#ifdef GL_ES precision highp float; #endif #define MAP_EXPLICIT 0. #define MAP_SPHERICAL 1. #define MAP_PLANAR 2. #define MAP_CUBIC 3. #define MAP_PROJECTION 4. #define MAP_SKYBOX 5. // Constants uniform vec3 vEyePosition; uniform vec3 vAmbientColor; uniform vec4 vDiffuseColor; uniform vec4 vSpecularColor; uniform vec3 vEmissiveColor; // Input varying vec3 vPositionW; #ifdef NORMAL varying vec3 vNormalW; #endif #ifdef VERTEXCOLOR varying vec4 vColor; #endif // Lights #ifdef LIGHT0 uniform vec4 vLightData0; uniform vec4 vLightDiffuse0; uniform vec3 vLightSpecular0; #ifdef SHADOW0 varying vec4 vPositionFromLight0; uniform sampler2D shadowSampler0; uniform vec3 shadowsInfo0; #endif #ifdef SPOTLIGHT0 uniform vec4 vLightDirection0; #endif #ifdef HEMILIGHT0 uniform vec3 vLightGround0; #endif #endif #ifdef LIGHT1 uniform vec4 vLightData1; uniform vec4 vLightDiffuse1; uniform vec3 vLightSpecular1; #ifdef SHADOW1 varying vec4 vPositionFromLight1; uniform sampler2D shadowSampler1; uniform vec3 shadowsInfo1; #endif #ifdef SPOTLIGHT1 uniform vec4 vLightDirection1; #endif #ifdef HEMILIGHT1 uniform vec3 vLightGround1; #endif #endif #ifdef LIGHT2 uniform vec4 vLightData2; uniform vec4 vLightDiffuse2; uniform vec3 vLightSpecular2; #ifdef SHADOW2 varying vec4 vPositionFromLight2; uniform sampler2D shadowSampler2; uniform vec3 shadowsInfo2; #endif #ifdef SPOTLIGHT2 uniform vec4 vLightDirection2; #endif #ifdef HEMILIGHT2 uniform vec3 vLightGround2; #endif #endif #ifdef LIGHT3 uniform vec4 vLightData3; uniform vec4 vLightDiffuse3; uniform vec3 vLightSpecular3; #ifdef SHADOW3 varying vec4 vPositionFromLight3; uniform sampler2D shadowSampler3; uniform vec3 shadowsInfo3; #endif #ifdef SPOTLIGHT3 uniform vec4 vLightDirection3; #endif #ifdef HEMILIGHT3 uniform vec3 vLightGround3; #endif #endif // Samplers #ifdef DIFFUSE varying vec2 vDiffuseUV; uniform sampler2D diffuseSampler; uniform vec2 vDiffuseInfos; #endif #ifdef AMBIENT varying vec2 vAmbientUV; uniform sampler2D ambientSampler; uniform vec2 vAmbientInfos; #endif #ifdef OPACITY varying vec2 vOpacityUV; uniform sampler2D opacitySampler; uniform vec2 vOpacityInfos; #endif #ifdef EMISSIVE varying vec2 vEmissiveUV; uniform vec2 vEmissiveInfos; uniform sampler2D emissiveSampler; #endif #ifdef SPECULAR varying vec2 vSpecularUV; uniform vec2 vSpecularInfos; uniform sampler2D specularSampler; #endif // Fresnel #ifdef FRESNEL float computeFresnelTerm(vec3 viewDirection, vec3 worldNormal, float bias, float power) { float fresnelTerm = pow(bias + abs(dot(viewDirection, worldNormal)), power); return clamp(fresnelTerm, 0., 1.); } #endif #ifdef DIFFUSEFRESNEL uniform vec4 diffuseLeftColor; uniform vec4 diffuseRightColor; #endif #ifdef OPACITYFRESNEL uniform vec4 opacityParts; #endif #ifdef REFLECTIONFRESNEL uniform vec4 reflectionLeftColor; uniform vec4 reflectionRightColor; #endif #ifdef EMISSIVEFRESNEL uniform vec4 emissiveLeftColor; uniform vec4 emissiveRightColor; #endif // Reflection #ifdef REFLECTION varying vec3 vPositionUVW; uniform samplerCube reflectionCubeSampler; uniform sampler2D reflection2DSampler; uniform vec3 vReflectionInfos; uniform mat4 reflectionMatrix; uniform mat4 view; vec3 computeReflectionCoords(float mode, vec4 worldPos, vec3 worldNormal) { if (mode == MAP_SPHERICAL) { vec3 coords = vec3(view * vec4(worldNormal, 0.0)); return vec3(reflectionMatrix * vec4(coords, 1.0)); } else if (mode == MAP_PLANAR) { vec3 viewDir = worldPos.xyz - vEyePosition; vec3 coords = normalize(reflect(viewDir, worldNormal)); return vec3(reflectionMatrix * vec4(coords, 1)); } else if (mode == MAP_CUBIC) { vec3 viewDir = worldPos.xyz - vEyePosition; vec3 coords = reflect(viewDir, worldNormal); return vec3(reflectionMatrix * vec4(coords, 0)); } else if (mode == MAP_PROJECTION) { return vec3(reflectionMatrix * (view * worldPos)); } else if (mode == MAP_SKYBOX) { return vPositionUVW; } return vec3(0, 0, 0); } #endif // Shadows #ifdef SHADOWS float unpack(vec4 color) { const vec4 bit_shift = vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0); return dot(color, bit_shift); } float unpackHalf(vec2 color) { return color.x + (color.y / 255.0); } float computeShadow(vec4 vPositionFromLight, sampler2D shadowSampler, float darkness, float bias) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0) { return 1.0; } float shadow = unpack(texture2D(shadowSampler, uv)) + bias; if (depth.z > shadow) { return darkness; } return 1.; } float computeShadowWithPCF(vec4 vPositionFromLight, sampler2D shadowSampler, float mapSize, float bias) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0) { return 1.0; } float visibility = 1.; vec2 poissonDisk[4]; poissonDisk[0] = vec2(-0.94201624, -0.39906216); poissonDisk[1] = vec2(0.94558609, -0.76890725); poissonDisk[2] = vec2(-0.094184101, -0.92938870); poissonDisk[3] = vec2(0.34495938, 0.29387760); // Poisson Sampling float biasedDepth = depth.z - bias; if (unpack(texture2D(shadowSampler, uv + poissonDisk[0] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[1] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[2] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[3] / mapSize)) < biasedDepth) visibility -= 0.25; return visibility; } // Thanks to http://devmaster.net/ float linstep(float low, float high, float v) { return clamp((v - low) / (high - low), 0.0, 1.0); } float ChebychevInequality(vec2 moments, float compare, float bias) { float p = smoothstep(compare - bias, compare, moments.x); float variance = max(moments.y - moments.x * moments.x, 0.02); float d = compare - moments.x; float p_max = linstep(0.2, 1.0, variance / (variance + d * d)); return clamp(max(p, p_max), 0.0, 1.0); } float computeShadowWithVSM(vec4 vPositionFromLight, sampler2D shadowSampler, float bias) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0 || depth.z >= 1.0) { return 1.0; } vec4 texel = texture2D(shadowSampler, uv); vec2 moments = vec2(unpackHalf(texel.xy), unpackHalf(texel.zw)); return 1.0 - ChebychevInequality(moments, depth.z, bias); } #endif // Bump #ifdef BUMP #extension GL_OES_standard_derivatives : enable varying vec2 vBumpUV; uniform vec2 vBumpInfos; uniform sampler2D bumpSampler; // Thanks to http://www.thetenthplanet.de/archives/1180 mat3 cotangent_frame(vec3 normal, vec3 p, vec2 uv) { // get edge vectors of the pixel triangle vec3 dp1 = dFdx(p); vec3 dp2 = dFdy(p); vec2 duv1 = dFdx(uv); vec2 duv2 = dFdy(uv); // solve the linear system vec3 dp2perp = cross(dp2, normal); vec3 dp1perp = cross(normal, dp1); vec3 tangent = dp2perp * duv1.x + dp1perp * duv2.x; vec3 binormal = dp2perp * duv1.y + dp1perp * duv2.y; // construct a scale-invariant frame float invmax = inversesqrt(max(dot(tangent, tangent), dot(binormal, binormal))); return mat3(tangent * invmax, binormal * invmax, normal); } vec3 perturbNormal(vec3 viewDir) { vec3 map = texture2D(bumpSampler, vBumpUV).xyz; map = map * 255. / 127. - 128. / 127.; mat3 TBN = cotangent_frame(vNormalW * vBumpInfos.y, -viewDir, vBumpUV); return normalize(TBN * map); } #endif #ifdef CLIPPLANE varying float fClipDistance; #endif // Fog #ifdef FOG #define FOGMODE_NONE 0. #define FOGMODE_EXP 1. #define FOGMODE_EXP2 2. #define FOGMODE_LINEAR 3. #define E 2.71828 uniform vec4 vFogInfos; uniform vec3 vFogColor; varying float fFogDistance; float CalcFogFactor() { float fogCoeff = 1.0; float fogStart = vFogInfos.y; float fogEnd = vFogInfos.z; float fogDensity = vFogInfos.w; if (FOGMODE_LINEAR == vFogInfos.x) { fogCoeff = (fogEnd - fFogDistance) / (fogEnd - fogStart); } else if (FOGMODE_EXP == vFogInfos.x) { fogCoeff = 1.0 / pow(E, fFogDistance * fogDensity); } else if (FOGMODE_EXP2 == vFogInfos.x) { fogCoeff = 1.0 / pow(E, fFogDistance * fFogDistance * fogDensity * fogDensity); } return clamp(fogCoeff, 0.0, 1.0); } #endif // Light Computing struct lightingInfo { vec3 diffuse; vec3 specular; }; lightingInfo computeLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, float range) { lightingInfo result; vec3 lightVectorW; float attenuation = 1.0; if (lightData.w == 0.) { vec3 direction = lightData.xyz - vPositionW; attenuation = max(0., 1.0 - length(direction) / range); lightVectorW = normalize(direction); } else { lightVectorW = normalize(-lightData.xyz); } // diffuse float ndl = max(0., dot(vNormal, lightVectorW)); // Specular vec3 angleW = normalize(viewDirectionW + lightVectorW); float specComp = max(0., dot(vNormal, angleW)); specComp = pow(specComp, max(1., vSpecularColor.a)); result.diffuse = ndl * diffuseColor * attenuation; result.specular = specComp * specularColor * attenuation; return result; } lightingInfo computeSpotLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec4 lightDirection, vec3 diffuseColor, vec3 specularColor, float range) { lightingInfo result; vec3 direction = lightData.xyz - vPositionW; vec3 lightVectorW = normalize(direction); float attenuation = max(0., 1.0 - length(direction) / range); // diffuse float cosAngle = max(0., dot(-lightDirection.xyz, lightVectorW)); float spotAtten = 0.0; if (cosAngle >= lightDirection.w) { cosAngle = max(0., pow(cosAngle, lightData.w)); spotAtten = clamp((cosAngle - lightDirection.w) / (1. - cosAngle), 0.0, 1.0); // Diffuse float ndl = max(0., dot(vNormal, -lightDirection.xyz)); // Specular vec3 angleW = normalize(viewDirectionW - lightDirection.xyz); float specComp = max(0., dot(vNormal, angleW)); specComp = pow(specComp, vSpecularColor.a); result.diffuse = ndl * spotAtten * diffuseColor * attenuation; result.specular = specComp * specularColor * spotAtten * attenuation; return result; } result.diffuse = vec3(0.); result.specular = vec3(0.); return result; } lightingInfo computeHemisphericLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, vec3 groundColor) { lightingInfo result; // Diffuse float ndl = dot(vNormal, lightData.xyz) * 0.5 + 0.5; // Specular vec3 angleW = normalize(viewDirectionW + lightData.xyz); float specComp = max(0., dot(vNormal, angleW)); specComp = pow(specComp, vSpecularColor.a); result.diffuse = mix(groundColor, diffuseColor, ndl); result.specular = specComp * specularColor; return result; } void main(void) { // Clip plane #ifdef CLIPPLANE if (fClipDistance > 0.0) discard; #endif vec3 viewDirectionW = normalize(vEyePosition - vPositionW); // Base color vec4 baseColor = vec4(1., 1., 1., 1.); vec3 diffuseColor = vDiffuseColor.rgb; // Alpha float alpha = vDiffuseColor.a; #ifdef VERTEXCOLOR baseColor.rgb *= vColor.rgb; #endif #ifdef DIFFUSE baseColor = texture2D(diffuseSampler, vDiffuseUV); #ifdef ALPHATEST if (baseColor.a < 0.4) discard; #endif #ifdef ALPHAFROMDIFFUSE alpha *= baseColor.a; #endif baseColor.rgb *= vDiffuseInfos.y; #endif // Bump #ifdef NORMAL vec3 normalW = normalize(vNormalW); #else vec3 normalW = vec3(1.0, 1.0, 1.0); #endif #ifdef BUMP normalW = perturbNormal(viewDirectionW); #endif // Ambient color vec3 baseAmbientColor = vec3(1., 1., 1.); #ifdef AMBIENT baseAmbientColor = texture2D(ambientSampler, vAmbientUV).rgb * vAmbientInfos.y; #endif // Lighting vec3 diffuseBase = vec3(0., 0., 0.); vec3 specularBase = vec3(0., 0., 0.); float shadow = 1.; #ifdef LIGHT0 #ifdef SPOTLIGHT0 lightingInfo info = computeSpotLighting(viewDirectionW, normalW, vLightData0, vLightDirection0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a); #endif #ifdef HEMILIGHT0 lightingInfo info = computeHemisphericLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightGround0); #endif #ifdef POINTDIRLIGHT0 lightingInfo info = computeLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a); #endif #ifdef SHADOW0 #ifdef SHADOWVSM0 shadow = computeShadowWithVSM(vPositionFromLight0, shadowSampler0, shadowsInfo0.z); #else #ifdef SHADOWPCF0 shadow = computeShadowWithPCF(vPositionFromLight0, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z); #else shadow = computeShadow(vPositionFromLight0, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z); #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; specularBase += info.specular * shadow; #endif #ifdef LIGHT1 #ifdef SPOTLIGHT1 info = computeSpotLighting(viewDirectionW, normalW, vLightData1, vLightDirection1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a); #endif #ifdef HEMILIGHT1 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightGround1); #endif #ifdef POINTDIRLIGHT1 info = computeLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a); #endif #ifdef SHADOW1 #ifdef SHADOWVSM1 shadow = computeShadowWithVSM(vPositionFromLight1, shadowSampler1, shadowsInfo1.z); #else #ifdef SHADOWPCF1 shadow = computeShadowWithPCF(vPositionFromLight1, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z); #else shadow = computeShadow(vPositionFromLight1, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z); #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; specularBase += info.specular * shadow; #endif #ifdef LIGHT2 #ifdef SPOTLIGHT2 info = computeSpotLighting(viewDirectionW, normalW, vLightData2, vLightDirection2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a); #endif #ifdef HEMILIGHT2 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightGround2); #endif #ifdef POINTDIRLIGHT2 info = computeLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a); #endif #ifdef SHADOW2 #ifdef SHADOWVSM2 shadow = computeShadowWithVSM(vPositionFromLight2, shadowSampler2, shadowsInfo2.z); #else #ifdef SHADOWPCF2 shadow = computeShadowWithPCF(vPositionFromLight2, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z); #else shadow = computeShadow(vPositionFromLight2, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z); #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; specularBase += info.specular * shadow; #endif #ifdef LIGHT3 #ifdef SPOTLIGHT3 info = computeSpotLighting(viewDirectionW, normalW, vLightData3, vLightDirection3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a); #endif #ifdef HEMILIGHT3 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightGround3); #endif #ifdef POINTDIRLIGHT3 info = computeLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a); #endif #ifdef SHADOW3 #ifdef SHADOWVSM3 shadow = computeShadowWithVSM(vPositionFromLight3, shadowSampler3, shadowsInfo3.z); #else #ifdef SHADOWPCF3 shadow = computeShadowWithPCF(vPositionFromLight3, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z); #else shadow = computeShadow(vPositionFromLight3, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z); #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; specularBase += info.specular * shadow; #endif // Reflection vec3 reflectionColor = vec3(0., 0., 0.); #ifdef REFLECTION vec3 vReflectionUVW = computeReflectionCoords(vReflectionInfos.x, vec4(vPositionW, 1.0), normalW); if (vReflectionInfos.z != 0.0) { reflectionColor = textureCube(reflectionCubeSampler, vReflectionUVW).rgb * vReflectionInfos.y * shadow; } else { vec2 coords = vReflectionUVW.xy; if (vReflectionInfos.x == MAP_PROJECTION) { coords /= vReflectionUVW.z; } coords.y = 1.0 - coords.y; reflectionColor = texture2D(reflection2DSampler, coords).rgb * vReflectionInfos.y * shadow; } #ifdef REFLECTIONFRESNEL float reflectionFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, reflectionRightColor.a, reflectionLeftColor.a); reflectionColor *= reflectionLeftColor.rgb * (1.0 - reflectionFresnelTerm) + reflectionFresnelTerm * reflectionRightColor.rgb; #endif #endif #ifdef OPACITY vec4 opacityMap = texture2D(opacitySampler, vOpacityUV); #ifdef OPACITYRGB opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11); alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y; #else alpha *= opacityMap.a * vOpacityInfos.y; #endif #endif #ifdef VERTEXALPHA alpha *= vColor.a; #endif #ifdef OPACITYFRESNEL float opacityFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, opacityParts.z, opacityParts.w); alpha += opacityParts.x * (1.0 - opacityFresnelTerm) + opacityFresnelTerm * opacityParts.y; #endif // Emissive vec3 emissiveColor = vEmissiveColor; #ifdef EMISSIVE emissiveColor += texture2D(emissiveSampler, vEmissiveUV).rgb * vEmissiveInfos.y; #endif #ifdef EMISSIVEFRESNEL float emissiveFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, emissiveRightColor.a, emissiveLeftColor.a); emissiveColor *= emissiveLeftColor.rgb * (1.0 - emissiveFresnelTerm) + emissiveFresnelTerm * emissiveRightColor.rgb; #endif // Specular map vec3 specularColor = vSpecularColor.rgb; #ifdef SPECULAR specularColor = texture2D(specularSampler, vSpecularUV).rgb * vSpecularInfos.y; #endif // Fresnel #ifdef DIFFUSEFRESNEL float diffuseFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, diffuseRightColor.a, diffuseLeftColor.a); diffuseBase *= diffuseLeftColor.rgb * (1.0 - diffuseFresnelTerm) + diffuseFresnelTerm * diffuseRightColor.rgb; #endif // Composition vec3 finalDiffuse = clamp(diffuseBase * diffuseColor + emissiveColor + vAmbientColor, 0.0, 1.0) * baseColor.rgb; vec3 finalSpecular = specularBase * specularColor; #ifdef SPECULAROVERALPHA alpha = clamp(alpha + dot(finalSpecular, vec3(0.3, 0.59, 0.11)), 0., 1.); #endif vec4 color = vec4(finalDiffuse * baseAmbientColor + finalSpecular + reflectionColor, alpha); #ifdef FOG float fog = CalcFogFactor(); color.rgb = fog * color.rgb + (1.0 - fog) * vFogColor; #endif gl_FragColor = color; }