///
var BABYLON;
(function (BABYLON) {
;
/**
* Class for generating glTF data from a Babylon scene.
*/
var GLTF2Export = /** @class */ (function () {
function GLTF2Export() {
}
/**
* Exports the geometry of the scene to .gltf file format.
* @param scene - Babylon scene with scene hierarchy information.
* @param filePrefix - File prefix to use when generating the glTF file.
* @param options - Exporter options.
* @returns - Returns an object with a .gltf file and associates texture names
* as keys and their data and paths as values.
*/
GLTF2Export.GLTF = function (scene, filePrefix, options) {
var glTFPrefix = filePrefix.replace(/\.[^/.]+$/, "");
var gltfGenerator = new BABYLON.GLTF2._Exporter(scene, options);
if (scene.isReady) {
return gltfGenerator._generateGLTF(glTFPrefix);
}
else {
throw new Error("glTF Serializer: Scene is not ready!");
}
};
/**
* Exports the geometry of the scene to .glb file format.
* @param scene - Babylon scene with scene hierarchy information.
* @param filePrefix - File prefix to use when generating glb file.
* @param options - Exporter options.
* @returns - Returns an object with a .glb filename as key and data as value
*/
GLTF2Export.GLB = function (scene, filePrefix, options) {
var glTFPrefix = filePrefix.replace(/\.[^/.]+$/, "");
var gltfGenerator = new BABYLON.GLTF2._Exporter(scene, options);
if (scene.isReady) {
return gltfGenerator._generateGLB(glTFPrefix);
}
else {
throw new Error("glTF Serializer: Scene is not ready!");
}
};
return GLTF2Export;
}());
BABYLON.GLTF2Export = GLTF2Export;
})(BABYLON || (BABYLON = {}));
//# sourceMappingURL=babylon.glTFSerializer.js.map
///
/**
* Module for the Babylon glTF 2.0 exporter. Should ONLY be used internally.
* @ignore - capitalization of GLTF2 module.
*/
var BABYLON;
(function (BABYLON) {
var GLTF2;
(function (GLTF2) {
/**
* Converts Babylon Scene into glTF 2.0.
*/
var _Exporter = /** @class */ (function () {
/**
* Creates a glTF Exporter instance, which can accept optional exporter options.
* @param babylonScene - Babylon scene object
* @param options - Options to modify the behavior of the exporter.
*/
function _Exporter(babylonScene, options) {
this.asset = { generator: "BabylonJS", version: "2.0" };
this.babylonScene = babylonScene;
this.bufferViews = new Array();
this.accessors = new Array();
this.meshes = new Array();
this.scenes = new Array();
this.nodes = new Array();
this.images = new Array();
this.materials = new Array();
this.textures = new Array();
this.imageData = {};
if (options !== undefined) {
this.options = options;
}
var totalByteLength = 0;
totalByteLength = this.createScene(this.babylonScene, totalByteLength, null);
this.totalByteLength = totalByteLength;
}
/**
* Creates a buffer view based on teh supplied arguments
* @param bufferIndex - index value of the specified buffer
* @param byteOffset - byte offset value
* @param byteLength - byte length of the bufferView
* @param byteStride - byte distance between conequential elements.
* @param name - name of the buffer view
* @returns - bufferView for glTF
*/
_Exporter.prototype.createBufferView = function (bufferIndex, byteOffset, byteLength, byteStride, name) {
var bufferview = { buffer: bufferIndex, byteLength: byteLength };
if (byteOffset > 0) {
bufferview.byteOffset = byteOffset;
}
if (name) {
bufferview.name = name;
}
if (byteStride) {
bufferview.byteStride = byteStride;
}
return bufferview;
};
/**
* Creates an accessor based on the supplied arguments
* @param bufferviewIndex
* @param name
* @param type
* @param componentType
* @param count
* @param min
* @param max
* @returns - accessor for glTF
*/
_Exporter.prototype.createAccessor = function (bufferviewIndex, name, type, componentType, count, byteOffset, min, max) {
var accessor = { name: name, bufferView: bufferviewIndex, componentType: componentType, count: count, type: type };
if (min) {
accessor.min = min;
}
if (max) {
accessor.max = max;
}
if (byteOffset) {
accessor.byteOffset = byteOffset;
}
return accessor;
};
/**
* Calculates the minimum and maximum values of an array of floats, based on stride
* @param buff - Data to check for min and max values.
* @param vertexStart - Start offset to calculate min and max values.
* @param vertexCount - Number of vertices to check for min and max values.
* @param stride - Offset between consecutive attributes.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @returns - min number array and max number array.
*/
_Exporter.prototype.calculateMinMax = function (buff, vertexStart, vertexCount, stride, useRightHandedSystem) {
var min = [Infinity, Infinity, Infinity];
var max = [-Infinity, -Infinity, -Infinity];
var end = vertexStart + vertexCount;
if (vertexCount > 0) {
for (var i = vertexStart; i < end; ++i) {
var index = stride * i;
var scale = 1;
for (var j = 0; j < stride; ++j) {
if (j === (stride - 1) && !useRightHandedSystem) {
scale = -1;
}
var num = scale * buff[index];
if (num < min[j]) {
min[j] = num;
}
if (num > max[j]) {
max[j] = num;
}
++index;
}
}
}
return { min: min, max: max };
};
/**
* Writes mesh attribute data to a data buffer.
* Returns the bytelength of the data.
* @param vertexBufferKind - Indicates what kind of vertex data is being passed in.
* @param meshAttributeArray - Array containing the attribute data.
* @param strideSize - Represents the offset between consecutive attributes
* @param byteOffset - The offset to start counting bytes from.
* @param dataBuffer - The buffer to write the binary data to.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @returns - Byte length of the attribute data.
*/
_Exporter.prototype.writeAttributeData = function (vertexBufferKind, meshAttributeArray, strideSize, vertexBufferOffset, byteOffset, dataBuffer, useRightHandedSystem) {
var byteOff = byteOffset;
var start = 0;
var end = meshAttributeArray.length / strideSize;
var byteLength = 0;
switch (vertexBufferKind) {
case BABYLON.VertexBuffer.PositionKind: {
for (var k = start; k < end; ++k) {
var index = k * strideSize;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true);
byteOff += 4;
if (useRightHandedSystem) {
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true);
}
else {
dataBuffer.setFloat32(byteOff, -meshAttributeArray[index + 2], true);
}
byteOff += 4;
}
byteLength = meshAttributeArray.length * 4;
break;
}
case BABYLON.VertexBuffer.NormalKind: {
for (var k = start; k < end; ++k) {
var index = k * strideSize;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true);
byteOff += 4;
if (useRightHandedSystem) {
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true);
}
else {
dataBuffer.setFloat32(byteOff, -meshAttributeArray[index + 2], true);
}
byteOff += 4;
}
byteLength = meshAttributeArray.length * 4;
break;
}
case BABYLON.VertexBuffer.TangentKind: {
for (var k = start; k < end; ++k) {
var index = k * strideSize;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true);
byteOff += 4;
if (useRightHandedSystem) {
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true);
}
else {
dataBuffer.setFloat32(byteOff, -meshAttributeArray[index + 2], true);
}
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 3], true);
byteOff += 4;
}
byteLength = meshAttributeArray.length * 4;
break;
}
case BABYLON.VertexBuffer.ColorKind: {
for (var k = start; k < end; ++k) {
var index = k * strideSize;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 3], true);
byteOff += 4;
}
byteLength = meshAttributeArray.length * 4;
break;
}
case BABYLON.VertexBuffer.UVKind: {
for (var k = start; k < end; ++k) {
var index = k * strideSize;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true);
byteOff += 4;
}
byteLength = meshAttributeArray.length * 4;
break;
}
case BABYLON.VertexBuffer.UV2Kind: {
for (var k = start; k < end; ++k) {
var index = k * strideSize;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true);
byteOff += 4;
dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true);
byteOff += 4;
}
byteLength = meshAttributeArray.length * 4;
break;
}
default: {
throw new Error("Unsupported vertex buffer type: " + vertexBufferKind);
}
}
return byteLength;
};
/**
* Generates glTF json data
* @param shouldUseGlb - Indicates whether the json should be written for a glb file.
* @param glTFPrefix - Text to use when prefixing a glTF file.
* @param prettyPrint - Indicates whether the json file should be pretty printed (true) or not (false).
* @returns - json data as string
*/
_Exporter.prototype.generateJSON = function (shouldUseGlb, glTFPrefix, prettyPrint) {
var buffer = { byteLength: this.totalByteLength };
var glTF = {
asset: this.asset
};
if (buffer.byteLength > 0) {
glTF.buffers = [buffer];
}
if (this.nodes && this.nodes.length !== 0) {
glTF.nodes = this.nodes;
}
if (this.meshes && this.meshes.length !== 0) {
glTF.meshes = this.meshes;
}
if (this.scenes && this.scenes.length !== 0) {
glTF.scenes = this.scenes;
glTF.scene = 0;
}
if (this.bufferViews && this.bufferViews.length !== 0) {
glTF.bufferViews = this.bufferViews;
}
if (this.accessors && this.accessors.length !== 0) {
glTF.accessors = this.accessors;
}
if (this.materials && this.materials.length !== 0) {
glTF.materials = this.materials;
}
if (this.textures && this.textures.length !== 0) {
glTF.textures = this.textures;
}
if (this.images && this.images.length !== 0) {
if (!shouldUseGlb) {
glTF.images = this.images;
}
else {
glTF.images = [];
// Replace uri with bufferview and mime type for glb
var imageLength = this.images.length;
var byteOffset = this.totalByteLength;
for (var i = 0; i < imageLength; ++i) {
var image = this.images[i];
if (image.uri !== undefined) {
var imageData = this.imageData[image.uri];
var imageName = image.uri.split('.')[0] + " image";
var bufferView = this.createBufferView(0, byteOffset, imageData.data.length, undefined, imageName);
byteOffset += imageData.data.buffer.byteLength;
this.bufferViews.push(bufferView);
image.bufferView = this.bufferViews.length - 1;
image.name = imageName;
image.mimeType = imageData.mimeType;
image.uri = undefined;
glTF.images.push(image);
}
}
buffer.byteLength = byteOffset;
}
}
if (!shouldUseGlb) {
buffer.uri = glTFPrefix + ".bin";
}
var jsonText = prettyPrint ? JSON.stringify(glTF, null, 2) : JSON.stringify(glTF);
return jsonText;
};
/**
* Generates data for .gltf and .bin files based on the glTF prefix string
* @param glTFPrefix - Text to use when prefixing a glTF file.
* @returns - GLTFData with glTF file data.
*/
_Exporter.prototype._generateGLTF = function (glTFPrefix) {
var jsonText = this.generateJSON(false, glTFPrefix, true);
var binaryBuffer = this.generateBinary();
var bin = new Blob([binaryBuffer], { type: 'application/octet-stream' });
var glTFFileName = glTFPrefix + '.gltf';
var glTFBinFile = glTFPrefix + '.bin';
var container = new BABYLON._GLTFData();
container.glTFFiles[glTFFileName] = jsonText;
container.glTFFiles[glTFBinFile] = bin;
if (this.imageData !== null) {
for (var image in this.imageData) {
container.glTFFiles[image] = new Blob([this.imageData[image].data], { type: this.imageData[image].mimeType });
}
}
return container;
};
/**
* Creates a binary buffer for glTF
* @returns - array buffer for binary data
*/
_Exporter.prototype.generateBinary = function () {
var byteOffset = 0;
var binaryBuffer = new ArrayBuffer(this.totalByteLength);
var dataBuffer = new DataView(binaryBuffer);
byteOffset = this.createScene(this.babylonScene, byteOffset, dataBuffer);
return binaryBuffer;
};
/**
* Pads the number to a multiple of 4
* @param num - number to pad
* @returns - padded number
*/
_Exporter.prototype._getPadding = function (num) {
var remainder = num % 4;
var padding = remainder === 0 ? remainder : 4 - remainder;
return padding;
};
/**
* Generates a glb file from the json and binary data.
* Returns an object with the glb file name as the key and data as the value.
* @param glTFPrefix
* @returns - object with glb filename as key and data as value
*/
_Exporter.prototype._generateGLB = function (glTFPrefix) {
var jsonText = this.generateJSON(true);
var binaryBuffer = this.generateBinary();
var glbFileName = glTFPrefix + '.glb';
var headerLength = 12;
var chunkLengthPrefix = 8;
var jsonLength = jsonText.length;
var imageByteLength = 0;
for (var key in this.imageData) {
imageByteLength += this.imageData[key].data.byteLength;
}
var jsonPadding = this._getPadding(jsonLength);
var binPadding = this._getPadding(binaryBuffer.byteLength);
var imagePadding = this._getPadding(imageByteLength);
var byteLength = headerLength + (2 * chunkLengthPrefix) + jsonLength + jsonPadding + binaryBuffer.byteLength + binPadding + imageByteLength + imagePadding;
//header
var headerBuffer = new ArrayBuffer(headerLength);
var headerBufferView = new DataView(headerBuffer);
headerBufferView.setUint32(0, 0x46546C67, true); //glTF
headerBufferView.setUint32(4, 2, true); // version
headerBufferView.setUint32(8, byteLength, true); // total bytes in file
//json chunk
var jsonChunkBuffer = new ArrayBuffer(chunkLengthPrefix + jsonLength + jsonPadding);
var jsonChunkBufferView = new DataView(jsonChunkBuffer);
jsonChunkBufferView.setUint32(0, jsonLength + jsonPadding, true);
jsonChunkBufferView.setUint32(4, 0x4E4F534A, true);
//json chunk bytes
var jsonData = new Uint8Array(jsonChunkBuffer, chunkLengthPrefix);
for (var i = 0; i < jsonLength; ++i) {
jsonData[i] = jsonText.charCodeAt(i);
}
//json padding
var jsonPaddingView = new Uint8Array(jsonChunkBuffer, chunkLengthPrefix + jsonLength);
for (var i = 0; i < jsonPadding; ++i) {
jsonPaddingView[i] = 0x20;
}
//binary chunk
var binaryChunkBuffer = new ArrayBuffer(chunkLengthPrefix);
var binaryChunkBufferView = new DataView(binaryChunkBuffer);
binaryChunkBufferView.setUint32(0, binaryBuffer.byteLength + imageByteLength + imagePadding, true);
binaryChunkBufferView.setUint32(4, 0x004E4942, true);
// binary padding
var binPaddingBuffer = new ArrayBuffer(binPadding);
var binPaddingView = new Uint8Array(binPaddingBuffer);
for (var i = 0; i < binPadding; ++i) {
binPaddingView[i] = 0;
}
var imagePaddingBuffer = new ArrayBuffer(imagePadding);
var imagePaddingView = new Uint8Array(imagePaddingBuffer);
for (var i = 0; i < imagePadding; ++i) {
imagePaddingView[i] = 0;
}
var glbData = [headerBuffer, jsonChunkBuffer, binaryChunkBuffer, binaryBuffer];
// binary data
for (var key in this.imageData) {
glbData.push(this.imageData[key].data.buffer);
}
glbData.push(binPaddingBuffer);
glbData.push(imagePaddingBuffer);
var glbFile = new Blob(glbData, { type: 'application/octet-stream' });
var container = new BABYLON._GLTFData();
container.glTFFiles[glbFileName] = glbFile;
return container;
};
/**
* Sets the TRS for each node
* @param node - glTF Node for storing the transformation data.
* @param babylonMesh - Babylon mesh used as the source for the transformation data.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
*/
_Exporter.prototype.setNodeTransformation = function (node, babylonMesh, useRightHandedSystem) {
if (!(babylonMesh.position.x === 0 && babylonMesh.position.y === 0 && babylonMesh.position.z === 0)) {
if (useRightHandedSystem) {
node.translation = babylonMesh.position.asArray();
}
else {
node.translation = [babylonMesh.position.x, babylonMesh.position.y, -babylonMesh.position.z];
}
}
if (!(babylonMesh.scaling.x === 1 && babylonMesh.scaling.y === 1 && babylonMesh.scaling.z === 1)) {
if (useRightHandedSystem) {
node.scale = babylonMesh.scaling.asArray();
}
else {
node.scale = [babylonMesh.scaling.x, babylonMesh.scaling.y, -babylonMesh.scaling.z];
}
}
var rotationQuaternion = BABYLON.Quaternion.RotationYawPitchRoll(babylonMesh.rotation.y, babylonMesh.rotation.x, babylonMesh.rotation.z);
if (babylonMesh.rotationQuaternion) {
rotationQuaternion = rotationQuaternion.multiply(babylonMesh.rotationQuaternion);
}
if (!(rotationQuaternion.x === 0 && rotationQuaternion.y === 0 && rotationQuaternion.z === 0 && rotationQuaternion.w === 1)) {
if (useRightHandedSystem) {
node.rotation = rotationQuaternion.asArray();
}
else {
node.rotation = [-rotationQuaternion.x, -rotationQuaternion.y, rotationQuaternion.z, rotationQuaternion.w];
}
}
};
/**
* Creates a bufferview based on the vertices type for the Babylon mesh
* @param kind - Indicates the type of vertices data.
* @param babylonMesh - The Babylon mesh to get the vertices data from.
* @param byteOffset - The offset from the buffer to start indexing from.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @param dataBuffer - The buffer to write the bufferview data to.
* @returns bytelength of the bufferview data.
*/
_Exporter.prototype.createBufferViewKind = function (kind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer) {
var bufferMesh = null;
var byteLength = 0;
if (babylonMesh instanceof BABYLON.Mesh) {
bufferMesh = babylonMesh;
}
else if (babylonMesh instanceof BABYLON.InstancedMesh) {
bufferMesh = babylonMesh.sourceMesh;
}
if (bufferMesh !== null) {
var vertexBuffer = null;
var vertexBufferOffset = null;
var vertexData = null;
var vertexStrideSize = null;
if (bufferMesh.getVerticesDataKinds().indexOf(kind) > -1) {
vertexBuffer = bufferMesh.getVertexBuffer(kind);
vertexBufferOffset = vertexBuffer.getOffset();
vertexData = vertexBuffer.getData();
vertexStrideSize = vertexBuffer.getStrideSize();
if (dataBuffer && vertexData) {
byteLength = this.writeAttributeData(kind, vertexData, vertexStrideSize, vertexBufferOffset, byteOffset, dataBuffer, useRightHandedSystem);
byteOffset += byteLength;
}
else {
var bufferViewName = null;
switch (kind) {
case BABYLON.VertexBuffer.PositionKind: {
byteLength = vertexData.length * 4;
bufferViewName = "Position - " + bufferMesh.name;
break;
}
case BABYLON.VertexBuffer.NormalKind: {
byteLength = vertexData.length * 4;
bufferViewName = "Normal - " + bufferMesh.name;
break;
}
case BABYLON.VertexBuffer.TangentKind: {
byteLength = vertexData.length * 4;
bufferViewName = "Tangent - " + bufferMesh.name;
break;
}
case BABYLON.VertexBuffer.ColorKind: {
byteLength = vertexData.length * 4;
bufferViewName = "Color - " + bufferMesh.name;
break;
}
case BABYLON.VertexBuffer.UVKind: {
byteLength = vertexData.length * 4;
bufferViewName = "TexCoord 0 - " + bufferMesh.name;
break;
}
case BABYLON.VertexBuffer.UV2Kind: {
byteLength = vertexData.length * 4;
bufferViewName = "TexCoord 1 - " + bufferMesh.name;
break;
}
default: {
BABYLON.Tools.Warn("Unsupported VertexBuffer kind: " + kind);
}
}
if (bufferViewName !== null) {
var bufferView = this.createBufferView(0, byteOffset, byteLength, vertexStrideSize * 4, bufferViewName);
byteOffset += byteLength;
this.bufferViews.push(bufferView);
}
}
}
}
return byteLength;
};
/**
* Sets data for the primitive attributes of each submesh
* @param mesh - glTF Mesh object to store the primitive attribute information.
* @param babylonMesh - Babylon mesh to get the primitive attribute data from.
* @param byteOffset - The offset in bytes of the buffer data.
* @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system.
* @param dataBuffer - Buffer to write the attribute data to.
* @returns - bytelength of the primitive attributes plus the passed in byteOffset.
*/
_Exporter.prototype.setPrimitiveAttributes = function (mesh, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer) {
var bufferMesh = null;
if (babylonMesh instanceof BABYLON.Mesh) {
bufferMesh = babylonMesh;
}
else if (babylonMesh instanceof BABYLON.InstancedMesh) {
bufferMesh = babylonMesh.sourceMesh;
}
var positionBufferViewIndex = null;
var normalBufferViewIndex = null;
var colorBufferViewIndex = null;
var tangentBufferViewIndex = null;
var texCoord0BufferViewIndex = null;
var texCoord1BufferViewIndex = null;
var indexBufferViewIndex = null;
if (bufferMesh !== null) {
// For each BabylonMesh, create bufferviews for each 'kind'
if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.PositionKind)) {
byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.PositionKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
positionBufferViewIndex = this.bufferViews.length - 1;
}
if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) {
byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.NormalKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
normalBufferViewIndex = this.bufferViews.length - 1;
}
if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.ColorKind)) {
byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.ColorKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
colorBufferViewIndex = this.bufferViews.length - 1;
}
if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.TangentKind)) {
byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.TangentKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
colorBufferViewIndex = this.bufferViews.length - 1;
}
if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) {
byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.UVKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
texCoord0BufferViewIndex = this.bufferViews.length - 1;
}
if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UV2Kind)) {
byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.UV2Kind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
texCoord1BufferViewIndex = this.bufferViews.length - 1;
}
if (bufferMesh.getTotalIndices() > 0) {
var indices = bufferMesh.getIndices();
if (dataBuffer) {
var end = indices.length;
var byteOff = byteOffset;
for (var k = 0; k < end; ++k) {
dataBuffer.setUint32(byteOff, indices[k], true);
byteOff += 4;
}
byteOffset = byteOff;
}
else {
var byteLength = indices.length * 4;
var bufferView = this.createBufferView(0, byteOffset, byteLength, undefined, "Indices - " + bufferMesh.name);
byteOffset += byteLength;
this.bufferViews.push(bufferView);
indexBufferViewIndex = this.bufferViews.length - 1;
}
}
}
// go through all mesh primitives (submeshes)
for (var j = 0; j < babylonMesh.subMeshes.length; ++j) {
var submesh = babylonMesh.subMeshes[j];
var meshPrimitive = { attributes: {} };
if (bufferMesh !== null) {
// Create a bufferview storing all the positions
if (!dataBuffer) {
// Loop through each attribute of the submesh (mesh primitive)
if (positionBufferViewIndex !== null) {
var positionVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.PositionKind);
var positions = positionVertexBuffer.getData();
var positionStrideSize = positionVertexBuffer.getStrideSize();
// Create accessor
var result = this.calculateMinMax(positions, 0, positions.length / positionStrideSize, positionStrideSize, useRightHandedSystem);
var accessor = this.createAccessor(positionBufferViewIndex, "Position", "VEC3" /* VEC3 */, 5126 /* FLOAT */, positions.length / positionStrideSize, 0, result.min, result.max);
this.accessors.push(accessor);
meshPrimitive.attributes.POSITION = this.accessors.length - 1;
}
if (normalBufferViewIndex !== null) {
var normalVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.NormalKind);
var normals = normalVertexBuffer.getData();
var normalStrideSize = normalVertexBuffer.getStrideSize();
// Create accessor
var accessor = this.createAccessor(normalBufferViewIndex, "Normal", "VEC3" /* VEC3 */, 5126 /* FLOAT */, normals.length / normalStrideSize);
this.accessors.push(accessor);
meshPrimitive.attributes.NORMAL = this.accessors.length - 1;
}
if (tangentBufferViewIndex !== null) {
var tangentVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.TangentKind);
var tangents = tangentVertexBuffer.getData();
var tangentStrideSize = tangentVertexBuffer.getStrideSize();
// Create accessor
var accessor = this.createAccessor(tangentBufferViewIndex, "Tangent", "VEC4" /* VEC4 */, 5126 /* FLOAT */, tangents.length / tangentStrideSize);
this.accessors.push(accessor);
meshPrimitive.attributes.TANGENT = this.accessors.length - 1;
}
if (colorBufferViewIndex !== null) {
var colorVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.ColorKind);
var colors = colorVertexBuffer.getData();
var colorStrideSize = colorVertexBuffer.getStrideSize();
// Create accessor
var accessor = this.createAccessor(colorBufferViewIndex, "Color", "VEC4" /* VEC4 */, 5126 /* FLOAT */, colors.length / colorStrideSize);
this.accessors.push(accessor);
meshPrimitive.attributes.COLOR_0 = this.accessors.length - 1;
}
if (texCoord0BufferViewIndex !== null) {
// Create accessor
var texCoord0VertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.UVKind);
var texCoord0s = texCoord0VertexBuffer.getData();
var texCoord0StrideSize = texCoord0VertexBuffer.getStrideSize();
var accessor = this.createAccessor(texCoord0BufferViewIndex, "Texture Coords 0", "VEC2" /* VEC2 */, 5126 /* FLOAT */, texCoord0s.length / texCoord0StrideSize);
this.accessors.push(accessor);
meshPrimitive.attributes.TEXCOORD_0 = this.accessors.length - 1;
}
if (texCoord1BufferViewIndex !== null) {
// Create accessor
var texCoord1VertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.UV2Kind);
var texCoord1s = texCoord1VertexBuffer.getData();
var texCoord1StrideSize = texCoord1VertexBuffer.getStrideSize();
var accessor = this.createAccessor(texCoord1BufferViewIndex, "Texture Coords 1", "VEC2" /* VEC2 */, 5126 /* FLOAT */, texCoord1s.length / texCoord1StrideSize);
this.accessors.push(accessor);
meshPrimitive.attributes.TEXCOORD_1 = this.accessors.length - 1;
}
if (indexBufferViewIndex) {
// Create accessor
var accessor = this.createAccessor(indexBufferViewIndex, "Indices", "SCALAR" /* SCALAR */, 5125 /* UNSIGNED_INT */, submesh.indexCount, submesh.indexStart * 4);
this.accessors.push(accessor);
meshPrimitive.indices = this.accessors.length - 1;
}
}
if (bufferMesh.material) {
if (bufferMesh.material instanceof BABYLON.StandardMaterial || bufferMesh.material instanceof BABYLON.PBRMetallicRoughnessMaterial) {
var materialIndex = babylonMesh.getScene().materials.indexOf(bufferMesh.material);
meshPrimitive.material = materialIndex;
}
else if (bufferMesh.material instanceof BABYLON.MultiMaterial) {
var babylonMultiMaterial = bufferMesh.material;
var material = babylonMultiMaterial.subMaterials[submesh.materialIndex];
if (material !== null) {
var materialIndex = babylonMesh.getScene().materials.indexOf(material);
meshPrimitive.material = materialIndex;
}
}
else {
BABYLON.Tools.Warn("Material type " + bufferMesh.material.getClassName() + " for material " + bufferMesh.material.name + " is not yet implemented in glTF serializer.");
}
}
mesh.primitives.push(meshPrimitive);
}
}
return byteOffset;
};
/**
* Creates a glTF scene based on the array of meshes.
* Returns the the total byte offset.
* @param babylonScene - Babylon scene to get the mesh data from.
* @param byteOffset - Offset to start from in bytes.
* @param dataBuffer - Buffer to write geometry data to.
* @returns bytelength + byteoffset
*/
_Exporter.prototype.createScene = function (babylonScene, byteOffset, dataBuffer) {
if (babylonScene.meshes.length > 0) {
var babylonMeshes = babylonScene.meshes;
var scene = { nodes: new Array() };
if (dataBuffer == null) {
GLTF2._GLTFMaterial.ConvertMaterialsToGLTF(babylonScene.materials, "image/jpeg" /* JPEG */, this.images, this.textures, this.materials, this.imageData, true);
}
for (var i = 0; i < babylonMeshes.length; ++i) {
if (this.options &&
this.options.shouldExportMesh !== undefined &&
!this.options.shouldExportMesh(babylonMeshes[i])) {
continue;
}
else {
// create node to hold translation/rotation/scale and the mesh
var node = { mesh: -1 };
var babylonMesh = babylonMeshes[i];
var useRightHandedSystem = babylonMesh.getScene().useRightHandedSystem;
// Set transformation
this.setNodeTransformation(node, babylonMesh, useRightHandedSystem);
// create mesh
var mesh = { primitives: new Array() };
mesh.primitives = [];
byteOffset = this.setPrimitiveAttributes(mesh, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer);
// go through all mesh primitives (submeshes)
this.meshes.push(mesh);
node.mesh = this.meshes.length - 1;
if (babylonMesh.name) {
node.name = babylonMesh.name;
}
this.nodes.push(node);
scene.nodes.push(this.nodes.length - 1);
}
}
this.scenes.push(scene);
}
return byteOffset;
};
return _Exporter;
}());
GLTF2._Exporter = _Exporter;
})(GLTF2 = BABYLON.GLTF2 || (BABYLON.GLTF2 = {}));
})(BABYLON || (BABYLON = {}));
//# sourceMappingURL=babylon.glTFExporter.js.map
///
var BABYLON;
(function (BABYLON) {
/**
* Class for holding and downloading glTF file data
*/
var _GLTFData = /** @class */ (function () {
/**
* Initializes the glTF file object.
*/
function _GLTFData() {
this.glTFFiles = {};
}
/**
* Downloads the glTF data as files based on their names and data.
*/
_GLTFData.prototype.downloadFiles = function () {
/**
* Checks for a matching suffix at the end of a string (for ES5 and lower).
* @param str - Source string.
* @param suffix - Suffix to search for in the source string.
* @returns - Boolean indicating whether the suffix was found (true) or not (false).
*/
function endsWith(str, suffix) {
return str.indexOf(suffix, str.length - suffix.length) !== -1;
}
for (var key in this.glTFFiles) {
var link = document.createElement('a');
document.body.appendChild(link);
link.setAttribute("type", "hidden");
link.download = key;
var blob = this.glTFFiles[key];
var mimeType = void 0;
if (endsWith(key, ".glb")) {
mimeType = { type: "model/gltf-binary" };
}
else if (endsWith(key, ".bin")) {
mimeType = { type: "application/octet-stream" };
}
else if (endsWith(key, ".gltf")) {
mimeType = { type: "model/gltf+json" };
}
else if (endsWith(key, ".jpeg" || ".jpg")) {
mimeType = { type: "image/jpeg" /* JPEG */ };
}
else if (endsWith(key, ".png")) {
mimeType = { type: "image/png" /* PNG */ };
}
link.href = window.URL.createObjectURL(new Blob([blob], mimeType));
link.click();
}
};
return _GLTFData;
}());
BABYLON._GLTFData = _GLTFData;
})(BABYLON || (BABYLON = {}));
//# sourceMappingURL=babylon.glTFData.js.map
///
var BABYLON;
(function (BABYLON) {
var GLTF2;
(function (GLTF2) {
/**
* Utility methods for working with glTF material conversion properties. This class should only be used internally.
*/
var _GLTFMaterial = /** @class */ (function () {
function _GLTFMaterial() {
}
/**
* Gets the materials from a Babylon scene and converts them to glTF materials.
* @param scene
* @param mimeType
* @param images
* @param textures
* @param materials
* @param imageData
* @param hasTextureCoords
*/
_GLTFMaterial.ConvertMaterialsToGLTF = function (babylonMaterials, mimeType, images, textures, materials, imageData, hasTextureCoords) {
for (var i = 0; i < babylonMaterials.length; ++i) {
var babylonMaterial = babylonMaterials[i];
if (babylonMaterial instanceof BABYLON.StandardMaterial) {
_GLTFMaterial.ConvertStandardMaterial(babylonMaterial, mimeType, images, textures, materials, imageData, hasTextureCoords);
}
else if (babylonMaterial instanceof BABYLON.PBRMetallicRoughnessMaterial) {
_GLTFMaterial.ConvertPBRMetallicRoughnessMaterial(babylonMaterial, mimeType, images, textures, materials, imageData, hasTextureCoords);
}
}
};
/**
* Converts a Babylon StandardMaterial to a glTF Metallic Roughness Material.
* @param babylonStandardMaterial
* @returns - glTF Metallic Roughness Material representation
*/
_GLTFMaterial.ConvertToGLTFPBRMetallicRoughness = function (babylonStandardMaterial) {
var P0 = new BABYLON.Vector2(0, 1);
var P1 = new BABYLON.Vector2(0, 0.1);
var P2 = new BABYLON.Vector2(0, 0.1);
var P3 = new BABYLON.Vector2(1300, 0.1);
/**
* Given the control points, solve for x based on a given t for a cubic bezier curve.
* @param t - a value between 0 and 1.
* @param p0 - first control point.
* @param p1 - second control point.
* @param p2 - third control point.
* @param p3 - fourth control point.
* @returns - number result of cubic bezier curve at the specified t.
*/
function cubicBezierCurve(t, p0, p1, p2, p3) {
return ((1 - t) * (1 - t) * (1 - t) * p0 +
3 * (1 - t) * (1 - t) * t * p1 +
3 * (1 - t) * t * t * p2 +
t * t * t * p3);
}
/**
* Evaluates a specified specular power value to determine the appropriate roughness value,
* based on a pre-defined cubic bezier curve with specular on the abscissa axis (x-axis)
* and roughness on the ordinant axis (y-axis).
* @param specularPower - specular power of standard material.
* @returns - Number representing the roughness value.
*/
function solveForRoughness(specularPower) {
var t = Math.pow(specularPower / P3.x, 0.333333);
return cubicBezierCurve(t, P0.y, P1.y, P2.y, P3.y);
}
var diffuse = babylonStandardMaterial.diffuseColor.toLinearSpace().scale(0.5);
var opacity = babylonStandardMaterial.alpha;
var specularPower = BABYLON.Scalar.Clamp(babylonStandardMaterial.specularPower, 0, this.maxSpecularPower);
var roughness = solveForRoughness(specularPower);
var glTFPbrMetallicRoughness = {
baseColorFactor: [
diffuse.r,
diffuse.g,
diffuse.b,
opacity
],
metallicFactor: 0,
roughnessFactor: roughness,
};
return glTFPbrMetallicRoughness;
};
/**
* Computes the metallic factor
* @param diffuse - diffused value
* @param specular - specular value
* @param oneMinusSpecularStrength - one minus the specular strength
* @returns - metallic value
*/
_GLTFMaterial.SolveMetallic = function (diffuse, specular, oneMinusSpecularStrength) {
if (specular < _GLTFMaterial.dielectricSpecular.r) {
_GLTFMaterial.dielectricSpecular;
return 0;
}
var a = _GLTFMaterial.dielectricSpecular.r;
var b = diffuse * oneMinusSpecularStrength / (1.0 - _GLTFMaterial.dielectricSpecular.r) + specular - 2.0 * _GLTFMaterial.dielectricSpecular.r;
var c = _GLTFMaterial.dielectricSpecular.r - specular;
var D = b * b - 4.0 * a * c;
return BABYLON.Scalar.Clamp((-b + Math.sqrt(D)) / (2.0 * a), 0, 1);
};
/**
* Gets the glTF alpha mode from the Babylon Material
* @param babylonMaterial - Babylon Material
* @returns - The Babylon alpha mode value
*/
_GLTFMaterial.GetAlphaMode = function (babylonMaterial) {
if (babylonMaterial instanceof BABYLON.StandardMaterial) {
var babylonStandardMaterial = babylonMaterial;
if ((babylonStandardMaterial.alpha != 1.0) ||
(babylonStandardMaterial.diffuseTexture != null && babylonStandardMaterial.diffuseTexture.hasAlpha) ||
(babylonStandardMaterial.opacityTexture != null)) {
return "BLEND" /* BLEND */;
}
else {
return "OPAQUE" /* OPAQUE */;
}
}
else if (babylonMaterial instanceof BABYLON.PBRMetallicRoughnessMaterial) {
var babylonPBRMetallicRoughness = babylonMaterial;
switch (babylonPBRMetallicRoughness.transparencyMode) {
case BABYLON.PBRMaterial.PBRMATERIAL_OPAQUE: {
return "OPAQUE" /* OPAQUE */;
}
case BABYLON.PBRMaterial.PBRMATERIAL_ALPHABLEND: {
return "BLEND" /* BLEND */;
}
case BABYLON.PBRMaterial.PBRMATERIAL_ALPHATEST: {
return "MASK" /* MASK */;
}
case BABYLON.PBRMaterial.PBRMATERIAL_ALPHATESTANDBLEND: {
BABYLON.Tools.Warn(babylonMaterial.name + ": GLTF Exporter | Alpha test and blend mode not supported in glTF. Alpha blend used instead.");
return "BLEND" /* BLEND */;
}
default: {
throw new Error("Unsupported alpha mode " + babylonPBRMetallicRoughness.transparencyMode);
}
}
}
else {
throw new Error("Unsupported Babylon material type");
}
};
/**
* Converts a Babylon Standard Material to a glTF Material.
* @param babylonStandardMaterial - BJS Standard Material.
* @param mimeType - mime type to use for the textures.
* @param images - array of glTF image interfaces.
* @param textures - array of glTF texture interfaces.
* @param materials - array of glTF material interfaces.
* @param imageData - map of image file name to data.
* @param hasTextureCoords - specifies if texture coordinates are present on the submesh to determine if textures should be applied.
*/
_GLTFMaterial.ConvertStandardMaterial = function (babylonStandardMaterial, mimeType, images, textures, materials, imageData, hasTextureCoords) {
BABYLON.Tools.Warn(babylonStandardMaterial.name + ": Standard Material is currently not fully supported/implemented in glTF serializer");
var glTFPbrMetallicRoughness = _GLTFMaterial.ConvertToGLTFPBRMetallicRoughness(babylonStandardMaterial);
var glTFMaterial = { name: babylonStandardMaterial.name };
if (babylonStandardMaterial.backFaceCulling) {
if (!babylonStandardMaterial.twoSidedLighting) {
BABYLON.Tools.Warn(babylonStandardMaterial.name + ": Back-face culling enabled and two-sided lighting disabled is not supported in glTF.");
}
glTFMaterial.doubleSided = true;
}
if (hasTextureCoords) {
if (babylonStandardMaterial.diffuseTexture) {
var glTFTexture = _GLTFMaterial.ExportTexture(babylonStandardMaterial.diffuseTexture, mimeType, images, textures, imageData);
if (glTFTexture != null) {
glTFPbrMetallicRoughness.baseColorTexture = glTFTexture;
}
}
if (babylonStandardMaterial.bumpTexture) {
var glTFTexture = _GLTFMaterial.ExportTexture(babylonStandardMaterial.bumpTexture, mimeType, images, textures, imageData);
if (glTFTexture) {
glTFMaterial.normalTexture = glTFTexture;
}
}
if (babylonStandardMaterial.emissiveTexture) {
var glTFEmissiveTexture = _GLTFMaterial.ExportTexture(babylonStandardMaterial.emissiveTexture, mimeType, images, textures, imageData);
if (glTFEmissiveTexture) {
glTFMaterial.emissiveTexture = glTFEmissiveTexture;
}
glTFMaterial.emissiveFactor = [1.0, 1.0, 1.0];
}
if (babylonStandardMaterial.ambientTexture) {
var glTFOcclusionTexture = _GLTFMaterial.ExportTexture(babylonStandardMaterial.ambientTexture, mimeType, images, textures, imageData);
if (glTFOcclusionTexture) {
glTFMaterial.occlusionTexture = glTFOcclusionTexture;
}
}
}
if (babylonStandardMaterial.alpha < 1.0 || babylonStandardMaterial.opacityTexture) {
if (babylonStandardMaterial.alphaMode === BABYLON.Engine.ALPHA_COMBINE) {
glTFMaterial.alphaMode = "BLEND" /* BLEND */;
}
else {
BABYLON.Tools.Warn(babylonStandardMaterial.name + ": glTF 2.0 does not support alpha mode: " + babylonStandardMaterial.alphaMode.toString());
}
}
glTFMaterial.pbrMetallicRoughness = glTFPbrMetallicRoughness;
materials.push(glTFMaterial);
};
/**
* Converts a Babylon PBR Metallic Roughness Material to a glTF Material.
* @param babylonPBRMetalRoughMaterial - BJS PBR Metallic Roughness Material.
* @param mimeType - mime type to use for the textures.
* @param images - array of glTF image interfaces.
* @param textures - array of glTF texture interfaces.
* @param materials - array of glTF material interfaces.
* @param imageData - map of image file name to data.
* @param hasTextureCoords - specifies if texture coordinates are present on the submesh to determine if textures should be applied.
*/
_GLTFMaterial.ConvertPBRMetallicRoughnessMaterial = function (babylonPBRMetalRoughMaterial, mimeType, images, textures, materials, imageData, hasTextureCoords) {
var glTFPbrMetallicRoughness = {};
if (babylonPBRMetalRoughMaterial.baseColor) {
glTFPbrMetallicRoughness.baseColorFactor = [
babylonPBRMetalRoughMaterial.baseColor.r,
babylonPBRMetalRoughMaterial.baseColor.g,
babylonPBRMetalRoughMaterial.baseColor.b,
babylonPBRMetalRoughMaterial.alpha
];
}
if (babylonPBRMetalRoughMaterial.metallic != null) {
glTFPbrMetallicRoughness.metallicFactor = babylonPBRMetalRoughMaterial.metallic;
}
if (babylonPBRMetalRoughMaterial.roughness != null) {
glTFPbrMetallicRoughness.roughnessFactor = babylonPBRMetalRoughMaterial.roughness;
}
var glTFMaterial = {
name: babylonPBRMetalRoughMaterial.name
};
if (babylonPBRMetalRoughMaterial.doubleSided) {
glTFMaterial.doubleSided = babylonPBRMetalRoughMaterial.doubleSided;
}
if (hasTextureCoords) {
if (babylonPBRMetalRoughMaterial.baseTexture != null) {
var glTFTexture = _GLTFMaterial.ExportTexture(babylonPBRMetalRoughMaterial.baseTexture, mimeType, images, textures, imageData);
if (glTFTexture != null) {
glTFPbrMetallicRoughness.baseColorTexture = glTFTexture;
}
}
if (babylonPBRMetalRoughMaterial.normalTexture) {
var glTFTexture = _GLTFMaterial.ExportTexture(babylonPBRMetalRoughMaterial.normalTexture, mimeType, images, textures, imageData);
if (glTFTexture) {
glTFMaterial.normalTexture = glTFTexture;
}
}
if (babylonPBRMetalRoughMaterial.occlusionTexture) {
var glTFTexture = _GLTFMaterial.ExportTexture(babylonPBRMetalRoughMaterial.occlusionTexture, mimeType, images, textures, imageData);
if (glTFTexture) {
glTFMaterial.occlusionTexture = glTFTexture;
if (babylonPBRMetalRoughMaterial.occlusionStrength != null) {
glTFMaterial.occlusionTexture.strength = babylonPBRMetalRoughMaterial.occlusionStrength;
}
}
}
if (babylonPBRMetalRoughMaterial.emissiveTexture) {
var glTFTexture = _GLTFMaterial.ExportTexture(babylonPBRMetalRoughMaterial.emissiveTexture, mimeType, images, textures, imageData);
if (glTFTexture != null) {
glTFMaterial.emissiveTexture = glTFTexture;
}
}
}
if (babylonPBRMetalRoughMaterial.emissiveColor.equalsFloats(0.0, 0.0, 0.0)) {
glTFMaterial.emissiveFactor = babylonPBRMetalRoughMaterial.emissiveColor.asArray();
}
if (babylonPBRMetalRoughMaterial.transparencyMode != null) {
var alphaMode = _GLTFMaterial.GetAlphaMode(babylonPBRMetalRoughMaterial);
if (alphaMode !== "OPAQUE" /* OPAQUE */) {
glTFMaterial.alphaMode = alphaMode;
if (alphaMode === "BLEND" /* BLEND */) {
glTFMaterial.alphaCutoff = babylonPBRMetalRoughMaterial.alphaCutOff;
}
}
}
glTFMaterial.pbrMetallicRoughness = glTFPbrMetallicRoughness;
materials.push(glTFMaterial);
};
/**
* Extracts a texture from a Babylon texture into file data and glTF data.
* @param babylonTexture - Babylon texture to extract.
* @param mimeType - Mime Type of the babylonTexture.
* @param images - Array of glTF images.
* @param textures - Array of glTF textures.
* @param imageData - map of image file name and data.
* @return - glTF texture, or null if the texture format is not supported.
*/
_GLTFMaterial.ExportTexture = function (babylonTexture, mimeType, images, textures, imageData) {
var textureInfo = null;
var glTFTexture = {
source: images.length
};
var textureName = "texture_" + (textures.length - 1).toString();
var textureData = babylonTexture.getInternalTexture();
if (textureData != null) {
textureName = textureData.url;
}
textureName = BABYLON.Tools.GetFilename(textureName);
var baseFile = textureName.split('.')[0];
var extension = "";
if (mimeType === "image/jpeg" /* JPEG */) {
extension = ".jpg";
}
else if (mimeType === "image/png" /* PNG */) {
extension = ".png";
}
else {
BABYLON.Tools.Error("Unsupported mime type " + mimeType);
}
textureName = baseFile + extension;
var pixels = babylonTexture.readPixels();
var imageCanvas = document.createElement('canvas');
imageCanvas.id = "ImageCanvas";
var ctx = imageCanvas.getContext('2d');
var size = babylonTexture.getSize();
imageCanvas.width = size.width;
imageCanvas.height = size.height;
var imgData = ctx.createImageData(size.width, size.height);
imgData.data.set(pixels);
ctx.putImageData(imgData, 0, 0);
var base64Data = imageCanvas.toDataURL(mimeType);
var binStr = atob(base64Data.split(',')[1]);
var arr = new Uint8Array(binStr.length);
for (var i = 0; i < binStr.length; ++i) {
arr[i] = binStr.charCodeAt(i);
}
var imageValues = { data: arr, mimeType: mimeType };
imageData[textureName] = imageValues;
if (mimeType === "image/jpeg" /* JPEG */) {
var glTFImage = {
uri: textureName
};
var foundIndex = -1;
for (var i = 0; i < images.length; ++i) {
if (images[i].uri === textureName) {
foundIndex = i;
break;
}
}
if (foundIndex === -1) {
images.push(glTFImage);
glTFTexture.source = images.length - 1;
textures.push({
source: images.length - 1
});
textureInfo = {
index: images.length - 1
};
}
else {
glTFTexture.source = foundIndex;
textureInfo = {
index: foundIndex
};
}
}
return textureInfo;
};
/**
* Represents the dielectric specular values for R, G and B.
*/
_GLTFMaterial.dielectricSpecular = new BABYLON.Color3(0.04, 0.04, 0.04);
/**
* Allows the maximum specular power to be defined for material calculations.
*/
_GLTFMaterial.maxSpecularPower = 1024;
return _GLTFMaterial;
}());
GLTF2._GLTFMaterial = _GLTFMaterial;
})(GLTF2 = BABYLON.GLTF2 || (BABYLON.GLTF2 = {}));
})(BABYLON || (BABYLON = {}));
//# sourceMappingURL=babylon.glTFMaterial.js.map