewDirectionW));
- // Adapt microSurface.
- microSurface = clamp(microSurface, 0., 1.) * 0.98;
- // Compute roughness.
- float roughness = clamp(1. - microSurface, 0.000001, 1.0);
-
- // Lighting
- vec3 lightDiffuseContribution = vec3(0., 0., 0.);
-
- #ifdef OVERLOADEDSHADOWVALUES
- vec3 shadowedOnlyLightDiffuseContribution = vec3(1., 1., 1.);
- #endif
- #ifdef SPECULARTERM
- vec3 lightSpecularContribution= vec3(0., 0., 0.);
- #endif
- float notShadowLevel = 1.; // 1 - shadowLevel
- #ifdef LIGHT0
- #ifndef SPECULARTERM
- vec3 vLightSpecular0 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT0
- lightingInfo info = computeSpotLighting(viewDirectionW, normalW, vLightData0, vLightDirection0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, roughness, NdotV, vLightRadiuses[0]);
- #endif
- #ifdef HEMILIGHT0
- lightingInfo info = computeHemisphericLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightGround0, roughness, NdotV, vLightRadiuses[0]);
- #endif
- #if defined(POINTLIGHT0) || defined(DIRLIGHT0)
- lightingInfo info = computeLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, roughness, NdotV, vLightRadiuses[0]);
- #endif
- #ifdef SHADOW0
- #ifdef SHADOWVSM0
- notShadowLevel = computeShadowWithVSM(vPositionFromLight0, shadowSampler0, shadowsInfo0.z, shadowsInfo0.x);
- #else
- #ifdef SHADOWPCF0
- #if defined(POINTLIGHT0)
- notShadowLevel = computeShadowWithPCFCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight0, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x);
- #endif
- #else
- #if defined(POINTLIGHT0)
- notShadowLevel = computeShadowCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight0, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef LIGHT1
- #ifndef SPECULARTERM
- vec3 vLightSpecular1 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT1
- info = computeSpotLighting(viewDirectionW, normalW, vLightData1, vLightDirection1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, roughness, NdotV, vLightRadiuses[1]);
- #endif
- #ifdef HEMILIGHT1
- info = computeHemisphericLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightGround1, roughness, NdotV, vLightRadiuses[1]);
- #endif
- #if defined(POINTLIGHT1) || defined(DIRLIGHT1)
- info = computeLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, roughness, NdotV, vLightRadiuses[1]);
- #endif
- #ifdef SHADOW1
- #ifdef SHADOWVSM1
- notShadowLevel = computeShadowWithVSM(vPositionFromLight1, shadowSampler1, shadowsInfo1.z, shadowsInfo1.x);
- #else
- #ifdef SHADOWPCF1
- #if defined(POINTLIGHT1)
- notShadowLevel = computeShadowWithPCFCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight1, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x);
- #endif
- #else
- #if defined(POINTLIGHT1)
- notShadowLevel = computeShadowCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight1, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef LIGHT2
- #ifndef SPECULARTERM
- vec3 vLightSpecular2 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT2
- info = computeSpotLighting(viewDirectionW, normalW, vLightData2, vLightDirection2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, roughness, NdotV, vLightRadiuses[2]);
- #endif
- #ifdef HEMILIGHT2
- info = computeHemisphericLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightGround2, roughness, NdotV, vLightRadiuses[2]);
- #endif
- #if defined(POINTLIGHT2) || defined(DIRLIGHT2)
- info = computeLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, roughness, NdotV, vLightRadiuses[2]);
- #endif
- #ifdef SHADOW2
- #ifdef SHADOWVSM2
- notShadowLevel = computeShadowWithVSM(vPositionFromLight2, shadowSampler2, shadowsInfo2.z, shadowsInfo2.x);
- #else
- #ifdef SHADOWPCF2
- #if defined(POINTLIGHT2)
- notShadowLevel = computeShadowWithPCFCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight2, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x);
- #endif
- #else
- #if defined(POINTLIGHT2)
- notShadowLevel = computeShadowCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight2, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef LIGHT3
- #ifndef SPECULARTERM
- vec3 vLightSpecular3 = vec3(0.0);
- #endif
- #ifdef SPOTLIGHT3
- info = computeSpotLighting(viewDirectionW, normalW, vLightData3, vLightDirection3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, roughness, NdotV, vLightRadiuses[3]);
- #endif
- #ifdef HEMILIGHT3
- info = computeHemisphericLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightGround3, roughness, NdotV, vLightRadiuses[3]);
- #endif
- #if defined(POINTLIGHT3) || defined(DIRLIGHT3)
- info = computeLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, roughness, NdotV, vLightRadiuses[3]);
- #endif
- #ifdef SHADOW3
- #ifdef SHADOWVSM3
- notShadowLevel = computeShadowWithVSM(vPositionFromLight3, shadowSampler3, shadowsInfo3.z, shadowsInfo3.x);
- #else
- #ifdef SHADOWPCF3
- #if defined(POINTLIGHT3)
- notShadowLevel = computeShadowWithPCFCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x);
- #else
- notShadowLevel = computeShadowWithPCF(vPositionFromLight3, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x);
- #endif
- #else
- #if defined(POINTLIGHT3)
- notShadowLevel = computeShadowCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z);
- #else
- notShadowLevel = computeShadow(vPositionFromLight3, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z);
- #endif
- #endif
- #endif
- #else
- notShadowLevel = 1.;
- #endif
- lightDiffuseContribution += info.diffuse * notShadowLevel;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution *= notShadowLevel;
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution += info.specular * notShadowLevel;
- #endif
- #endif
- #ifdef SPECULARTERM
- lightSpecularContribution *= vLightingIntensity.w;
- #endif
- #ifdef OPACITY
- vec4 opacityMap = texture2D(opacitySampler, vOpacityUV);
- #ifdef OPACITYRGB
- opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11);
- alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y;
- #else
- alpha *= opacityMap.a * vOpacityInfos.y;
- #endif
- #endif
- #ifdef VERTEXALPHA
- alpha *= vColor.a;
- #endif
- #ifdef OPACITYFRESNEL
- float opacityFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, opacityParts.z, opacityParts.w);
- alpha += opacityParts.x * (1.0 - opacityFresnelTerm) + opacityFresnelTerm * opacityParts.y;
- #endif
- // Refraction
- vec3 surfaceRefractionColor = vec3(0., 0., 0.);
- // Go mat -> blurry reflexion according to microSurface
- #ifdef LODBASEDMICROSFURACE
- float alphaG = convertRoughnessToAverageSlope(roughness);
- #endif
-
- #ifdef REFRACTION
- vec3 refractionVector = refract(-viewDirectionW, normalW, vRefractionInfos.y);
-
- #ifdef LODBASEDMICROSFURACE
- #ifdef USEPMREMREFRACTION
- float lodRefraction = getMipMapIndexFromAverageSlopeWithPMREM(vMicrosurfaceTextureLods.y, alphaG);
- #else
- float lodRefraction = getMipMapIndexFromAverageSlope(vMicrosurfaceTextureLods.y, alphaG);
- #endif
- #else
- float biasRefraction = (vMicrosurfaceTextureLods.y + 2.) * (1.0 - microSurface);
- #endif
-
- #ifdef REFRACTIONMAP_3D
- refractionVector.y = refractionVector.y * vRefractionInfos.w;
- if (dot(refractionVector, viewDirectionW) < 1.0)
- {
- #ifdef LODBASEDMICROSFURACE
- #ifdef USEPMREMREFRACTION
- // Empiric Threshold
- if (microSurface > 0.5)
- {
- // Bend to not reach edges.
- float scaleRefraction = 1. - exp2(lodRefraction) / exp2(vMicrosurfaceTextureLods.y); // CubemapSize is the size of the base mipmap
- float maxRefraction = max(max(abs(refractionVector.x), abs(refractionVector.y)), abs(refractionVector.z));
- if (abs(refractionVector.x) != maxRefraction) refractionVector.x *= scaleRefraction;
- if (abs(refractionVector.y) != maxRefraction) refractionVector.y *= scaleRefraction;
- if (abs(refractionVector.z) != maxRefraction) refractionVector.z *= scaleRefraction;
- }
- #endif
-
- surfaceRefractionColor = textureCubeLodEXT(refractionCubeSampler, refractionVector, lodRefraction).rgb * vRefractionInfos.x;
- #else
- surfaceRefractionColor = textureCube(refractionCubeSampler, refractionVector, biasRefraction).rgb * vRefractionInfos.x;
- #endif
- }
-
- #ifndef REFRACTIONMAPINLINEARSPACE
- surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb);
- #endif
- #else
- vec3 vRefractionUVW = vec3(refractionMatrix * (view * vec4(vPositionW + refractionVector * vRefractionInfos.z, 1.0)));
- vec2 refractionCoords = vRefractionUVW.xy / vRefractionUVW.z;
- refractionCoords.y = 1.0 - refractionCoords.y;
- #ifdef LODBASEDMICROSFURACE
- surfaceRefractionColor = texture2DLodEXT(refraction2DSampler, refractionCoords, lodRefraction).rgb * vRefractionInfos.x;
- #else
- surfaceRefractionColor = texture2D(refraction2DSampler, refractionCoords, biasRefraction).rgb * vRefractionInfos.x;
- #endif
-
- surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb);
- #endif
- #endif
- // Reflection
- vec3 environmentRadiance = vReflectionColor.rgb;
- vec3 environmentIrradiance = vReflectionColor.rgb;
- #ifdef REFLECTION
- vec3 vReflectionUVW = computeReflectionCoords(vec4(vPositionW, 1.0), normalW);
- #ifdef LODBASEDMICROSFURACE
- #ifdef USEPMREMREFLECTION
- float lodReflection = getMipMapIndexFromAverageSlopeWithPMREM(vMicrosurfaceTextureLods.x, alphaG);
- #else
- float lodReflection = getMipMapIndexFromAverageSlope(vMicrosurfaceTextureLods.x, alphaG);
- #endif
- #else
- float biasReflection = (vMicrosurfaceTextureLods.x + 2.) * (1.0 - microSurface);
- #endif
-
- #ifdef REFLECTIONMAP_3D
-
- #ifdef LODBASEDMICROSFURACE
- #ifdef USEPMREMREFLECTION
- // Empiric Threshold
- if (microSurface > 0.5)
- {
- // Bend to not reach edges.
- float scaleReflection = 1. - exp2(lodReflection) / exp2(vMicrosurfaceTextureLods.x); // CubemapSize is the size of the base mipmap
- float maxReflection = max(max(abs(vReflectionUVW.x), abs(vReflectionUVW.y)), abs(vReflectionUVW.z));
- if (abs(vReflectionUVW.x) != maxReflection) vReflectionUVW.x *= scaleReflection;
- if (abs(vReflectionUVW.y) != maxReflection) vReflectionUVW.y *= scaleReflection;
- if (abs(vReflectionUVW.z) != maxReflection) vReflectionUVW.z *= scaleReflection;
- }
- #endif
-
- environmentRadiance = textureCubeLodEXT(reflectionCubeSampler, vReflectionUVW, lodReflection).rgb * vReflectionInfos.x;
- #else
- environmentRadiance = textureCube(reflectionCubeSampler, vReflectionUVW, biasReflection).rgb * vReflectionInfos.x;
- #endif
-
- #ifdef PoissonSamplingEnvironment
- environmentRadiance = environmentSampler(reflectionCubeSampler, vReflectionUVW, alphaG) * vReflectionInfos.x;
- #endif
- #ifdef USESPHERICALFROMREFLECTIONMAP
- #ifndef REFLECTIONMAP_SKYBOX
- vec3 normalEnvironmentSpace = (reflectionMatrix * vec4(normalW, 1)).xyz;
- environmentIrradiance = EnvironmentIrradiance(normalEnvironmentSpace);
- #endif
- #else
- environmentRadiance = toLinearSpace(environmentRadiance.rgb);
-
- environmentIrradiance = textureCube(reflectionCubeSampler, normalW, 20.).rgb * vReflectionInfos.x;
- environmentIrradiance = toLinearSpace(environmentIrradiance.rgb);
- environmentIrradiance *= 0.2; // Hack in case of no hdr cube map use for environment.
- #endif
- #else
- vec2 coords = vReflectionUVW.xy;
- #ifdef REFLECTIONMAP_PROJECTION
- coords /= vReflectionUVW.z;
- #endif
- coords.y = 1.0 - coords.y;
- #ifdef LODBASEDMICROSFURACE
- environmentRadiance = texture2DLodEXT(reflection2DSampler, coords, lodReflection).rgb * vReflectionInfos.x;
- #else
- environmentRadiance = texture2D(reflection2DSampler, coords, biasReflection).rgb * vReflectionInfos.x;
- #endif
-
- environmentRadiance = toLinearSpace(environmentRadiance.rgb);
- environmentIrradiance = texture2D(reflection2DSampler, coords, 20.).rgb * vReflectionInfos.x;
- environmentIrradiance = toLinearSpace(environmentIrradiance.rgb);
- #endif
- #endif
- #ifdef OVERLOADEDVALUES
- environmentIrradiance = mix(environmentIrradiance, vOverloadedReflection, vOverloadedMicroSurface.z);
- environmentRadiance = mix(environmentRadiance, vOverloadedReflection, vOverloadedMicroSurface.z);
- #endif
- environmentRadiance *= vLightingIntensity.z;
- environmentIrradiance *= vLightingIntensity.z;
- // Compute reflection specular fresnel
- vec3 specularEnvironmentR0 = surfaceReflectivityColor.rgb;
- vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0);
- vec3 specularEnvironmentReflectance = FresnelSchlickEnvironmentGGX(clamp(NdotV, 0., 1.), specularEnvironmentR0, specularEnvironmentR90, sqrt(microSurface));
- // Compute refractance
- vec3 refractance = vec3(0.0 , 0.0, 0.0);
- #ifdef REFRACTION
- vec3 transmission = vec3(1.0 , 1.0, 1.0);
- #ifdef LINKREFRACTIONTOTRANSPARENCY
- // Transmission based on alpha.
- transmission *= (1.0 - alpha);
-
- // Tint the material with albedo.
- // TODO. PBR Tinting.
- vec3 mixedAlbedo = surfaceAlbedoContribution.rgb * surfaceAlbedo.rgb;
- float maxChannel = max(max(mixedAlbedo.r, mixedAlbedo.g), mixedAlbedo.b);
- vec3 tint = clamp(maxChannel * mixedAlbedo, 0.0, 1.0);
-
- // Decrease Albedo Contribution
- surfaceAlbedoContribution *= alpha;
-
- // Decrease irradiance Contribution
- environmentIrradiance *= alpha;
-
- // Tint reflectance
- surfaceRefractionColor *= tint;
-
- // Put alpha back to 1;
- alpha = 1.0;
- #endif
-
- // Add Multiple internal bounces.
- vec3 bounceSpecularEnvironmentReflectance = (2.0 * specularEnvironmentReflectance) / (1.0 + specularEnvironmentReflectance);
- specularEnvironmentReflectance = mix(bounceSpecularEnvironmentReflectance, specularEnvironmentReflectance, alpha);
-
- // In theory T = 1 - R.
- transmission *= 1.0 - specularEnvironmentReflectance;
-
- // Should baked in diffuse.
- refractance = surfaceRefractionColor * transmission;
- #endif
- // Apply Energy Conservation taking in account the environment level only if the environment is present.
- float reflectance = max(max(surfaceReflectivityColor.r, surfaceReflectivityColor.g), surfaceReflectivityColor.b);
- surfaceAlbedo.rgb = (1. - reflectance) * surfaceAlbedo.rgb;
- refractance *= vLightingIntensity.z;
- environmentRadiance *= specularEnvironmentReflectance;
- // Emissive
- vec3 surfaceEmissiveColor = vEmissiveColor;
- #ifdef EMISSIVE
- vec3 emissiveColorTex = texture2D(emissiveSampler, vEmissiveUV).rgb;
- surfaceEmissiveColor = toLinearSpace(emissiveColorTex.rgb) * surfaceEmissiveColor * vEmissiveInfos.y;
- #endif
- #ifdef OVERLOADEDVALUES
- surfaceEmissiveColor = mix(surfaceEmissiveColor, vOverloadedEmissive, vOverloadedIntensity.w);
- #endif
- #ifdef EMISSIVEFRESNEL
- float emissiveFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, emissiveRightColor.a, emissiveLeftColor.a);
- surfaceEmissiveColor *= emissiveLeftColor.rgb * (1.0 - emissiveFresnelTerm) + emissiveFresnelTerm * emissiveRightColor.rgb;
- #endif
- // Composition
- #ifdef EMISSIVEASILLUMINATION
- vec3 finalDiffuse = max(lightDiffuseContribution * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
-
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #endif
- #else
- #ifdef LINKEMISSIVEWITHALBEDO
- vec3 finalDiffuse = max((lightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution = max((shadowedOnlyLightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #endif
- #else
- vec3 finalDiffuse = max(lightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #ifdef OVERLOADEDSHADOWVALUES
- shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor + vAmbientColor, 0.0) * surfaceAlbedo.rgb;
- #endif
- #endif
- #endif
- #ifdef OVERLOADEDSHADOWVALUES
- finalDiffuse = mix(finalDiffuse, shadowedOnlyLightDiffuseContribution, (1.0 - vOverloadedShadowIntensity.y));
- #endif
- #ifdef SPECULARTERM
- vec3 finalSpecular = lightSpecularContribution * surfaceReflectivityColor;
- #else
- vec3 finalSpecular = vec3(0.0);
- #endif
- #ifdef SPECULAROVERALPHA
- alpha = clamp(alpha + getLuminance(finalSpecular), 0., 1.);
- #endif
- #ifdef RADIANCEOVERALPHA
- alpha = clamp(alpha + getLuminance(environmentRadiance), 0., 1.);
- #endif
- // Composition
- // Reflection already includes the environment intensity.
- #ifdef EMISSIVEASILLUMINATION
- vec4 finalColor = vec4(finalDiffuse * ambientColor * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance + finalSpecular * vLightingIntensity.x + environmentRadiance + surfaceEmissiveColor * vLightingIntensity.y + refractance, alpha);
- #else
- vec4 finalColor = vec4(finalDiffuse * ambientColor * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance + finalSpecular * vLightingIntensity.x + environmentRadiance + refractance, alpha);
- #endif
- #ifdef LIGHTMAP
- vec3 lightmapColor = texture2D(lightmapSampler, vLightmapUV).rgb * vLightmapInfos.y;
- #ifdef USELIGHTMAPASSHADOWMAP
- finalColor.rgb *= lightmapColor;
- #else
- finalColor.rgb += lightmapColor;
- #endif
- #endif
- finalColor = max(finalColor, 0.0);
- #ifdef CAMERATONEMAP
- finalColor.rgb = toneMaps(finalColor.rgb);
- #endif
- finalColor.rgb = toGammaSpace(finalColor.rgb);
- #ifdef CAMERACONTRAST
- finalColor = contrasts(finalColor);
- #endif
- // Normal Display.
- // gl_FragColor = vec4(normalW * 0.5 + 0.5, 1.0);
- // Ambient reflection color.
- // gl_FragColor = vec4(ambientReflectionColor, 1.0);
- // Reflection color.
- // gl_FragColor = vec4(reflectionColor, 1.0);
- // Base color.
- // gl_FragColor = vec4(surfaceAlbedo.rgb, 1.0);
- // Specular color.
- // gl_FragColor = vec4(surfaceReflectivityColor.rgb, 1.0);
- // MicroSurface color.
- // gl_FragColor = vec4(microSurface, microSurface, microSurface, 1.0);
- // Specular Map
- // gl_FragColor = vec4(reflectivityMapColor.rgb, 1.0);
-
- // Refractance
- // gl_FragColor = vec4(refractance.rgb, 1.0);
- //// Emissive Color
- //vec2 test = vEmissiveUV * 0.5 + 0.5;
- //gl_FragColor = vec4(test.x, test.y, 1.0, 1.0);
- #include<logDepthFragment>
- #include<fogFragment>(color, finalColor)
- gl_FragColor = finalColor;
- }
|