///
declare module 'babylonjs-serializers' {
export = BABYLON;
}
declare module BABYLON.GLTF2 {
const enum AccessorComponentType {
BYTE = 5120,
UNSIGNED_BYTE = 5121,
SHORT = 5122,
UNSIGNED_SHORT = 5123,
UNSIGNED_INT = 5125,
FLOAT = 5126,
}
const enum AccessorType {
SCALAR = "SCALAR",
VEC2 = "VEC2",
VEC3 = "VEC3",
VEC4 = "VEC4",
MAT2 = "MAT2",
MAT3 = "MAT3",
MAT4 = "MAT4",
}
const enum AnimationChannelTargetPath {
TRANSLATION = "translation",
ROTATION = "rotation",
SCALE = "scale",
WEIGHTS = "weights",
}
const enum AnimationSamplerInterpolation {
LINEAR = "LINEAR",
STEP = "STEP",
CUBICSPLINE = "CUBICSPLINE",
}
const enum CameraType {
PERSPECTIVE = "perspective",
ORTHOGRAPHIC = "orthographic",
}
const enum ImageMimeType {
JPEG = "image/jpeg",
PNG = "image/png",
}
const enum MaterialAlphaMode {
OPAQUE = "OPAQUE",
MASK = "MASK",
BLEND = "BLEND",
}
const enum MeshPrimitiveMode {
POINTS = 0,
LINES = 1,
LINE_LOOP = 2,
LINE_STRIP = 3,
TRIANGLES = 4,
TRIANGLE_STRIP = 5,
TRIANGLE_FAN = 6,
}
const enum TextureMagFilter {
NEAREST = 9728,
LINEAR = 9729,
}
const enum TextureMinFilter {
NEAREST = 9728,
LINEAR = 9729,
NEAREST_MIPMAP_NEAREST = 9984,
LINEAR_MIPMAP_NEAREST = 9985,
NEAREST_MIPMAP_LINEAR = 9986,
LINEAR_MIPMAP_LINEAR = 9987,
}
const enum TextureWrapMode {
CLAMP_TO_EDGE = 33071,
MIRRORED_REPEAT = 33648,
REPEAT = 10497,
}
interface IProperty {
extensions?: {
[key: string]: any;
};
extras?: any;
}
interface IChildRootProperty extends IProperty {
name?: string;
}
interface IAccessorSparseIndices extends IProperty {
bufferView: number;
byteOffset?: number;
componentType: AccessorComponentType;
}
interface IAccessorSparseValues extends IProperty {
bufferView: number;
byteOffset?: number;
}
interface IAccessorSparse extends IProperty {
count: number;
indices: IAccessorSparseIndices;
values: IAccessorSparseValues;
}
interface IAccessor extends IChildRootProperty {
bufferView?: number;
byteOffset?: number;
componentType: AccessorComponentType;
normalized?: boolean;
count: number;
type: AccessorType;
max?: number[];
min?: number[];
sparse?: IAccessorSparse;
}
interface IAnimationChannel extends IProperty {
sampler: number;
target: IAnimationChannelTarget;
}
interface IAnimationChannelTarget extends IProperty {
node: number;
path: AnimationChannelTargetPath;
}
interface IAnimationSampler extends IProperty {
input: number;
interpolation?: AnimationSamplerInterpolation;
output: number;
}
interface IAnimation extends IChildRootProperty {
channels: IAnimationChannel[];
samplers: IAnimationSampler[];
}
interface IAsset extends IChildRootProperty {
copyright?: string;
generator?: string;
version: string;
minVersion?: string;
}
interface IBuffer extends IChildRootProperty {
uri?: string;
byteLength: number;
}
interface IBufferView extends IChildRootProperty {
buffer: number;
byteOffset?: number;
byteLength: number;
byteStride?: number;
}
interface ICameraOrthographic extends IProperty {
xmag: number;
ymag: number;
zfar: number;
znear: number;
}
interface ICameraPerspective extends IProperty {
aspectRatio: number;
yfov: number;
zfar: number;
znear: number;
}
interface ICamera extends IChildRootProperty {
orthographic?: ICameraOrthographic;
perspective?: ICameraPerspective;
type: CameraType;
}
interface IImage extends IChildRootProperty {
uri?: string;
mimeType?: ImageMimeType;
bufferView?: number;
}
interface IMaterialNormalTextureInfo extends ITextureInfo {
scale?: number;
}
interface IMaterialOcclusionTextureInfo extends ITextureInfo {
strength?: number;
}
interface IMaterialPbrMetallicRoughness {
baseColorFactor?: number[];
baseColorTexture?: ITextureInfo;
metallicFactor?: number;
roughnessFactor?: number;
metallicRoughnessTexture?: ITextureInfo;
}
interface IMaterial extends IChildRootProperty {
pbrMetallicRoughness?: IMaterialPbrMetallicRoughness;
normalTexture?: IMaterialNormalTextureInfo;
occlusionTexture?: IMaterialOcclusionTextureInfo;
emissiveTexture?: ITextureInfo;
emissiveFactor?: number[];
alphaMode?: MaterialAlphaMode;
alphaCutoff?: number;
doubleSided?: boolean;
}
interface IMeshPrimitive extends IProperty {
attributes: {
[name: string]: number;
};
indices?: number;
material?: number;
mode?: MeshPrimitiveMode;
targets?: {
[name: string]: number;
}[];
}
interface IMesh extends IChildRootProperty {
primitives: IMeshPrimitive[];
weights?: number[];
}
interface INode extends IChildRootProperty {
camera?: number;
children?: number[];
skin?: number;
matrix?: number[];
mesh?: number;
rotation?: number[];
scale?: number[];
translation?: number[];
weights?: number[];
}
interface ISampler extends IChildRootProperty {
magFilter?: TextureMagFilter;
minFilter?: TextureMinFilter;
wrapS?: TextureWrapMode;
wrapT?: TextureWrapMode;
}
interface IScene extends IChildRootProperty {
nodes: number[];
}
interface ISkin extends IChildRootProperty {
inverseBindMatrices?: number;
skeleton?: number;
joints: number[];
}
interface ITexture extends IChildRootProperty {
sampler?: number;
source: number;
}
interface ITextureInfo {
index: number;
texCoord?: number;
}
interface IGLTF extends IProperty {
accessors?: IAccessor[];
animations?: IAnimation[];
asset: IAsset;
buffers?: IBuffer[];
bufferViews?: IBufferView[];
cameras?: ICamera[];
extensionsUsed?: string[];
extensionsRequired?: string[];
images?: IImage[];
materials?: IMaterial[];
meshes?: IMesh[];
nodes?: INode[];
samplers?: ISampler[];
scene?: number;
scenes?: IScene[];
skins?: ISkin[];
textures?: ITexture[];
}
}
declare module BABYLON {
class OBJExport {
static OBJ(mesh: Mesh[], materials?: boolean, matlibname?: string, globalposition?: boolean): string;
static MTL(mesh: Mesh): string;
}
}
declare module BABYLON {
/**
* Holds a collection of exporter options and parameters
*/
interface IExporterOptions {
/**
* Function which indicates whether a babylon mesh should be exported or not.
* @param mesh - source Babylon mesh. It is used to check whether it should be
* exported to glTF or not.
* @returns boolean, which indicates whether the mesh should be exported (true) or not (false)
*/
shouldExportMesh?(mesh: AbstractMesh): boolean;
}
/**
* Class for generating glTF data from a Babylon scene.
*/
class GLTF2Export {
/**
* Exports the geometry of the scene to .gltf file format.
* @param scene - Babylon scene with scene hierarchy information.
* @param filePrefix - File prefix to use when generating the glTF file.
* @param options - Exporter options.
* @returns - Returns an object with a .gltf file and associates texture names
* as keys and their data and paths as values.
*/
static GLTF(scene: Scene, filePrefix: string, options?: IExporterOptions): _GLTFData;
/**
* Exports the geometry of the scene to .glb file format.
* @param scene - Babylon scene with scene hierarchy information.
* @param filePrefix - File prefix to use when generating glb file.
* @param options - Exporter options.
* @returns - Returns an object with a .glb filename as key and data as value
*/
static GLB(scene: Scene, filePrefix: string, options?: IExporterOptions): _GLTFData;
}
}
/**
* Module for the Babylon glTF 2.0 exporter. Should ONLY be used internally.
* @ignore - capitalization of GLTF2 module.
*/
declare module BABYLON.GLTF2 {
/**
* Converts Babylon Scene into glTF 2.0.
*/
class _Exporter {
/**
* Stores all generated buffer views, which represents views into the main glTF buffer data.
*/
private bufferViews;
/**
* Stores all the generated accessors, which is used for accessing the data within the buffer views in glTF.
*/
private accessors;
/**
* Stores all the generated nodes, which contains transform and/or mesh information per node.
*/
private nodes;
/**
* Stores the glTF asset information, which represents the glTF version and this file generator.
*/
private asset;
/**
* Stores all the generated glTF scenes, which stores multiple node hierarchies.
*/
private scenes;
/**
* Stores all the generated mesh information, each containing a set of primitives to render in glTF.
*/
private meshes;
/**
* Stores all the generated material information, which represents the appearance of each primitive.
*/
private materials;
/**
* Stores all the generated texture information, which is referenced by glTF materials.
*/
private textures;
/**
* Stores all the generated image information, which is referenced by glTF textures.
*/
private images;
/**
* Stores the total amount of bytes stored in the glTF buffer.
*/
private totalByteLength;
/**
* Stores a reference to the Babylon scene containing the source geometry and material information.
*/
private babylonScene;
/**
* Stores the exporter options, which are optionally passed in from the glTF serializer.
*/
private options?;
/**
* Stores a map of the image data, where the key is the file name and the value
* is the image data.
*/
private imageData;
/**
* Creates a glTF Exporter instance, which can accept optional exporter options.
* @param babylonScene - Babylon scene object
* @param options - Options to modify the behavior of the exporter.
*/
constructor(babylonScene: Scene, options?: IExporterOptions);
/**
* Creates a buffer view based on teh supplied arguments
* @param bufferIndex - index value of the specified buffer
* @param byteOffset - byte offset value
* @param byteLength - byte length of the bufferView
* @param byteStride - byte distance between conequential elements.
* @param name - name of the buffer view
* @returns - bufferView for glTF
*/
private createBufferView(bufferIndex, byteOffset, byteLength, byteStride?, name?);
/**
* Creates an accessor based on the supplied arguments
* @param bufferviewIndex
* @param name
* @param type
* @param componentType
* @param count
* @param min
* @param max
* @returns - accessor for glTF
*/
private createAccessor(bufferviewIndex, name, type, componentType, count, byteOffset?, min?, max?);
/**
* Calculates the minimum and maximum values of an array of floats, based on stride
* @param buff - Data to check for min and max values.
* @param vertexStart - Start offset to calculate min and max values.
* @param vertexCount - Number of vertices to check for min and max values.
* @param stride - Offset between consecutive attributes.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @returns - min number array and max number array.
*/
private calculateMinMax(buff, vertexStart, vertexCount, stride, useRightHandedSystem);
/**
* Writes mesh attribute data to a data buffer.
* Returns the bytelength of the data.
* @param vertexBufferKind - Indicates what kind of vertex data is being passed in.
* @param meshAttributeArray - Array containing the attribute data.
* @param strideSize - Represents the offset between consecutive attributes
* @param byteOffset - The offset to start counting bytes from.
* @param dataBuffer - The buffer to write the binary data to.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @returns - Byte length of the attribute data.
*/
private writeAttributeData(vertexBufferKind, meshAttributeArray, strideSize, vertexBufferOffset, byteOffset, dataBuffer, useRightHandedSystem);
/**
* Generates glTF json data
* @param shouldUseGlb - Indicates whether the json should be written for a glb file.
* @param glTFPrefix - Text to use when prefixing a glTF file.
* @param prettyPrint - Indicates whether the json file should be pretty printed (true) or not (false).
* @returns - json data as string
*/
private generateJSON(shouldUseGlb, glTFPrefix?, prettyPrint?);
/**
* Generates data for .gltf and .bin files based on the glTF prefix string
* @param glTFPrefix - Text to use when prefixing a glTF file.
* @returns - GLTFData with glTF file data.
*/
_generateGLTF(glTFPrefix: string): _GLTFData;
/**
* Creates a binary buffer for glTF
* @returns - array buffer for binary data
*/
private generateBinary();
/**
* Pads the number to a multiple of 4
* @param num - number to pad
* @returns - padded number
*/
private _getPadding(num);
/**
* Generates a glb file from the json and binary data.
* Returns an object with the glb file name as the key and data as the value.
* @param glTFPrefix
* @returns - object with glb filename as key and data as value
*/
_generateGLB(glTFPrefix: string): _GLTFData;
/**
* Sets the TRS for each node
* @param node - glTF Node for storing the transformation data.
* @param babylonMesh - Babylon mesh used as the source for the transformation data.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
*/
private setNodeTransformation(node, babylonMesh, useRightHandedSystem);
/**
* Creates a bufferview based on the vertices type for the Babylon mesh
* @param kind - Indicates the type of vertices data.
* @param babylonMesh - The Babylon mesh to get the vertices data from.
* @param byteOffset - The offset from the buffer to start indexing from.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @param dataBuffer - The buffer to write the bufferview data to.
* @returns bytelength of the bufferview data.
*/
private createBufferViewKind(kind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
/**
* Sets data for the primitive attributes of each submesh
* @param mesh - glTF Mesh object to store the primitive attribute information.
* @param babylonMesh - Babylon mesh to get the primitive attribute data from.
* @param byteOffset - The offset in bytes of the buffer data.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @param dataBuffer - Buffer to write the attribute data to.
* @returns - bytelength of the primitive attributes plus the passed in byteOffset.
*/
private setPrimitiveAttributes(mesh, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
/**
* Creates a glTF scene based on the array of meshes.
* Returns the the total byte offset.
* @param babylonScene - Babylon scene to get the mesh data from.
* @param byteOffset - Offset to start from in bytes.
* @param dataBuffer - Buffer to write geometry data to.
* @returns bytelength + byteoffset
*/
private createScene(babylonScene, byteOffset, dataBuffer);
}
}
declare module BABYLON {
/**
* Class for holding and downloading glTF file data
*/
class _GLTFData {
/**
* Object which contains the file name as the key and its data as the value.
*/
glTFFiles: {
[fileName: string]: string | Blob;
};
/**
* Initializes the glTF file object.
*/
constructor();
/**
* Downloads the glTF data as files based on their names and data.
*/
downloadFiles(): void;
}
}
declare module BABYLON.GLTF2 {
/**
* Utility methods for working with glTF material conversion properties. This class should only be used internally.
*/
class _GLTFMaterial {
/**
* Represents the dielectric specular values for R, G and B.
*/
private static readonly dielectricSpecular;
/**
* Allows the maximum specular power to be defined for material calculations.
*/
private static maxSpecularPower;
/**
* Gets the materials from a Babylon scene and converts them to glTF materials.
* @param scene
* @param mimeType
* @param images
* @param textures
* @param materials
* @param imageData
* @param hasTextureCoords
*/
static ConvertMaterialsToGLTF(babylonMaterials: Material[], mimeType: ImageMimeType, images: IImage[], textures: ITexture[], materials: IMaterial[], imageData: {
[fileName: string]: {
data: Uint8Array;
mimeType: ImageMimeType;
};
}, hasTextureCoords: boolean): void;
/**
* Converts a Babylon StandardMaterial to a glTF Metallic Roughness Material.
* @param babylonStandardMaterial
* @returns - glTF Metallic Roughness Material representation
*/
static ConvertToGLTFPBRMetallicRoughness(babylonStandardMaterial: StandardMaterial): IMaterialPbrMetallicRoughness;
/**
* Computes the metallic factor
* @param diffuse - diffused value
* @param specular - specular value
* @param oneMinusSpecularStrength - one minus the specular strength
* @returns - metallic value
*/
static SolveMetallic(diffuse: number, specular: number, oneMinusSpecularStrength: number): number;
/**
* Gets the glTF alpha mode from the Babylon Material
* @param babylonMaterial - Babylon Material
* @returns - The Babylon alpha mode value
*/
static GetAlphaMode(babylonMaterial: Material): MaterialAlphaMode;
/**
* Converts a Babylon Standard Material to a glTF Material.
* @param babylonStandardMaterial - BJS Standard Material.
* @param mimeType - mime type to use for the textures.
* @param images - array of glTF image interfaces.
* @param textures - array of glTF texture interfaces.
* @param materials - array of glTF material interfaces.
* @param imageData - map of image file name to data.
* @param hasTextureCoords - specifies if texture coordinates are present on the submesh to determine if textures should be applied.
*/
static ConvertStandardMaterial(babylonStandardMaterial: StandardMaterial, mimeType: ImageMimeType, images: IImage[], textures: ITexture[], materials: IMaterial[], imageData: {
[fileName: string]: {
data: Uint8Array;
mimeType: ImageMimeType;
};
}, hasTextureCoords: boolean): void;
/**
* Converts a Babylon PBR Metallic Roughness Material to a glTF Material.
* @param babylonPBRMetalRoughMaterial - BJS PBR Metallic Roughness Material.
* @param mimeType - mime type to use for the textures.
* @param images - array of glTF image interfaces.
* @param textures - array of glTF texture interfaces.
* @param materials - array of glTF material interfaces.
* @param imageData - map of image file name to data.
* @param hasTextureCoords - specifies if texture coordinates are present on the submesh to determine if textures should be applied.
*/
static ConvertPBRMetallicRoughnessMaterial(babylonPBRMetalRoughMaterial: PBRMetallicRoughnessMaterial, mimeType: ImageMimeType, images: IImage[], textures: ITexture[], materials: IMaterial[], imageData: {
[fileName: string]: {
data: Uint8Array;
mimeType: ImageMimeType;
};
}, hasTextureCoords: boolean): void;
/**
* Extracts a texture from a Babylon texture into file data and glTF data.
* @param babylonTexture - Babylon texture to extract.
* @param mimeType - Mime Type of the babylonTexture.
* @param images - Array of glTF images.
* @param textures - Array of glTF textures.
* @param imageData - map of image file name and data.
* @return - glTF texture, or null if the texture format is not supported.
*/
static ExportTexture(babylonTexture: BaseTexture, mimeType: ImageMimeType, images: IImage[], textures: ITexture[], imageData: {
[fileName: string]: {
data: Uint8Array;
mimeType: ImageMimeType;
};
}): Nullable;
}
}