(function webpackUniversalModuleDefinition(root, factory) { if (typeof exports === 'object' && typeof module === 'object') module.exports = factory(); else if (typeof define === 'function' && define.amd) define("shaderc", [], factory); else if (typeof exports === 'object') exports["shaderc"] = factory(); else root["Shaderc"] = factory(); })((typeof self !== "undefined" ? self : typeof global !== "undefined" ? global : this), function () { const Shaderc = (Module) => { Module = Module || {}; const returnPromise = new Promise(res => { Module.onRuntimeInitialized = () => { res(Module); }; }); // Sometimes an existing Module object exists with properties // meant to overwrite the default module functionality. Here // we collect those properties and reapply _after_ we configure // the current environment's defaults to avoid having to be so // defensive during initialization. var moduleOverrides = {}; for (var key in Module) { if (Module.hasOwnProperty(key)) { moduleOverrides[key] = Module[key]; } } // The environment setup code below is customized to use Module. // *** Environment setup code *** var ENVIRONMENT_IS_WEB = false; var ENVIRONMENT_IS_WORKER = false; var ENVIRONMENT_IS_NODE = false; var ENVIRONMENT_IS_SHELL = false; // Three configurations we can be running in: // 1) We could be the application main() thread running in the main JS UI thread. (ENVIRONMENT_IS_WORKER == false and ENVIRONMENT_IS_PTHREAD == false) // 2) We could be the application main() thread proxied to worker. (with Emscripten -s PROXY_TO_WORKER=1) (ENVIRONMENT_IS_WORKER == true, ENVIRONMENT_IS_PTHREAD == false) // 3) We could be an application pthread running in a worker. (ENVIRONMENT_IS_WORKER == true and ENVIRONMENT_IS_PTHREAD == true) if (Module['ENVIRONMENT']) { if (Module['ENVIRONMENT'] === 'WEB') { ENVIRONMENT_IS_WEB = true; } else if (Module['ENVIRONMENT'] === 'WORKER') { ENVIRONMENT_IS_WORKER = true; } else if (Module['ENVIRONMENT'] === 'NODE') { ENVIRONMENT_IS_NODE = true; } else if (Module['ENVIRONMENT'] === 'SHELL') { ENVIRONMENT_IS_SHELL = true; } else { throw new Error('The provided Module[\'ENVIRONMENT\'] value is not valid. It must be one of: WEB|WORKER|NODE|SHELL.'); } } else { ENVIRONMENT_IS_WEB = typeof window === 'object'; ENVIRONMENT_IS_WORKER = typeof importScripts === 'function'; ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function' && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER; ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; } if (ENVIRONMENT_IS_NODE) { // Expose functionality in the same simple way that the shells work // Note that we pollute the global namespace here, otherwise we break in node if (!Module['print']) Module['print'] = console.log; if (!Module['printErr']) Module['printErr'] = console.warn; var nodeFS; var nodePath; Module['read'] = function shell_read(filename, binary) { if (!nodeFS) nodeFS = require('fs'); if (!nodePath) nodePath = require('path'); filename = nodePath['normalize'](filename); var ret = nodeFS['readFileSync'](filename); return binary ? ret : ret.toString(); }; Module['readBinary'] = function readBinary(filename) { var ret = Module['read'](filename, true); if (!ret.buffer) { ret = new Uint8Array(ret); } assert(ret.buffer); return ret; }; Module['load'] = function load(f) { globalEval(read(f)); }; if (!Module['thisProgram']) { if (process['argv'].length > 1) { Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/'); } else { Module['thisProgram'] = 'unknown-program'; } } Module['arguments'] = process['argv'].slice(2); if (typeof module !== 'undefined') { module['exports'] = Module; } process['on']('uncaughtException', function (ex) { // suppress ExitStatus exceptions from showing an error if (!(ex instanceof ExitStatus)) { throw ex; } }); Module['inspect'] = function () { return '[Emscripten Module object]'; }; } else if (ENVIRONMENT_IS_SHELL) { if (!Module['print']) Module['print'] = print; if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm if (typeof read != 'undefined') { Module['read'] = read; } else { Module['read'] = function shell_read() { throw 'no read() available' }; } Module['readBinary'] = function readBinary(f) { if (typeof readbuffer === 'function') { return new Uint8Array(readbuffer(f)); } var data = read(f, 'binary'); assert(typeof data === 'object'); return data; }; if (typeof scriptArgs != 'undefined') { Module['arguments'] = scriptArgs; } else if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } if (typeof quit === 'function') { Module['quit'] = function (status, toThrow) { quit(status); } } } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { Module['read'] = function shell_read(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.send(null); return xhr.responseText; }; if (ENVIRONMENT_IS_WORKER) { Module['readBinary'] = function readBinary(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.responseType = 'arraybuffer'; xhr.send(null); return new Uint8Array(xhr.response); }; } Module['readAsync'] = function readAsync(url, onload, onerror) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); xhr.responseType = 'arraybuffer'; xhr.onload = function xhr_onload() { if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0 onload(xhr.response); } else { onerror(); } }; xhr.onerror = onerror; xhr.send(null); }; if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } if (typeof console !== 'undefined') { if (!Module['print']) Module['print'] = function shell_print(x) { console.log(x); }; if (!Module['printErr']) Module['printErr'] = function shell_printErr(x) { console.warn(x); }; } else { // Probably a worker, and without console.log. We can do very little here... var TRY_USE_DUMP = false; if (!Module['print']) Module['print'] = (TRY_USE_DUMP && (typeof (dump) !== "undefined") ? (function (x) { dump(x); }) : (function (x) { // self.postMessage(x); // enable this if you want stdout to be sent as messages })); } if (ENVIRONMENT_IS_WORKER) { Module['load'] = importScripts; } if (typeof Module['setWindowTitle'] === 'undefined') { Module['setWindowTitle'] = function (title) { document.title = title }; } } else { // Unreachable because SHELL is dependant on the others throw 'Unknown runtime environment. Where are we?'; } function globalEval(x) { eval.call(null, x); } if (!Module['load'] && Module['read']) { Module['load'] = function load(f) { globalEval(Module['read'](f)); }; } if (!Module['print']) { Module['print'] = function () { }; } if (!Module['printErr']) { Module['printErr'] = Module['print']; } if (!Module['arguments']) { Module['arguments'] = []; } if (!Module['thisProgram']) { Module['thisProgram'] = './this.program'; } if (!Module['quit']) { Module['quit'] = function (status, toThrow) { throw toThrow; } } // *** Environment setup code *** // Closure helpers Module.print = Module['print']; Module.printErr = Module['printErr']; // Callbacks Module['preRun'] = []; Module['postRun'] = []; // Merge back in the overrides for (var key in moduleOverrides) { if (moduleOverrides.hasOwnProperty(key)) { Module[key] = moduleOverrides[key]; } } // Free the object hierarchy contained in the overrides, this lets the GC // reclaim data used e.g. in memoryInitializerRequest, which is a large typed array. moduleOverrides = undefined; // {{PREAMBLE_ADDITIONS}} // === Preamble library stuff === // Documentation for the public APIs defined in this file must be updated in: // site/source/docs/api_reference/preamble.js.rst // A prebuilt local version of the documentation is available at: // site/build/text/docs/api_reference/preamble.js.txt // You can also build docs locally as HTML or other formats in site/ // An online HTML version (which may be of a different version of Emscripten) // is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html //======================================== // Runtime code shared with compiler //======================================== var Runtime = { setTempRet0: function (value) { tempRet0 = value; return value; }, getTempRet0: function () { return tempRet0; }, stackSave: function () { return STACKTOP; }, stackRestore: function (stackTop) { STACKTOP = stackTop; }, getNativeTypeSize: function (type) { switch (type) { case 'i1': case 'i8': return 1; case 'i16': return 2; case 'i32': return 4; case 'i64': return 8; case 'float': return 4; case 'double': return 8; default: { if (type[type.length - 1] === '*') { return Runtime.QUANTUM_SIZE; // A pointer } else if (type[0] === 'i') { var bits = parseInt(type.substr(1)); assert(bits % 8 === 0); return bits / 8; } else { return 0; } } } }, getNativeFieldSize: function (type) { return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE); }, STACK_ALIGN: 16, prepVararg: function (ptr, type) { if (type === 'double' || type === 'i64') { // move so the load is aligned if (ptr & 7) { assert((ptr & 7) === 4); ptr += 4; } } else { assert((ptr & 3) === 0); } return ptr; }, getAlignSize: function (type, size, vararg) { // we align i64s and doubles on 64-bit boundaries, unlike x86 if (!vararg && (type == 'i64' || type == 'double')) return 8; if (!type) return Math.min(size, 8); // align structures internally to 64 bits return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE); }, dynCall: function (sig, ptr, args) { if (args && args.length) { return Module['dynCall_' + sig].apply(null, [ptr].concat(args)); } else { return Module['dynCall_' + sig].call(null, ptr); } }, functionPointers: [], addFunction: function (func) { for (var i = 0; i < Runtime.functionPointers.length; i++) { if (!Runtime.functionPointers[i]) { Runtime.functionPointers[i] = func; return 2 * (1 + i); } } throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.'; }, removeFunction: function (index) { Runtime.functionPointers[(index - 2) / 2] = null; }, warnOnce: function (text) { if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {}; if (!Runtime.warnOnce.shown[text]) { Runtime.warnOnce.shown[text] = 1; Module.printErr(text); } }, funcWrappers: {}, getFuncWrapper: function (func, sig) { assert(sig); if (!Runtime.funcWrappers[sig]) { Runtime.funcWrappers[sig] = {}; } var sigCache = Runtime.funcWrappers[sig]; if (!sigCache[func]) { // optimize away arguments usage in common cases if (sig.length === 1) { sigCache[func] = function dynCall_wrapper() { return Runtime.dynCall(sig, func); }; } else if (sig.length === 2) { sigCache[func] = function dynCall_wrapper(arg) { return Runtime.dynCall(sig, func, [arg]); }; } else { // general case sigCache[func] = function dynCall_wrapper() { return Runtime.dynCall(sig, func, Array.prototype.slice.call(arguments)); }; } } return sigCache[func]; }, getCompilerSetting: function (name) { throw 'You must build with -s RETAIN_COMPILER_SETTINGS=1 for Runtime.getCompilerSetting or emscripten_get_compiler_setting to work'; }, stackAlloc: function (size) { var ret = STACKTOP; STACKTOP = (STACKTOP + size) | 0; STACKTOP = (((STACKTOP) + 15) & -16); return ret; }, staticAlloc: function (size) { var ret = STATICTOP; STATICTOP = (STATICTOP + size) | 0; STATICTOP = (((STATICTOP) + 15) & -16); return ret; }, dynamicAlloc: function (size) { var ret = HEAP32[DYNAMICTOP_PTR >> 2]; var end = (((ret + size + 15) | 0) & -16); HEAP32[DYNAMICTOP_PTR >> 2] = end; if (end >= TOTAL_MEMORY) { var success = enlargeMemory(); if (!success) { HEAP32[DYNAMICTOP_PTR >> 2] = ret; return 0; } } return ret; }, alignMemory: function (size, quantum) { var ret = size = Math.ceil((size) / (quantum ? quantum : 16)) * (quantum ? quantum : 16); return ret; }, makeBigInt: function (low, high, unsigned) { var ret = (unsigned ? ((+((low >>> 0))) + ((+((high >>> 0))) * 4294967296.0)) : ((+((low >>> 0))) + ((+((high | 0))) * 4294967296.0))); return ret; }, GLOBAL_BASE: 1024, QUANTUM_SIZE: 4, __dummy__: 0 } Module["Runtime"] = Runtime; //======================================== // Runtime essentials //======================================== var ABORT = 0; // whether we are quitting the application. no code should run after this. set in exit() and abort() var EXITSTATUS = 0; /** @type {function(*, string=)} */ function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } var globalScope = this; // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { var func = Module['_' + ident]; // closure exported function if (!func) { try { func = eval('_' + ident); } catch (e) { } } assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)'); return func; } var cwrap, ccall; (function () { var JSfuncs = { // Helpers for cwrap -- it can't refer to Runtime directly because it might // be renamed by closure, instead it calls JSfuncs['stackSave'].body to find // out what the minified function name is. 'stackSave': function () { Runtime.stackSave() }, 'stackRestore': function () { Runtime.stackRestore() }, // type conversion from js to c 'arrayToC': function (arr) { var ret = Runtime.stackAlloc(arr.length); writeArrayToMemory(arr, ret); return ret; }, 'stringToC': function (str) { var ret = 0; if (str !== null && str !== undefined && str !== 0) { // null string // at most 4 bytes per UTF-8 code point, +1 for the trailing '\0' var len = (str.length << 2) + 1; ret = Runtime.stackAlloc(len); stringToUTF8(str, ret, len); } return ret; } }; // For fast lookup of conversion functions var toC = { 'string': JSfuncs['stringToC'], 'array': JSfuncs['arrayToC'] }; // C calling interface. ccall = function ccallFunc(ident, returnType, argTypes, args, opts) { var func = getCFunc(ident); var cArgs = []; var stack = 0; if (args) { for (var i = 0; i < args.length; i++) { var converter = toC[argTypes[i]]; if (converter) { if (stack === 0) stack = Runtime.stackSave(); cArgs[i] = converter(args[i]); } else { cArgs[i] = args[i]; } } } var ret = func.apply(null, cArgs); if (returnType === 'string') ret = Pointer_stringify(ret); if (stack !== 0) { if (opts && opts.async) { EmterpreterAsync.asyncFinalizers.push(function () { Runtime.stackRestore(stack); }); return; } Runtime.stackRestore(stack); } return ret; } var sourceRegex = /^function\s*[a-zA-Z$_0-9]*\s*\(([^)]*)\)\s*{\s*([^*]*?)[\s;]*(?:return\s*(.*?)[;\s]*)?}$/; function parseJSFunc(jsfunc) { // Match the body and the return value of a javascript function source var parsed = jsfunc.toString().match(sourceRegex).slice(1); return { arguments: parsed[0], body: parsed[1], returnValue: parsed[2] } } // sources of useful functions. we create this lazily as it can trigger a source decompression on this entire file var JSsource = null; function ensureJSsource() { if (!JSsource) { JSsource = {}; for (var fun in JSfuncs) { if (JSfuncs.hasOwnProperty(fun)) { // Elements of toCsource are arrays of three items: // the code, and the return value JSsource[fun] = parseJSFunc(JSfuncs[fun]); } } } } cwrap = function cwrap(ident, returnType, argTypes) { argTypes = argTypes || []; var cfunc = getCFunc(ident); // When the function takes numbers and returns a number, we can just return // the original function var numericArgs = argTypes.every(function (type) { return type === 'number' }); var numericRet = (returnType !== 'string'); if (numericRet && numericArgs) { return cfunc; } // Creation of the arguments list (["$1","$2",...,"$nargs"]) var argNames = argTypes.map(function (x, i) { return '$' + i }); var funcstr = "(function(" + argNames.join(',') + ") {"; var nargs = argTypes.length; if (!numericArgs) { // Generate the code needed to convert the arguments from javascript // values to pointers ensureJSsource(); funcstr += 'var stack = ' + JSsource['stackSave'].body + ';'; for (var i = 0; i < nargs; i++) { var arg = argNames[i], type = argTypes[i]; if (type === 'number') continue; var convertCode = JSsource[type + 'ToC']; // [code, return] funcstr += 'var ' + convertCode.arguments + ' = ' + arg + ';'; funcstr += convertCode.body + ';'; funcstr += arg + '=(' + convertCode.returnValue + ');'; } } // When the code is compressed, the name of cfunc is not literally 'cfunc' anymore var cfuncname = parseJSFunc(function () { return cfunc }).returnValue; // Call the function funcstr += 'var ret = ' + cfuncname + '(' + argNames.join(',') + ');'; if (!numericRet) { // Return type can only by 'string' or 'number' // Convert the result to a string var strgfy = parseJSFunc(function () { return Pointer_stringify }).returnValue; funcstr += 'ret = ' + strgfy + '(ret);'; } if (!numericArgs) { // If we had a stack, restore it ensureJSsource(); funcstr += JSsource['stackRestore'].body.replace('()', '(stack)') + ';'; } funcstr += 'return ret})'; return eval(funcstr); }; })(); Module["ccall"] = ccall; Module["cwrap"] = cwrap; /** @type {function(number, number, string, boolean=)} */ function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length - 1) === '*') type = 'i32'; // pointers are 32-bit switch (type) { case 'i1': HEAP8[((ptr) >> 0)] = value; break; case 'i8': HEAP8[((ptr) >> 0)] = value; break; case 'i16': HEAP16[((ptr) >> 1)] = value; break; case 'i32': HEAP32[((ptr) >> 2)] = value; break; case 'i64': (tempI64 = [value >>> 0, (tempDouble = value, (+(Math_abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? ((Math_min((+(Math_floor((tempDouble) / 4294967296.0))), 4294967295.0)) | 0) >>> 0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble))) >>> 0)) / 4294967296.0))))) >>> 0) : 0)], HEAP32[((ptr) >> 2)] = tempI64[0], HEAP32[(((ptr) + (4)) >> 2)] = tempI64[1]); break; case 'float': HEAPF32[((ptr) >> 2)] = value; break; case 'double': HEAPF64[((ptr) >> 3)] = value; break; default: abort('invalid type for setValue: ' + type); } } Module["setValue"] = setValue; /** @type {function(number, string, boolean=)} */ function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length - 1) === '*') type = 'i32'; // pointers are 32-bit switch (type) { case 'i1': return HEAP8[((ptr) >> 0)]; case 'i8': return HEAP8[((ptr) >> 0)]; case 'i16': return HEAP16[((ptr) >> 1)]; case 'i32': return HEAP32[((ptr) >> 2)]; case 'i64': return HEAP32[((ptr) >> 2)]; case 'float': return HEAPF32[((ptr) >> 2)]; case 'double': return HEAPF64[((ptr) >> 3)]; default: abort('invalid type for setValue: ' + type); } return null; } Module["getValue"] = getValue; var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STACK = 1; // Lives for the duration of the current function call var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk var ALLOC_NONE = 4; // Do not allocate Module["ALLOC_NORMAL"] = ALLOC_NORMAL; Module["ALLOC_STACK"] = ALLOC_STACK; Module["ALLOC_STATIC"] = ALLOC_STATIC; Module["ALLOC_DYNAMIC"] = ALLOC_DYNAMIC; Module["ALLOC_NONE"] = ALLOC_NONE; // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* /** @type {function((TypedArray|Array|number), string, number, number=)} */ function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [typeof _malloc === 'function' ? _malloc : Runtime.staticAlloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var ptr = ret, stop; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { HEAP32[((ptr) >> 2)] = 0; } stop = ret + size; while (ptr < stop) { HEAP8[((ptr++) >> 0)] = 0; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(/** @type {!Uint8Array} */(slab), ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; if (typeof curr === 'function') { curr = Runtime.getFunctionIndex(curr); } type = singleType || types[i]; if (type === 0) { i++; continue; } if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret + i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = Runtime.getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } Module["allocate"] = allocate; // Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready function getMemory(size) { if (!staticSealed) return Runtime.staticAlloc(size); if (!runtimeInitialized) return Runtime.dynamicAlloc(size); return _malloc(size); } Module["getMemory"] = getMemory; /** @type {function(number, number=)} */ function Pointer_stringify(ptr, length) { if (length === 0 || !ptr) return ''; // TODO: use TextDecoder // Find the length, and check for UTF while doing so var hasUtf = 0; var t; var i = 0; while (1) { t = HEAPU8[(((ptr) + (i)) >> 0)]; hasUtf |= t; if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (hasUtf < 128) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } return Module['UTF8ToString'](ptr); } Module["Pointer_stringify"] = Pointer_stringify; // Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function AsciiToString(ptr) { var str = ''; while (1) { var ch = HEAP8[((ptr++) >> 0)]; if (!ch) return str; str += String.fromCharCode(ch); } } Module["AsciiToString"] = AsciiToString; // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP. function stringToAscii(str, outPtr) { return writeAsciiToMemory(str, outPtr, false); } Module["stringToAscii"] = stringToAscii; // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns // a copy of that string as a Javascript String object. var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined; function UTF8ArrayToString(u8Array, idx) { var endPtr = idx; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. while (u8Array[endPtr])++endPtr; if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) { return UTF8Decoder.decode(u8Array.subarray(idx, endPtr)); } else { var u0, u1, u2, u3, u4, u5; var str = ''; while (1) { // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 u0 = u8Array[idx++]; if (!u0) return str; if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; } u1 = u8Array[idx++] & 63; if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; } u2 = u8Array[idx++] & 63; if ((u0 & 0xF0) == 0xE0) { u0 = ((u0 & 15) << 12) | (u1 << 6) | u2; } else { u3 = u8Array[idx++] & 63; if ((u0 & 0xF8) == 0xF0) { u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3; } else { u4 = u8Array[idx++] & 63; if ((u0 & 0xFC) == 0xF8) { u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4; } else { u5 = u8Array[idx++] & 63; u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5; } } } if (u0 < 0x10000) { str += String.fromCharCode(u0); } else { var ch = u0 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } } } } Module["UTF8ArrayToString"] = UTF8ArrayToString; // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF8ToString(ptr) { return UTF8ArrayToString(HEAPU8, ptr); } Module["UTF8ToString"] = UTF8ToString; // Copies the given Javascript String object 'str' to the given byte array at address 'outIdx', // encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element. // outIdx: The starting offset in the array to begin the copying. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else. // maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes. return 0; var startIdx = outIdx; var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator. for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { if (outIdx >= endIdx) break; outU8Array[outIdx++] = u; } else if (u <= 0x7FF) { if (outIdx + 1 >= endIdx) break; outU8Array[outIdx++] = 0xC0 | (u >> 6); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0xFFFF) { if (outIdx + 2 >= endIdx) break; outU8Array[outIdx++] = 0xE0 | (u >> 12); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x1FFFFF) { if (outIdx + 3 >= endIdx) break; outU8Array[outIdx++] = 0xF0 | (u >> 18); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x3FFFFFF) { if (outIdx + 4 >= endIdx) break; outU8Array[outIdx++] = 0xF8 | (u >> 24); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else { if (outIdx + 5 >= endIdx) break; outU8Array[outIdx++] = 0xFC | (u >> 30); outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } } // Null-terminate the pointer to the buffer. outU8Array[outIdx] = 0; return outIdx - startIdx; } Module["stringToUTF8Array"] = stringToUTF8Array; // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8(str, outPtr, maxBytesToWrite) { return stringToUTF8Array(str, HEAPU8, outPtr, maxBytesToWrite); } Module["stringToUTF8"] = stringToUTF8; // Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF8(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { ++len; } else if (u <= 0x7FF) { len += 2; } else if (u <= 0xFFFF) { len += 3; } else if (u <= 0x1FFFFF) { len += 4; } else if (u <= 0x3FFFFFF) { len += 5; } else { len += 6; } } return len; } Module["lengthBytesUTF8"] = lengthBytesUTF8; // Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined; function UTF16ToString(ptr) { var endPtr = ptr; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. var idx = endPtr >> 1; while (HEAP16[idx])++idx; endPtr = idx << 1; if (endPtr - ptr > 32 && UTF16Decoder) { return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr)); } else { var i = 0; var str = ''; while (1) { var codeUnit = HEAP16[(((ptr) + (i * 2)) >> 1)]; if (codeUnit == 0) return str; ++i; // fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through. str += String.fromCharCode(codeUnit); } } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP. // Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else. // maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF16(str, outPtr, maxBytesToWrite) { // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 2) return 0; maxBytesToWrite -= 2; // Null terminator. var startPtr = outPtr; var numCharsToWrite = (maxBytesToWrite < str.length * 2) ? (maxBytesToWrite / 2) : str.length; for (var i = 0; i < numCharsToWrite; ++i) { // charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP. var codeUnit = str.charCodeAt(i); // possibly a lead surrogate HEAP16[((outPtr) >> 1)] = codeUnit; outPtr += 2; } // Null-terminate the pointer to the HEAP. HEAP16[((outPtr) >> 1)] = 0; return outPtr - startPtr; } // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF16(str) { return str.length * 2; } function UTF32ToString(ptr) { var i = 0; var str = ''; while (1) { var utf32 = HEAP32[(((ptr) + (i * 4)) >> 2)]; if (utf32 == 0) return str; ++i; // Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing. // See http://unicode.org/faq/utf_bom.html#utf16-3 if (utf32 >= 0x10000) { var ch = utf32 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } else { str += String.fromCharCode(utf32); } } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP. // Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else. // maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF32(str, outPtr, maxBytesToWrite) { // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 4) return 0; var startPtr = outPtr; var endPtr = startPtr + maxBytesToWrite - 4; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); // possibly a lead surrogate if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) { var trailSurrogate = str.charCodeAt(++i); codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF); } HEAP32[((outPtr) >> 2)] = codeUnit; outPtr += 4; if (outPtr + 4 > endPtr) break; } // Null-terminate the pointer to the HEAP. HEAP32[((outPtr) >> 2)] = 0; return outPtr - startPtr; } // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF32(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF)++i; // possibly a lead surrogate, so skip over the tail surrogate. len += 4; } return len; } function demangle(func) { var __cxa_demangle_func = Module['___cxa_demangle'] || Module['__cxa_demangle']; if (__cxa_demangle_func) { try { var s = func.substr(1); var len = lengthBytesUTF8(s) + 1; var buf = _malloc(len); stringToUTF8(s, buf, len); var status = _malloc(4); var ret = __cxa_demangle_func(buf, 0, 0, status); if (getValue(status, 'i32') === 0 && ret) { return Pointer_stringify(ret); } // otherwise, libcxxabi failed } catch (e) { // ignore problems here } finally { if (buf) _free(buf); if (status) _free(status); if (ret) _free(ret); } // failure when using libcxxabi, don't demangle return func; } Runtime.warnOnce('warning: build with -s DEMANGLE_SUPPORT=1 to link in libcxxabi demangling'); return func; } function demangleAll(text) { var regex = /__Z[\w\d_]+/g; return text.replace(regex, function (x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']'); }); } function jsStackTrace() { var err = new Error(); if (!err.stack) { // IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown, // so try that as a special-case. try { throw new Error(0); } catch (e) { err = e; } if (!err.stack) { return '(no stack trace available)'; } } return err.stack.toString(); } function stackTrace() { var js = jsStackTrace(); if (Module['extraStackTrace']) js += '\n' + Module['extraStackTrace'](); return demangleAll(js); } Module["stackTrace"] = stackTrace; // Memory management var PAGE_SIZE = 16384; var WASM_PAGE_SIZE = 65536; var ASMJS_PAGE_SIZE = 16777216; var MIN_TOTAL_MEMORY = 16777216; function alignUp(x, multiple) { if (x % multiple > 0) { x += multiple - (x % multiple); } return x; } var HEAP, /** @type {ArrayBuffer} */ buffer, /** @type {Int8Array} */ HEAP8, /** @type {Uint8Array} */ HEAPU8, /** @type {Int16Array} */ HEAP16, /** @type {Uint16Array} */ HEAPU16, /** @type {Int32Array} */ HEAP32, /** @type {Uint32Array} */ HEAPU32, /** @type {Float32Array} */ HEAPF32, /** @type {Float64Array} */ HEAPF64; function updateGlobalBuffer(buf) { Module['buffer'] = buffer = buf; } function updateGlobalBufferViews() { Module['HEAP8'] = HEAP8 = new Int8Array(buffer); Module['HEAP16'] = HEAP16 = new Int16Array(buffer); Module['HEAP32'] = HEAP32 = new Int32Array(buffer); Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer); Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer); Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer); Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer); Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer); } var STATIC_BASE, STATICTOP, staticSealed; // static area var STACK_BASE, STACKTOP, STACK_MAX; // stack area var DYNAMIC_BASE, DYNAMICTOP_PTR; // dynamic area handled by sbrk STATIC_BASE = STATICTOP = STACK_BASE = STACKTOP = STACK_MAX = DYNAMIC_BASE = DYNAMICTOP_PTR = 0; staticSealed = false; function abortOnCannotGrowMemory() { abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime, or (3) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 '); } if (!Module['reallocBuffer']) Module['reallocBuffer'] = function (size) { var ret; try { if (ArrayBuffer.transfer) { ret = ArrayBuffer.transfer(buffer, size); } else { var oldHEAP8 = HEAP8; ret = new ArrayBuffer(size); var temp = new Int8Array(ret); temp.set(oldHEAP8); } } catch (e) { return false; } var success = _emscripten_replace_memory(ret); if (!success) return false; return ret; }; function enlargeMemory() { // TOTAL_MEMORY is the current size of the actual array, and DYNAMICTOP is the new top. var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB. var LIMIT = 2147483648 - PAGE_MULTIPLE; // We can do one page short of 2GB as theoretical maximum. if (HEAP32[DYNAMICTOP_PTR >> 2] > LIMIT) { return false; } var OLD_TOTAL_MEMORY = TOTAL_MEMORY; TOTAL_MEMORY = Math.max(TOTAL_MEMORY, MIN_TOTAL_MEMORY); // So the loop below will not be infinite, and minimum asm.js memory size is 16MB. while (TOTAL_MEMORY < HEAP32[DYNAMICTOP_PTR >> 2]) { // Keep incrementing the heap size as long as it's less than what is requested. if (TOTAL_MEMORY <= 536870912) { TOTAL_MEMORY = alignUp(2 * TOTAL_MEMORY, PAGE_MULTIPLE); // Simple heuristic: double until 1GB... } else { TOTAL_MEMORY = Math.min(alignUp((3 * TOTAL_MEMORY + 2147483648) / 4, PAGE_MULTIPLE), LIMIT); // ..., but after that, add smaller increments towards 2GB, which we cannot reach } } var replacement = Module['reallocBuffer'](TOTAL_MEMORY); if (!replacement || replacement.byteLength != TOTAL_MEMORY) { // restore the state to before this call, we failed TOTAL_MEMORY = OLD_TOTAL_MEMORY; return false; } // everything worked updateGlobalBuffer(replacement); updateGlobalBufferViews(); return true; } var byteLength; try { byteLength = Function.prototype.call.bind(Object.getOwnPropertyDescriptor(ArrayBuffer.prototype, 'byteLength').get); byteLength(new ArrayBuffer(4)); // can fail on older ie } catch (e) { // can fail on older node/v8 byteLength = function (buffer) { return buffer.byteLength; }; } var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216; if (TOTAL_MEMORY < TOTAL_STACK) Module.printErr('TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + TOTAL_MEMORY + '! (TOTAL_STACK=' + TOTAL_STACK + ')'); // Initialize the runtime's memory // Use a provided buffer, if there is one, or else allocate a new one if (Module['buffer']) { buffer = Module['buffer']; } else { // Use a WebAssembly memory where available if (typeof WebAssembly === 'object' && typeof WebAssembly.Memory === 'function') { Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE }); buffer = Module['wasmMemory'].buffer; } else { buffer = new ArrayBuffer(TOTAL_MEMORY); } } updateGlobalBufferViews(); function getTotalMemory() { return TOTAL_MEMORY; } // Endianness check (note: assumes compiler arch was little-endian) HEAP32[0] = 0x63736d65; /* 'emsc' */ HEAP16[1] = 0x6373; if (HEAPU8[2] !== 0x73 || HEAPU8[3] !== 0x63) throw 'Runtime error: expected the system to be little-endian!'; Module['HEAP'] = HEAP; Module['buffer'] = buffer; Module['HEAP8'] = HEAP8; Module['HEAP16'] = HEAP16; Module['HEAP32'] = HEAP32; Module['HEAPU8'] = HEAPU8; Module['HEAPU16'] = HEAPU16; Module['HEAPU32'] = HEAPU32; Module['HEAPF32'] = HEAPF32; Module['HEAPF64'] = HEAPF64; function callRuntimeCallbacks(callbacks) { while (callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Module['dynCall_v'](func); } else { Module['dynCall_vi'](func, callback.arg); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATEXIT__ = []; // functions called during shutdown var __ATPOSTRUN__ = []; // functions called after the runtime has exited var runtimeInitialized = false; var runtimeExited = false; function preRun() { // compatibility - merge in anything from Module['preRun'] at this time if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function ensureInitRuntime() { if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { callRuntimeCallbacks(__ATMAIN__); } function exitRuntime() { callRuntimeCallbacks(__ATEXIT__); runtimeExited = true; } function postRun() { // compatibility - merge in anything from Module['postRun'] at this time if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } Module["addOnPreRun"] = addOnPreRun; function addOnInit(cb) { __ATINIT__.unshift(cb); } Module["addOnInit"] = addOnInit; function addOnPreMain(cb) { __ATMAIN__.unshift(cb); } Module["addOnPreMain"] = addOnPreMain; function addOnExit(cb) { __ATEXIT__.unshift(cb); } Module["addOnExit"] = addOnExit; function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } Module["addOnPostRun"] = addOnPostRun; // Tools /** @type {function(string, boolean=, number=)} */ function intArrayFromString(stringy, dontAddNull, length) { var len = length > 0 ? length : lengthBytesUTF8(stringy) + 1; var u8array = new Array(len); var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length); if (dontAddNull) u8array.length = numBytesWritten; return u8array; } Module["intArrayFromString"] = intArrayFromString; function intArrayToString(array) { var ret = []; for (var i = 0; i < array.length; i++) { var chr = array[i]; if (chr > 0xFF) { chr &= 0xFF; } ret.push(String.fromCharCode(chr)); } return ret.join(''); } Module["intArrayToString"] = intArrayToString; // Deprecated: This function should not be called because it is unsafe and does not provide // a maximum length limit of how many bytes it is allowed to write. Prefer calling the // function stringToUTF8Array() instead, which takes in a maximum length that can be used // to be secure from out of bounds writes. /** @deprecated */ function writeStringToMemory(string, buffer, dontAddNull) { Runtime.warnOnce('writeStringToMemory is deprecated and should not be called! Use stringToUTF8() instead!'); var /** @type {number} */ lastChar, /** @type {number} */ end; if (dontAddNull) { // stringToUTF8Array always appends null. If we don't want to do that, remember the // character that existed at the location where the null will be placed, and restore // that after the write (below). end = buffer + lengthBytesUTF8(string); lastChar = HEAP8[end]; } stringToUTF8(string, buffer, Infinity); if (dontAddNull) HEAP8[end] = lastChar; // Restore the value under the null character. } Module["writeStringToMemory"] = writeStringToMemory; function writeArrayToMemory(array, buffer) { HEAP8.set(array, buffer); } Module["writeArrayToMemory"] = writeArrayToMemory; function writeAsciiToMemory(str, buffer, dontAddNull) { for (var i = 0; i < str.length; ++i) { HEAP8[((buffer++) >> 0)] = str.charCodeAt(i); } // Null-terminate the pointer to the HEAP. if (!dontAddNull) HEAP8[((buffer) >> 0)] = 0; } Module["writeAsciiToMemory"] = writeAsciiToMemory; function unSign(value, bits, ignore) { if (value >= 0) { return value; } return bits <= 32 ? 2 * Math.abs(1 << (bits - 1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts : Math.pow(2, bits) + value; } function reSign(value, bits, ignore) { if (value <= 0) { return value; } var half = bits <= 32 ? Math.abs(1 << (bits - 1)) // abs is needed if bits == 32 : Math.pow(2, bits - 1); if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that // but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors // TODO: In i64 mode 1, resign the two parts separately and safely value = -2 * half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts } return value; } // check for imul support, and also for correctness ( https://bugs.webkit.org/show_bug.cgi?id=126345 ) if (!Math['imul'] || Math['imul'](0xffffffff, 5) !== -5) Math['imul'] = function imul(a, b) { var ah = a >>> 16; var al = a & 0xffff; var bh = b >>> 16; var bl = b & 0xffff; return (al * bl + ((ah * bl + al * bh) << 16)) | 0; }; Math.imul = Math['imul']; if (!Math['fround']) { var froundBuffer = new Float32Array(1); Math['fround'] = function (x) { froundBuffer[0] = x; return froundBuffer[0] }; } Math.fround = Math['fround']; if (!Math['clz32']) Math['clz32'] = function (x) { x = x >>> 0; for (var i = 0; i < 32; i++) { if (x & (1 << (31 - i))) return i; } return 32; }; Math.clz32 = Math['clz32'] if (!Math['trunc']) Math['trunc'] = function (x) { return x < 0 ? Math.ceil(x) : Math.floor(x); }; Math.trunc = Math['trunc']; var Math_abs = Math.abs; var Math_cos = Math.cos; var Math_sin = Math.sin; var Math_tan = Math.tan; var Math_acos = Math.acos; var Math_asin = Math.asin; var Math_atan = Math.atan; var Math_atan2 = Math.atan2; var Math_exp = Math.exp; var Math_log = Math.log; var Math_sqrt = Math.sqrt; var Math_ceil = Math.ceil; var Math_floor = Math.floor; var Math_pow = Math.pow; var Math_imul = Math.imul; var Math_fround = Math.fround; var Math_round = Math.round; var Math_min = Math.min; var Math_clz32 = Math.clz32; var Math_trunc = Math.trunc; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled function getUniqueRunDependency(id) { return id; } function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } } Module["addRunDependency"] = addRunDependency; function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } Module["removeRunDependency"] = removeRunDependency; Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data var memoryInitializer = null; function integrateWasmJS(Module) { // wasm.js has several methods for creating the compiled code module here: // * 'native-wasm' : use native WebAssembly support in the browser // * 'interpret-s-expr': load s-expression code from a .wast and interpret // * 'interpret-binary': load binary wasm and interpret // * 'interpret-asm2wasm': load asm.js code, translate to wasm, and interpret // * 'asmjs': no wasm, just load the asm.js code and use that (good for testing) // The method can be set at compile time (BINARYEN_METHOD), or runtime by setting Module['wasmJSMethod']. // The method can be a comma-separated list, in which case, we will try the // options one by one. Some of them can fail gracefully, and then we can try // the next. // inputs var method = Module['wasmJSMethod'] || 'native-wasm'; Module['wasmJSMethod'] = method; var wasmTextFile = Module['wasmTextFile'] || 'shaderc.wast'; var wasmBinaryFile = Module['wasmBinaryFile'] || 'shaderc.wasm'; var asmjsCodeFile = Module['asmjsCodeFile'] || 'shaderc.temp.asm.js'; if (typeof Module['locateFile'] === 'function') { wasmTextFile = Module['locateFile'](wasmTextFile); wasmBinaryFile = Module['locateFile'](wasmBinaryFile); asmjsCodeFile = Module['locateFile'](asmjsCodeFile); } // utilities var wasmPageSize = 64 * 1024; var asm2wasmImports = { // special asm2wasm imports "f64-rem": function (x, y) { return x % y; }, "f64-to-int": function (x) { return x | 0; }, "i32s-div": function (x, y) { return ((x | 0) / (y | 0)) | 0; }, "i32u-div": function (x, y) { return ((x >>> 0) / (y >>> 0)) >>> 0; }, "i32s-rem": function (x, y) { return ((x | 0) % (y | 0)) | 0; }, "i32u-rem": function (x, y) { return ((x >>> 0) % (y >>> 0)) >>> 0; }, "debugger": function () { debugger; }, }; var info = { 'global': null, 'env': null, 'asm2wasm': asm2wasmImports, 'parent': Module // Module inside wasm-js.cpp refers to wasm-js.cpp; this allows access to the outside program. }; var exports = null; function lookupImport(mod, base) { var lookup = info; if (mod.indexOf('.') < 0) { lookup = (lookup || {})[mod]; } else { var parts = mod.split('.'); lookup = (lookup || {})[parts[0]]; lookup = (lookup || {})[parts[1]]; } if (base) { lookup = (lookup || {})[base]; } if (lookup === undefined) { abort('bad lookupImport to (' + mod + ').' + base); } return lookup; } function mergeMemory(newBuffer) { // The wasm instance creates its memory. But static init code might have written to // buffer already, including the mem init file, and we must copy it over in a proper merge. // TODO: avoid this copy, by avoiding such static init writes // TODO: in shorter term, just copy up to the last static init write var oldBuffer = Module['buffer']; if (newBuffer.byteLength < oldBuffer.byteLength) { Module['printErr']('the new buffer in mergeMemory is smaller than the previous one. in native wasm, we should grow memory here'); } var oldView = new Int8Array(oldBuffer); var newView = new Int8Array(newBuffer); // If we have a mem init file, do not trample it if (!memoryInitializer) { oldView.set(newView.subarray(Module['STATIC_BASE'], Module['STATIC_BASE'] + Module['STATIC_BUMP']), Module['STATIC_BASE']); } newView.set(oldView); updateGlobalBuffer(newBuffer); updateGlobalBufferViews(); } var WasmTypes = { none: 0, i32: 1, i64: 2, f32: 3, f64: 4 }; function fixImports(imports) { if (!0) return imports; var ret = {}; for (var i in imports) { var fixed = i; if (fixed[0] == '_') fixed = fixed.substr(1); ret[fixed] = imports[i]; } return ret; } function getBinary() { try { var binary; if (Module['wasmBinary']) { binary = Module['wasmBinary']; binary = new Uint8Array(binary); } else if (Module['readBinary']) { binary = Module['readBinary'](wasmBinaryFile); } else { throw "on the web, we need the wasm binary to be preloaded and set on Module['wasmBinary']. emcc.py will do that for you when generating HTML (but not JS)"; } return binary; } catch (err) { abort(err); } } function getBinaryPromise() { // if we don't have the binary yet, and have the Fetch api, use that if (!Module['wasmBinary'] && typeof fetch === 'function') { return fetch(wasmBinaryFile, { credentials: 'same-origin' }).then(function (response) { if (!response['ok']) { throw "failed to load wasm binary file at '" + wasmBinaryFile + "'"; } return response['arrayBuffer'](); }); } // Otherwise, getBinary should be able to get it synchronously return new Promise(function (resolve, reject) { resolve(getBinary()); }); } // do-method functions function doJustAsm(global, env, providedBuffer) { // if no Module.asm, or it's the method handler helper (see below), then apply // the asmjs if (typeof Module['asm'] !== 'function' || Module['asm'] === methodHandler) { if (!Module['asmPreload']) { // you can load the .asm.js file before this, to avoid this sync xhr and eval eval(Module['read'](asmjsCodeFile)); // set Module.asm } else { Module['asm'] = Module['asmPreload']; } } if (typeof Module['asm'] !== 'function') { Module['printErr']('asm evalling did not set the module properly'); return false; } return Module['asm'](global, env, providedBuffer); } function doNativeWasm(global, env, providedBuffer) { if (typeof WebAssembly !== 'object') { Module['printErr']('no native wasm support detected'); return false; } // prepare memory import if (!(Module['wasmMemory'] instanceof WebAssembly.Memory)) { Module['printErr']('no native wasm Memory in use'); return false; } env['memory'] = Module['wasmMemory']; // Load the wasm module and create an instance of using native support in the JS engine. info['global'] = { 'NaN': NaN, 'Infinity': Infinity }; info['global.Math'] = global.Math; info['env'] = env; // handle a generated wasm instance, receiving its exports and // performing other necessary setup function receiveInstance(instance) { exports = instance.exports; if (exports.memory) mergeMemory(exports.memory); Module['asm'] = exports; Module["usingWasm"] = true; removeRunDependency('wasm-instantiate'); } addRunDependency('wasm-instantiate'); // we can't run yet // User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback // to manually instantiate the Wasm module themselves. This allows pages to run the instantiation parallel // to any other async startup actions they are performing. if (Module['instantiateWasm']) { try { return Module['instantiateWasm'](info, receiveInstance); } catch (e) { Module['printErr']('Module.instantiateWasm callback failed with error: ' + e); return false; } } getBinaryPromise().then(function (binary) { return WebAssembly.instantiate(binary, info) }).then(function (output) { // receiveInstance() will swap in the exports (to Module.asm) so they can be called receiveInstance(output['instance']); }).catch(function (reason) { Module['printErr']('failed to asynchronously prepare wasm: ' + reason); abort(reason); }); return {}; // no exports yet; we'll fill them in later } function doWasmPolyfill(global, env, providedBuffer, method) { if (typeof WasmJS !== 'function') { Module['printErr']('WasmJS not detected - polyfill not bundled?'); return false; } // Use wasm.js to polyfill and execute code in a wasm interpreter. var wasmJS = WasmJS({}); // XXX don't be confused. Module here is in the outside program. wasmJS is the inner wasm-js.cpp. wasmJS['outside'] = Module; // Inside wasm-js.cpp, Module['outside'] reaches the outside module. // Information for the instance of the module. wasmJS['info'] = info; wasmJS['lookupImport'] = lookupImport; assert(providedBuffer === Module['buffer']); // we should not even need to pass it as a 3rd arg for wasm, but that's the asm.js way. info.global = global; info.env = env; // polyfill interpreter expects an ArrayBuffer assert(providedBuffer === Module['buffer']); env['memory'] = providedBuffer; assert(env['memory'] instanceof ArrayBuffer); wasmJS['providedTotalMemory'] = Module['buffer'].byteLength; // Prepare to generate wasm, using either asm2wasm or s-exprs var code; if (method === 'interpret-binary') { code = getBinary(); } else { code = Module['read'](method == 'interpret-asm2wasm' ? asmjsCodeFile : wasmTextFile); } var temp; if (method == 'interpret-asm2wasm') { temp = wasmJS['_malloc'](code.length + 1); wasmJS['writeAsciiToMemory'](code, temp); wasmJS['_load_asm2wasm'](temp); } else if (method === 'interpret-s-expr') { temp = wasmJS['_malloc'](code.length + 1); wasmJS['writeAsciiToMemory'](code, temp); wasmJS['_load_s_expr2wasm'](temp); } else if (method === 'interpret-binary') { temp = wasmJS['_malloc'](code.length); wasmJS['HEAPU8'].set(code, temp); wasmJS['_load_binary2wasm'](temp, code.length); } else { throw 'what? ' + method; } wasmJS['_free'](temp); wasmJS['_instantiate'](temp); if (Module['newBuffer']) { mergeMemory(Module['newBuffer']); Module['newBuffer'] = null; } exports = wasmJS['asmExports']; return exports; } // We may have a preloaded value in Module.asm, save it Module['asmPreload'] = Module['asm']; // Memory growth integration code var asmjsReallocBuffer = Module['reallocBuffer']; var wasmReallocBuffer = function (size) { var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB. size = alignUp(size, PAGE_MULTIPLE); // round up to wasm page size var old = Module['buffer']; var oldSize = old.byteLength; if (Module["usingWasm"]) { // native wasm support try { var result = Module['wasmMemory'].grow((size - oldSize) / wasmPageSize); // .grow() takes a delta compared to the previous size if (result !== (-1 | 0)) { // success in native wasm memory growth, get the buffer from the memory return Module['buffer'] = Module['wasmMemory'].buffer; } else { return null; } } catch (e) { return null; } } else { // wasm interpreter support exports['__growWasmMemory']((size - oldSize) / wasmPageSize); // tiny wasm method that just does grow_memory // in interpreter, we replace Module.buffer if we allocate return Module['buffer'] !== old ? Module['buffer'] : null; // if it was reallocated, it changed } }; Module['reallocBuffer'] = function (size) { if (finalMethod === 'asmjs') { return asmjsReallocBuffer(size); } else { return wasmReallocBuffer(size); } }; // we may try more than one; this is the final one, that worked and we are using var finalMethod = ''; // Provide an "asm.js function" for the application, called to "link" the asm.js module. We instantiate // the wasm module at that time, and it receives imports and provides exports and so forth, the app // doesn't need to care that it is wasm or olyfilled wasm or asm.js. Module['asm'] = function (global, env, providedBuffer) { global = fixImports(global); env = fixImports(env); // import table if (!env['table']) { var TABLE_SIZE = Module['wasmTableSize']; if (TABLE_SIZE === undefined) TABLE_SIZE = 1024; // works in binaryen interpreter at least var MAX_TABLE_SIZE = Module['wasmMaxTableSize']; if (typeof WebAssembly === 'object' && typeof WebAssembly.Table === 'function') { if (MAX_TABLE_SIZE !== undefined) { env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, 'maximum': MAX_TABLE_SIZE, 'element': 'anyfunc' }); } else { env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, element: 'anyfunc' }); } } else { env['table'] = new Array(TABLE_SIZE); // works in binaryen interpreter at least } Module['wasmTable'] = env['table']; } if (!env['memoryBase']) { env['memoryBase'] = Module['STATIC_BASE']; // tell the memory segments where to place themselves } if (!env['tableBase']) { env['tableBase'] = 0; // table starts at 0 by default, in dynamic linking this will change } // try the methods. each should return the exports if it succeeded var exports; exports = doNativeWasm(global, env, providedBuffer); return exports; }; var methodHandler = Module['asm']; // note our method handler, as we may modify Module['asm'] later } integrateWasmJS(Module); // === Body === var ASM_CONSTS = []; STATIC_BASE = Runtime.GLOBAL_BASE; STATICTOP = STATIC_BASE + 4533776; /* global initializers */ __ATINIT__.push({ func: function () { __GLOBAL__I_000101() } }, { func: function () { __GLOBAL__sub_I_shaderc_js_cpp() } }, { func: function () { __GLOBAL__sub_I_SPVRemapper_cpp() } }, { func: function () { __GLOBAL__sub_I_doc_cpp() } }, { func: function () { __GLOBAL__sub_I_bind_cpp() } }, { func: function () { __GLOBAL__sub_I_iostream_cpp() } }); memoryInitializer = Module["wasmJSMethod"].indexOf("asmjs") >= 0 || Module["wasmJSMethod"].indexOf("interpret-asm2wasm") >= 0 ? "shaderc.js.mem" : null; var STATIC_BUMP = 4533776; Module["STATIC_BASE"] = STATIC_BASE; Module["STATIC_BUMP"] = STATIC_BUMP; /* no memory initializer */ var tempDoublePtr = STATICTOP; STATICTOP += 16; function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr + 1] = HEAP8[ptr + 1]; HEAP8[tempDoublePtr + 2] = HEAP8[ptr + 2]; HEAP8[tempDoublePtr + 3] = HEAP8[ptr + 3]; } function copyTempDouble(ptr) { HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr + 1] = HEAP8[ptr + 1]; HEAP8[tempDoublePtr + 2] = HEAP8[ptr + 2]; HEAP8[tempDoublePtr + 3] = HEAP8[ptr + 3]; HEAP8[tempDoublePtr + 4] = HEAP8[ptr + 4]; HEAP8[tempDoublePtr + 5] = HEAP8[ptr + 5]; HEAP8[tempDoublePtr + 6] = HEAP8[ptr + 6]; HEAP8[tempDoublePtr + 7] = HEAP8[ptr + 7]; } // {{PRE_LIBRARY}} function _atexit(func, arg) { __ATEXIT__.unshift({ func: func, arg: arg }); } function ___cxa_atexit() { return _atexit.apply(null, arguments) } function __ZSt18uncaught_exceptionv() { // std::uncaught_exception() return !!__ZSt18uncaught_exceptionv.uncaught_exception; } var EXCEPTIONS = { last: 0, caught: [], infos: {}, deAdjust: function (adjusted) { if (!adjusted || EXCEPTIONS.infos[adjusted]) return adjusted; for (var ptr in EXCEPTIONS.infos) { var info = EXCEPTIONS.infos[ptr]; if (info.adjusted === adjusted) { return ptr; } } return adjusted; }, addRef: function (ptr) { if (!ptr) return; var info = EXCEPTIONS.infos[ptr]; info.refcount++; }, decRef: function (ptr) { if (!ptr) return; var info = EXCEPTIONS.infos[ptr]; assert(info.refcount > 0); info.refcount--; // A rethrown exception can reach refcount 0; it must not be discarded // Its next handler will clear the rethrown flag and addRef it, prior to // final decRef and destruction here if (info.refcount === 0 && !info.rethrown) { if (info.destructor) { Module['dynCall_vi'](info.destructor, ptr); } delete EXCEPTIONS.infos[ptr]; ___cxa_free_exception(ptr); } }, clearRef: function (ptr) { if (!ptr) return; var info = EXCEPTIONS.infos[ptr]; info.refcount = 0; } }; function ___resumeException(ptr) { if (!EXCEPTIONS.last) { EXCEPTIONS.last = ptr; } throw ptr + " - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."; } function ___cxa_find_matching_catch() { var thrown = EXCEPTIONS.last; if (!thrown) { // just pass through the null ptr return ((Runtime.setTempRet0(0), 0) | 0); } var info = EXCEPTIONS.infos[thrown]; var throwntype = info.type; if (!throwntype) { // just pass through the thrown ptr return ((Runtime.setTempRet0(0), thrown) | 0); } var typeArray = Array.prototype.slice.call(arguments); var pointer = Module['___cxa_is_pointer_type'](throwntype); // can_catch receives a **, add indirection if (!___cxa_find_matching_catch.buffer) ___cxa_find_matching_catch.buffer = _malloc(4); HEAP32[((___cxa_find_matching_catch.buffer) >> 2)] = thrown; thrown = ___cxa_find_matching_catch.buffer; // The different catch blocks are denoted by different types. // Due to inheritance, those types may not precisely match the // type of the thrown object. Find one which matches, and // return the type of the catch block which should be called. for (var i = 0; i < typeArray.length; i++) { if (typeArray[i] && Module['___cxa_can_catch'](typeArray[i], throwntype, thrown)) { thrown = HEAP32[((thrown) >> 2)]; // undo indirection info.adjusted = thrown; return ((Runtime.setTempRet0(typeArray[i]), thrown) | 0); } } // Shouldn't happen unless we have bogus data in typeArray // or encounter a type for which emscripten doesn't have suitable // typeinfo defined. Best-efforts match just in case. thrown = HEAP32[((thrown) >> 2)]; // undo indirection return ((Runtime.setTempRet0(throwntype), thrown) | 0); } function ___cxa_throw(ptr, type, destructor) { EXCEPTIONS.infos[ptr] = { ptr: ptr, adjusted: ptr, type: type, destructor: destructor, refcount: 0, caught: false, rethrown: false }; EXCEPTIONS.last = ptr; if (!("uncaught_exception" in __ZSt18uncaught_exceptionv)) { __ZSt18uncaught_exceptionv.uncaught_exception = 1; } else { __ZSt18uncaught_exceptionv.uncaught_exception++; } throw ptr + " - Exception catching is disabled, this exception cannot be caught. Compile with -s DISABLE_EXCEPTION_CATCHING=0 or DISABLE_EXCEPTION_CATCHING=2 to catch."; } function getShiftFromSize(size) { switch (size) { case 1: return 0; case 2: return 1; case 4: return 2; case 8: return 3; default: throw new TypeError('Unknown type size: ' + size); } } function embind_init_charCodes() { var codes = new Array(256); for (var i = 0; i < 256; ++i) { codes[i] = String.fromCharCode(i); } embind_charCodes = codes; } var embind_charCodes = undefined; function readLatin1String(ptr) { var ret = ""; var c = ptr; while (HEAPU8[c]) { ret += embind_charCodes[HEAPU8[c++]]; } return ret; } var awaitingDependencies = {}; var registeredTypes = {}; var typeDependencies = {}; var char_0 = 48; var char_9 = 57; function makeLegalFunctionName(name) { if (undefined === name) { return '_unknown'; } name = name.replace(/[^a-zA-Z0-9_]/g, '$'); var f = name.charCodeAt(0); if (f >= char_0 && f <= char_9) { return '_' + name; } else { return name; } } function createNamedFunction(name, body) { name = makeLegalFunctionName(name); /*jshint evil:true*/ return new Function( "body", "return function " + name + "() {\n" + " \"use strict\";" + " return body.apply(this, arguments);\n" + "};\n" )(body); } function extendError(baseErrorType, errorName) { var errorClass = createNamedFunction(errorName, function (message) { this.name = errorName; this.message = message; var stack = (new Error(message)).stack; if (stack !== undefined) { this.stack = this.toString() + '\n' + stack.replace(/^Error(:[^\n]*)?\n/, ''); } }); errorClass.prototype = Object.create(baseErrorType.prototype); errorClass.prototype.constructor = errorClass; errorClass.prototype.toString = function () { if (this.message === undefined) { return this.name; } else { return this.name + ': ' + this.message; } }; return errorClass; } var BindingError = undefined; function throwBindingError(message) { throw new BindingError(message); } var InternalError = undefined; function throwInternalError(message) { throw new InternalError(message); } function whenDependentTypesAreResolved(myTypes, dependentTypes, getTypeConverters) { myTypes.forEach(function (type) { typeDependencies[type] = dependentTypes; }); function onComplete(typeConverters) { var myTypeConverters = getTypeConverters(typeConverters); if (myTypeConverters.length !== myTypes.length) { throwInternalError('Mismatched type converter count'); } for (var i = 0; i < myTypes.length; ++i) { registerType(myTypes[i], myTypeConverters[i]); } } var typeConverters = new Array(dependentTypes.length); var unregisteredTypes = []; var registered = 0; dependentTypes.forEach(function (dt, i) { if (registeredTypes.hasOwnProperty(dt)) { typeConverters[i] = registeredTypes[dt]; } else { unregisteredTypes.push(dt); if (!awaitingDependencies.hasOwnProperty(dt)) { awaitingDependencies[dt] = []; } awaitingDependencies[dt].push(function () { typeConverters[i] = registeredTypes[dt]; ++registered; if (registered === unregisteredTypes.length) { onComplete(typeConverters); } }); } }); if (0 === unregisteredTypes.length) { onComplete(typeConverters); } } function registerType(rawType, registeredInstance, options) { options = options || {}; if (!('argPackAdvance' in registeredInstance)) { throw new TypeError('registerType registeredInstance requires argPackAdvance'); } var name = registeredInstance.name; if (!rawType) { throwBindingError('type "' + name + '" must have a positive integer typeid pointer'); } if (registeredTypes.hasOwnProperty(rawType)) { if (options.ignoreDuplicateRegistrations) { return; } else { throwBindingError("Cannot register type '" + name + "' twice"); } } registeredTypes[rawType] = registeredInstance; delete typeDependencies[rawType]; if (awaitingDependencies.hasOwnProperty(rawType)) { var callbacks = awaitingDependencies[rawType]; delete awaitingDependencies[rawType]; callbacks.forEach(function (cb) { cb(); }); } } function __embind_register_bool(rawType, name, size, trueValue, falseValue) { var shift = getShiftFromSize(size); name = readLatin1String(name); registerType(rawType, { name: name, 'fromWireType': function (wt) { // ambiguous emscripten ABI: sometimes return values are // true or false, and sometimes integers (0 or 1) return !!wt; }, 'toWireType': function (destructors, o) { return o ? trueValue : falseValue; }, 'argPackAdvance': 8, 'readValueFromPointer': function (pointer) { // TODO: if heap is fixed (like in asm.js) this could be executed outside var heap; if (size === 1) { heap = HEAP8; } else if (size === 2) { heap = HEAP16; } else if (size === 4) { heap = HEAP32; } else { throw new TypeError("Unknown boolean type size: " + name); } return this['fromWireType'](heap[pointer >> shift]); }, destructorFunction: null, // This type does not need a destructor }); } function simpleReadValueFromPointer(pointer) { return this['fromWireType'](HEAPU32[pointer >> 2]); } function __embind_register_std_string(rawType, name) { name = readLatin1String(name); registerType(rawType, { name: name, 'fromWireType': function (value) { var length = HEAPU32[value >> 2]; var a = new Array(length); for (var i = 0; i < length; ++i) { a[i] = String.fromCharCode(HEAPU8[value + 4 + i]); } _free(value); return a.join(''); }, 'toWireType': function (destructors, value) { if (value instanceof ArrayBuffer) { value = new Uint8Array(value); } function getTAElement(ta, index) { return ta[index]; } function getStringElement(string, index) { return string.charCodeAt(index); } var getElement; if (value instanceof Uint8Array) { getElement = getTAElement; } else if (value instanceof Uint8ClampedArray) { getElement = getTAElement; } else if (value instanceof Int8Array) { getElement = getTAElement; } else if (typeof value === 'string') { getElement = getStringElement; } else { throwBindingError('Cannot pass non-string to std::string'); } // assumes 4-byte alignment var length = value.length; var ptr = _malloc(4 + length); HEAPU32[ptr >> 2] = length; for (var i = 0; i < length; ++i) { var charCode = getElement(value, i); if (charCode > 255) { _free(ptr); throwBindingError('String has UTF-16 code units that do not fit in 8 bits'); } HEAPU8[ptr + 4 + i] = charCode; } if (destructors !== null) { destructors.push(_free, ptr); } return ptr; }, 'argPackAdvance': 8, 'readValueFromPointer': simpleReadValueFromPointer, destructorFunction: function (ptr) { _free(ptr); }, }); } function _embind_repr(v) { if (v === null) { return 'null'; } var t = typeof v; if (t === 'object' || t === 'array' || t === 'function') { return v.toString(); } else { return '' + v; } } function integerReadValueFromPointer(name, shift, signed) { // integers are quite common, so generate very specialized functions switch (shift) { case 0: return signed ? function readS8FromPointer(pointer) { return HEAP8[pointer]; } : function readU8FromPointer(pointer) { return HEAPU8[pointer]; }; case 1: return signed ? function readS16FromPointer(pointer) { return HEAP16[pointer >> 1]; } : function readU16FromPointer(pointer) { return HEAPU16[pointer >> 1]; }; case 2: return signed ? function readS32FromPointer(pointer) { return HEAP32[pointer >> 2]; } : function readU32FromPointer(pointer) { return HEAPU32[pointer >> 2]; }; default: throw new TypeError("Unknown integer type: " + name); } } function __embind_register_integer(primitiveType, name, size, minRange, maxRange) { name = readLatin1String(name); if (maxRange === -1) { // LLVM doesn't have signed and unsigned 32-bit types, so u32 literals come out as 'i32 -1'. Always treat those as max u32. maxRange = 4294967295; } var shift = getShiftFromSize(size); var fromWireType = function (value) { return value; }; if (minRange === 0) { var bitshift = 32 - 8 * size; fromWireType = function (value) { return (value << bitshift) >>> bitshift; }; } var isUnsignedType = (name.indexOf('unsigned') != -1); registerType(primitiveType, { name: name, 'fromWireType': fromWireType, 'toWireType': function (destructors, value) { // todo: Here we have an opportunity for -O3 level "unsafe" optimizations: we could // avoid the following two if()s and assume value is of proper type. if (typeof value !== "number" && typeof value !== "boolean") { throw new TypeError('Cannot convert "' + _embind_repr(value) + '" to ' + this.name); } if (value < minRange || value > maxRange) { throw new TypeError('Passing a number "' + _embind_repr(value) + '" from JS side to C/C++ side to an argument of type "' + name + '", which is outside the valid range [' + minRange + ', ' + maxRange + ']!'); } return isUnsignedType ? (value >>> 0) : (value | 0); }, 'argPackAdvance': 8, 'readValueFromPointer': integerReadValueFromPointer(name, shift, minRange !== 0), destructorFunction: null, // This type does not need a destructor }); } function _pthread_mutex_init() { } var emval_free_list = []; var emval_handle_array = [{}, { value: undefined }, { value: null }, { value: true }, { value: false }]; function __emval_decref(handle) { if (handle > 4 && 0 === --emval_handle_array[handle].refcount) { emval_handle_array[handle] = undefined; emval_free_list.push(handle); } } var PTHREAD_SPECIFIC = {}; var PTHREAD_SPECIFIC_NEXT_KEY = 1; var ERRNO_CODES = { EPERM: 1, ENOENT: 2, ESRCH: 3, EINTR: 4, EIO: 5, ENXIO: 6, E2BIG: 7, ENOEXEC: 8, EBADF: 9, ECHILD: 10, EAGAIN: 11, EWOULDBLOCK: 11, ENOMEM: 12, EACCES: 13, EFAULT: 14, ENOTBLK: 15, EBUSY: 16, EEXIST: 17, EXDEV: 18, ENODEV: 19, ENOTDIR: 20, EISDIR: 21, EINVAL: 22, ENFILE: 23, EMFILE: 24, ENOTTY: 25, ETXTBSY: 26, EFBIG: 27, ENOSPC: 28, ESPIPE: 29, EROFS: 30, EMLINK: 31, EPIPE: 32, EDOM: 33, ERANGE: 34, ENOMSG: 42, EIDRM: 43, ECHRNG: 44, EL2NSYNC: 45, EL3HLT: 46, EL3RST: 47, ELNRNG: 48, EUNATCH: 49, ENOCSI: 50, EL2HLT: 51, EDEADLK: 35, ENOLCK: 37, EBADE: 52, EBADR: 53, EXFULL: 54, ENOANO: 55, EBADRQC: 56, EBADSLT: 57, EDEADLOCK: 35, EBFONT: 59, ENOSTR: 60, ENODATA: 61, ETIME: 62, ENOSR: 63, ENONET: 64, ENOPKG: 65, EREMOTE: 66, ENOLINK: 67, EADV: 68, ESRMNT: 69, ECOMM: 70, EPROTO: 71, EMULTIHOP: 72, EDOTDOT: 73, EBADMSG: 74, ENOTUNIQ: 76, EBADFD: 77, EREMCHG: 78, ELIBACC: 79, ELIBBAD: 80, ELIBSCN: 81, ELIBMAX: 82, ELIBEXEC: 83, ENOSYS: 38, ENOTEMPTY: 39, ENAMETOOLONG: 36, ELOOP: 40, EOPNOTSUPP: 95, EPFNOSUPPORT: 96, ECONNRESET: 104, ENOBUFS: 105, EAFNOSUPPORT: 97, EPROTOTYPE: 91, ENOTSOCK: 88, ENOPROTOOPT: 92, ESHUTDOWN: 108, ECONNREFUSED: 111, EADDRINUSE: 98, ECONNABORTED: 103, ENETUNREACH: 101, ENETDOWN: 100, ETIMEDOUT: 110, EHOSTDOWN: 112, EHOSTUNREACH: 113, EINPROGRESS: 115, EALREADY: 114, EDESTADDRREQ: 89, EMSGSIZE: 90, EPROTONOSUPPORT: 93, ESOCKTNOSUPPORT: 94, EADDRNOTAVAIL: 99, ENETRESET: 102, EISCONN: 106, ENOTCONN: 107, ETOOMANYREFS: 109, EUSERS: 87, EDQUOT: 122, ESTALE: 116, ENOTSUP: 95, ENOMEDIUM: 123, EILSEQ: 84, EOVERFLOW: 75, ECANCELED: 125, ENOTRECOVERABLE: 131, EOWNERDEAD: 130, ESTRPIPE: 86 }; function _pthread_key_create(key, destructor) { if (key == 0) { return ERRNO_CODES.EINVAL; } HEAP32[((key) >> 2)] = PTHREAD_SPECIFIC_NEXT_KEY; // values start at 0 PTHREAD_SPECIFIC[PTHREAD_SPECIFIC_NEXT_KEY] = 0; PTHREAD_SPECIFIC_NEXT_KEY++; return 0; } function count_emval_handles() { var count = 0; for (var i = 5; i < emval_handle_array.length; ++i) { if (emval_handle_array[i] !== undefined) { ++count; } } return count; } function get_first_emval() { for (var i = 5; i < emval_handle_array.length; ++i) { if (emval_handle_array[i] !== undefined) { return emval_handle_array[i]; } } return null; } function init_emval() { Module['count_emval_handles'] = count_emval_handles; Module['get_first_emval'] = get_first_emval; } function __emval_register(value) { switch (value) { case undefined: { return 1; } case null: { return 2; } case true: { return 3; } case false: { return 4; } default: { var handle = emval_free_list.length ? emval_free_list.pop() : emval_handle_array.length; emval_handle_array[handle] = { refcount: 1, value: value }; return handle; } } } function getTypeName(type) { var ptr = ___getTypeName(type); var rv = readLatin1String(ptr); _free(ptr); return rv; } function requireRegisteredType(rawType, humanName) { var impl = registeredTypes[rawType]; if (undefined === impl) { throwBindingError(humanName + " has unknown type " + getTypeName(rawType)); } return impl; } function __emval_take_value(type, argv) { type = requireRegisteredType(type, '_emval_take_value'); var v = type['readValueFromPointer'](argv); return __emval_register(v); } var ERRNO_MESSAGES = { 0: "Success", 1: "Not super-user", 2: "No such file or directory", 3: "No such process", 4: "Interrupted system call", 5: "I/O error", 6: "No such device or address", 7: "Arg list too long", 8: "Exec format error", 9: "Bad file number", 10: "No children", 11: "No more processes", 12: "Not enough core", 13: "Permission denied", 14: "Bad address", 15: "Block device required", 16: "Mount device busy", 17: "File exists", 18: "Cross-device link", 19: "No such device", 20: "Not a directory", 21: "Is a directory", 22: "Invalid argument", 23: "Too many open files in system", 24: "Too many open files", 25: "Not a typewriter", 26: "Text file busy", 27: "File too large", 28: "No space left on device", 29: "Illegal seek", 30: "Read only file system", 31: "Too many links", 32: "Broken pipe", 33: "Math arg out of domain of func", 34: "Math result not representable", 35: "File locking deadlock error", 36: "File or path name too long", 37: "No record locks available", 38: "Function not implemented", 39: "Directory not empty", 40: "Too many symbolic links", 42: "No message of desired type", 43: "Identifier removed", 44: "Channel number out of range", 45: "Level 2 not synchronized", 46: "Level 3 halted", 47: "Level 3 reset", 48: "Link number out of range", 49: "Protocol driver not attached", 50: "No CSI structure available", 51: "Level 2 halted", 52: "Invalid exchange", 53: "Invalid request descriptor", 54: "Exchange full", 55: "No anode", 56: "Invalid request code", 57: "Invalid slot", 59: "Bad font file fmt", 60: "Device not a stream", 61: "No data (for no delay io)", 62: "Timer expired", 63: "Out of streams resources", 64: "Machine is not on the network", 65: "Package not installed", 66: "The object is remote", 67: "The link has been severed", 68: "Advertise error", 69: "Srmount error", 70: "Communication error on send", 71: "Protocol error", 72: "Multihop attempted", 73: "Cross mount point (not really error)", 74: "Trying to read unreadable message", 75: "Value too large for defined data type", 76: "Given log. name not unique", 77: "f.d. invalid for this operation", 78: "Remote address changed", 79: "Can access a needed shared lib", 80: "Accessing a corrupted shared lib", 81: ".lib section in a.out corrupted", 82: "Attempting to link in too many libs", 83: "Attempting to exec a shared library", 84: "Illegal byte sequence", 86: "Streams pipe error", 87: "Too many users", 88: "Socket operation on non-socket", 89: "Destination address required", 90: "Message too long", 91: "Protocol wrong type for socket", 92: "Protocol not available", 93: "Unknown protocol", 94: "Socket type not supported", 95: "Not supported", 96: "Protocol family not supported", 97: "Address family not supported by protocol family", 98: "Address already in use", 99: "Address not available", 100: "Network interface is not configured", 101: "Network is unreachable", 102: "Connection reset by network", 103: "Connection aborted", 104: "Connection reset by peer", 105: "No buffer space available", 106: "Socket is already connected", 107: "Socket is not connected", 108: "Can't send after socket shutdown", 109: "Too many references", 110: "Connection timed out", 111: "Connection refused", 112: "Host is down", 113: "Host is unreachable", 114: "Socket already connected", 115: "Connection already in progress", 116: "Stale file handle", 122: "Quota exceeded", 123: "No medium (in tape drive)", 125: "Operation canceled", 130: "Previous owner died", 131: "State not recoverable" }; function ___setErrNo(value) { if (Module['___errno_location']) HEAP32[((Module['___errno_location']()) >> 2)] = value; return value; } var PATH = { splitPath: function (filename) { var splitPathRe = /^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/; return splitPathRe.exec(filename).slice(1); }, normalizeArray: function (parts, allowAboveRoot) { // if the path tries to go above the root, `up` ends up > 0 var up = 0; for (var i = parts.length - 1; i >= 0; i--) { var last = parts[i]; if (last === '.') { parts.splice(i, 1); } else if (last === '..') { parts.splice(i, 1); up++; } else if (up) { parts.splice(i, 1); up--; } } // if the path is allowed to go above the root, restore leading ..s if (allowAboveRoot) { for (; up; up--) { parts.unshift('..'); } } return parts; }, normalize: function (path) { var isAbsolute = path.charAt(0) === '/', trailingSlash = path.substr(-1) === '/'; // Normalize the path path = PATH.normalizeArray(path.split('/').filter(function (p) { return !!p; }), !isAbsolute).join('/'); if (!path && !isAbsolute) { path = '.'; } if (path && trailingSlash) { path += '/'; } return (isAbsolute ? '/' : '') + path; }, dirname: function (path) { var result = PATH.splitPath(path), root = result[0], dir = result[1]; if (!root && !dir) { // No dirname whatsoever return '.'; } if (dir) { // It has a dirname, strip trailing slash dir = dir.substr(0, dir.length - 1); } return root + dir; }, basename: function (path) { // EMSCRIPTEN return '/'' for '/', not an empty string if (path === '/') return '/'; var lastSlash = path.lastIndexOf('/'); if (lastSlash === -1) return path; return path.substr(lastSlash + 1); }, extname: function (path) { return PATH.splitPath(path)[3]; }, join: function () { var paths = Array.prototype.slice.call(arguments, 0); return PATH.normalize(paths.join('/')); }, join2: function (l, r) { return PATH.normalize(l + '/' + r); }, resolve: function () { var resolvedPath = '', resolvedAbsolute = false; for (var i = arguments.length - 1; i >= -1 && !resolvedAbsolute; i--) { var path = (i >= 0) ? arguments[i] : FS.cwd(); // Skip empty and invalid entries if (typeof path !== 'string') { throw new TypeError('Arguments to path.resolve must be strings'); } else if (!path) { return ''; // an invalid portion invalidates the whole thing } resolvedPath = path + '/' + resolvedPath; resolvedAbsolute = path.charAt(0) === '/'; } // At this point the path should be resolved to a full absolute path, but // handle relative paths to be safe (might happen when process.cwd() fails) resolvedPath = PATH.normalizeArray(resolvedPath.split('/').filter(function (p) { return !!p; }), !resolvedAbsolute).join('/'); return ((resolvedAbsolute ? '/' : '') + resolvedPath) || '.'; }, relative: function (from, to) { from = PATH.resolve(from).substr(1); to = PATH.resolve(to).substr(1); function trim(arr) { var start = 0; for (; start < arr.length; start++) { if (arr[start] !== '') break; } var end = arr.length - 1; for (; end >= 0; end--) { if (arr[end] !== '') break; } if (start > end) return []; return arr.slice(start, end - start + 1); } var fromParts = trim(from.split('/')); var toParts = trim(to.split('/')); var length = Math.min(fromParts.length, toParts.length); var samePartsLength = length; for (var i = 0; i < length; i++) { if (fromParts[i] !== toParts[i]) { samePartsLength = i; break; } } var outputParts = []; for (var i = samePartsLength; i < fromParts.length; i++) { outputParts.push('..'); } outputParts = outputParts.concat(toParts.slice(samePartsLength)); return outputParts.join('/'); } }; var TTY = { ttys: [], init: function () { // https://github.com/kripken/emscripten/pull/1555 // if (ENVIRONMENT_IS_NODE) { // // currently, FS.init does not distinguish if process.stdin is a file or TTY // // device, it always assumes it's a TTY device. because of this, we're forcing // // process.stdin to UTF8 encoding to at least make stdin reading compatible // // with text files until FS.init can be refactored. // process['stdin']['setEncoding']('utf8'); // } }, shutdown: function () { // https://github.com/kripken/emscripten/pull/1555 // if (ENVIRONMENT_IS_NODE) { // // inolen: any idea as to why node -e 'process.stdin.read()' wouldn't exit immediately (with process.stdin being a tty)? // // isaacs: because now it's reading from the stream, you've expressed interest in it, so that read() kicks off a _read() which creates a ReadReq operation // // inolen: I thought read() in that case was a synchronous operation that just grabbed some amount of buffered data if it exists? // // isaacs: it is. but it also triggers a _read() call, which calls readStart() on the handle // // isaacs: do process.stdin.pause() and i'd think it'd probably close the pending call // process['stdin']['pause'](); // } }, register: function (dev, ops) { TTY.ttys[dev] = { input: [], output: [], ops: ops }; FS.registerDevice(dev, TTY.stream_ops); }, stream_ops: { open: function (stream) { var tty = TTY.ttys[stream.node.rdev]; if (!tty) { throw new FS.ErrnoError(ERRNO_CODES.ENODEV); } stream.tty = tty; stream.seekable = false; }, close: function (stream) { // flush any pending line data stream.tty.ops.flush(stream.tty); }, flush: function (stream) { stream.tty.ops.flush(stream.tty); }, read: function (stream, buffer, offset, length, pos /* ignored */) { if (!stream.tty || !stream.tty.ops.get_char) { throw new FS.ErrnoError(ERRNO_CODES.ENXIO); } var bytesRead = 0; for (var i = 0; i < length; i++) { var result; try { result = stream.tty.ops.get_char(stream.tty); } catch (e) { throw new FS.ErrnoError(ERRNO_CODES.EIO); } if (result === undefined && bytesRead === 0) { throw new FS.ErrnoError(ERRNO_CODES.EAGAIN); } if (result === null || result === undefined) break; bytesRead++; buffer[offset + i] = result; } if (bytesRead) { stream.node.timestamp = Date.now(); } return bytesRead; }, write: function (stream, buffer, offset, length, pos) { if (!stream.tty || !stream.tty.ops.put_char) { throw new FS.ErrnoError(ERRNO_CODES.ENXIO); } for (var i = 0; i < length; i++) { try { stream.tty.ops.put_char(stream.tty, buffer[offset + i]); } catch (e) { throw new FS.ErrnoError(ERRNO_CODES.EIO); } } if (length) { stream.node.timestamp = Date.now(); } return i; } }, default_tty_ops: { get_char: function (tty) { if (!tty.input.length) { var result = null; if (ENVIRONMENT_IS_NODE) { // we will read data by chunks of BUFSIZE var BUFSIZE = 256; var buf = new Buffer(BUFSIZE); var bytesRead = 0; var isPosixPlatform = (process.platform != 'win32'); // Node doesn't offer a direct check, so test by exclusion var fd = process.stdin.fd; if (isPosixPlatform) { // Linux and Mac cannot use process.stdin.fd (which isn't set up as sync) var usingDevice = false; try { fd = fs.openSync('/dev/stdin', 'r'); usingDevice = true; } catch (e) { } } try { bytesRead = fs.readSync(fd, buf, 0, BUFSIZE, null); } catch (e) { // Cross-platform differences: on Windows, reading EOF throws an exception, but on other OSes, // reading EOF returns 0. Uniformize behavior by treating the EOF exception to return 0. if (e.toString().indexOf('EOF') != -1) bytesRead = 0; else throw e; } if (usingDevice) { fs.closeSync(fd); } if (bytesRead > 0) { result = buf.slice(0, bytesRead).toString('utf-8'); } else { result = null; } } else if (typeof window != 'undefined' && typeof window.prompt == 'function') { // Browser. result = window.prompt('Input: '); // returns null on cancel if (result !== null) { result += '\n'; } } else if (typeof readline == 'function') { // Command line. result = readline(); if (result !== null) { result += '\n'; } } if (!result) { return null; } tty.input = intArrayFromString(result, true); } return tty.input.shift(); }, put_char: function (tty, val) { if (val === null || val === 10) { Module['print'](UTF8ArrayToString(tty.output, 0)); tty.output = []; } else { if (val != 0) tty.output.push(val); // val == 0 would cut text output off in the middle. } }, flush: function (tty) { if (tty.output && tty.output.length > 0) { Module['print'](UTF8ArrayToString(tty.output, 0)); tty.output = []; } } }, default_tty1_ops: { put_char: function (tty, val) { if (val === null || val === 10) { Module['printErr'](UTF8ArrayToString(tty.output, 0)); tty.output = []; } else { if (val != 0) tty.output.push(val); } }, flush: function (tty) { if (tty.output && tty.output.length > 0) { Module['printErr'](UTF8ArrayToString(tty.output, 0)); tty.output = []; } } } }; var MEMFS = { ops_table: null, mount: function (mount) { return MEMFS.createNode(null, '/', 16384 | 511 /* 0777 */, 0); }, createNode: function (parent, name, mode, dev) { if (FS.isBlkdev(mode) || FS.isFIFO(mode)) { // no supported throw new FS.ErrnoError(ERRNO_CODES.EPERM); } if (!MEMFS.ops_table) { MEMFS.ops_table = { dir: { node: { getattr: MEMFS.node_ops.getattr, setattr: MEMFS.node_ops.setattr, lookup: MEMFS.node_ops.lookup, mknod: MEMFS.node_ops.mknod, rename: MEMFS.node_ops.rename, unlink: MEMFS.node_ops.unlink, rmdir: MEMFS.node_ops.rmdir, readdir: MEMFS.node_ops.readdir, symlink: MEMFS.node_ops.symlink }, stream: { llseek: MEMFS.stream_ops.llseek } }, file: { node: { getattr: MEMFS.node_ops.getattr, setattr: MEMFS.node_ops.setattr }, stream: { llseek: MEMFS.stream_ops.llseek, read: MEMFS.stream_ops.read, write: MEMFS.stream_ops.write, allocate: MEMFS.stream_ops.allocate, mmap: MEMFS.stream_ops.mmap, msync: MEMFS.stream_ops.msync } }, link: { node: { getattr: MEMFS.node_ops.getattr, setattr: MEMFS.node_ops.setattr, readlink: MEMFS.node_ops.readlink }, stream: {} }, chrdev: { node: { getattr: MEMFS.node_ops.getattr, setattr: MEMFS.node_ops.setattr }, stream: FS.chrdev_stream_ops } }; } var node = FS.createNode(parent, name, mode, dev); if (FS.isDir(node.mode)) { node.node_ops = MEMFS.ops_table.dir.node; node.stream_ops = MEMFS.ops_table.dir.stream; node.contents = {}; } else if (FS.isFile(node.mode)) { node.node_ops = MEMFS.ops_table.file.node; node.stream_ops = MEMFS.ops_table.file.stream; node.usedBytes = 0; // The actual number of bytes used in the typed array, as opposed to contents.length which gives the whole capacity. // When the byte data of the file is populated, this will point to either a typed array, or a normal JS array. Typed arrays are preferred // for performance, and used by default. However, typed arrays are not resizable like normal JS arrays are, so there is a small disk size // penalty involved for appending file writes that continuously grow a file similar to std::vector capacity vs used -scheme. node.contents = null; } else if (FS.isLink(node.mode)) { node.node_ops = MEMFS.ops_table.link.node; node.stream_ops = MEMFS.ops_table.link.stream; } else if (FS.isChrdev(node.mode)) { node.node_ops = MEMFS.ops_table.chrdev.node; node.stream_ops = MEMFS.ops_table.chrdev.stream; } node.timestamp = Date.now(); // add the new node to the parent if (parent) { parent.contents[name] = node; } return node; }, getFileDataAsRegularArray: function (node) { if (node.contents && node.contents.subarray) { var arr = []; for (var i = 0; i < node.usedBytes; ++i) arr.push(node.contents[i]); return arr; // Returns a copy of the original data. } return node.contents; // No-op, the file contents are already in a JS array. Return as-is. }, getFileDataAsTypedArray: function (node) { if (!node.contents) return new Uint8Array; if (node.contents.subarray) return node.contents.subarray(0, node.usedBytes); // Make sure to not return excess unused bytes. return new Uint8Array(node.contents); }, expandFileStorage: function (node, newCapacity) { // If we are asked to expand the size of a file that already exists, revert to using a standard JS array to store the file // instead of a typed array. This makes resizing the array more flexible because we can just .push() elements at the back to // increase the size. if (node.contents && node.contents.subarray && newCapacity > node.contents.length) { node.contents = MEMFS.getFileDataAsRegularArray(node); node.usedBytes = node.contents.length; // We might be writing to a lazy-loaded file which had overridden this property, so force-reset it. } if (!node.contents || node.contents.subarray) { // Keep using a typed array if creating a new storage, or if old one was a typed array as well. var prevCapacity = node.contents ? node.contents.length : 0; if (prevCapacity >= newCapacity) return; // No need to expand, the storage was already large enough. // Don't expand strictly to the given requested limit if it's only a very small increase, but instead geometrically grow capacity. // For small filesizes (<1MB), perform size*2 geometric increase, but for large sizes, do a much more conservative size*1.125 increase to // avoid overshooting the allocation cap by a very large margin. var CAPACITY_DOUBLING_MAX = 1024 * 1024; newCapacity = Math.max(newCapacity, (prevCapacity * (prevCapacity < CAPACITY_DOUBLING_MAX ? 2.0 : 1.125)) | 0); if (prevCapacity != 0) newCapacity = Math.max(newCapacity, 256); // At minimum allocate 256b for each file when expanding. var oldContents = node.contents; node.contents = new Uint8Array(newCapacity); // Allocate new storage. if (node.usedBytes > 0) node.contents.set(oldContents.subarray(0, node.usedBytes), 0); // Copy old data over to the new storage. return; } // Not using a typed array to back the file storage. Use a standard JS array instead. if (!node.contents && newCapacity > 0) node.contents = []; while (node.contents.length < newCapacity) node.contents.push(0); }, resizeFileStorage: function (node, newSize) { if (node.usedBytes == newSize) return; if (newSize == 0) { node.contents = null; // Fully decommit when requesting a resize to zero. node.usedBytes = 0; return; } if (!node.contents || node.contents.subarray) { // Resize a typed array if that is being used as the backing store. var oldContents = node.contents; node.contents = new Uint8Array(new ArrayBuffer(newSize)); // Allocate new storage. if (oldContents) { node.contents.set(oldContents.subarray(0, Math.min(newSize, node.usedBytes))); // Copy old data over to the new storage. } node.usedBytes = newSize; return; } // Backing with a JS array. if (!node.contents) node.contents = []; if (node.contents.length > newSize) node.contents.length = newSize; else while (node.contents.length < newSize) node.contents.push(0); node.usedBytes = newSize; }, node_ops: { getattr: function (node) { var attr = {}; // device numbers reuse inode numbers. attr.dev = FS.isChrdev(node.mode) ? node.id : 1; attr.ino = node.id; attr.mode = node.mode; attr.nlink = 1; attr.uid = 0; attr.gid = 0; attr.rdev = node.rdev; if (FS.isDir(node.mode)) { attr.size = 4096; } else if (FS.isFile(node.mode)) { attr.size = node.usedBytes; } else if (FS.isLink(node.mode)) { attr.size = node.link.length; } else { attr.size = 0; } attr.atime = new Date(node.timestamp); attr.mtime = new Date(node.timestamp); attr.ctime = new Date(node.timestamp); // NOTE: In our implementation, st_blocks = Math.ceil(st_size/st_blksize), // but this is not required by the standard. attr.blksize = 4096; attr.blocks = Math.ceil(attr.size / attr.blksize); return attr; }, setattr: function (node, attr) { if (attr.mode !== undefined) { node.mode = attr.mode; } if (attr.timestamp !== undefined) { node.timestamp = attr.timestamp; } if (attr.size !== undefined) { MEMFS.resizeFileStorage(node, attr.size); } }, lookup: function (parent, name) { throw FS.genericErrors[ERRNO_CODES.ENOENT]; }, mknod: function (parent, name, mode, dev) { return MEMFS.createNode(parent, name, mode, dev); }, rename: function (old_node, new_dir, new_name) { // if we're overwriting a directory at new_name, make sure it's empty. if (FS.isDir(old_node.mode)) { var new_node; try { new_node = FS.lookupNode(new_dir, new_name); } catch (e) { } if (new_node) { for (var i in new_node.contents) { throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY); } } } // do the internal rewiring delete old_node.parent.contents[old_node.name]; old_node.name = new_name; new_dir.contents[new_name] = old_node; old_node.parent = new_dir; }, unlink: function (parent, name) { delete parent.contents[name]; }, rmdir: function (parent, name) { var node = FS.lookupNode(parent, name); for (var i in node.contents) { throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY); } delete parent.contents[name]; }, readdir: function (node) { var entries = ['.', '..'] for (var key in node.contents) { if (!node.contents.hasOwnProperty(key)) { continue; } entries.push(key); } return entries; }, symlink: function (parent, newname, oldpath) { var node = MEMFS.createNode(parent, newname, 511 /* 0777 */ | 40960, 0); node.link = oldpath; return node; }, readlink: function (node) { if (!FS.isLink(node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } return node.link; } }, stream_ops: { read: function (stream, buffer, offset, length, position) { var contents = stream.node.contents; if (position >= stream.node.usedBytes) return 0; var size = Math.min(stream.node.usedBytes - position, length); assert(size >= 0); if (size > 8 && contents.subarray) { // non-trivial, and typed array buffer.set(contents.subarray(position, position + size), offset); } else { for (var i = 0; i < size; i++) buffer[offset + i] = contents[position + i]; } return size; }, write: function (stream, buffer, offset, length, position, canOwn) { if (!length) return 0; var node = stream.node; node.timestamp = Date.now(); if (buffer.subarray && (!node.contents || node.contents.subarray)) { // This write is from a typed array to a typed array? if (canOwn) { node.contents = buffer.subarray(offset, offset + length); node.usedBytes = length; return length; } else if (node.usedBytes === 0 && position === 0) { // If this is a simple first write to an empty file, do a fast set since we don't need to care about old data. node.contents = new Uint8Array(buffer.subarray(offset, offset + length)); node.usedBytes = length; return length; } else if (position + length <= node.usedBytes) { // Writing to an already allocated and used subrange of the file? node.contents.set(buffer.subarray(offset, offset + length), position); return length; } } // Appending to an existing file and we need to reallocate, or source data did not come as a typed array. MEMFS.expandFileStorage(node, position + length); if (node.contents.subarray && buffer.subarray) node.contents.set(buffer.subarray(offset, offset + length), position); // Use typed array write if available. else { for (var i = 0; i < length; i++) { node.contents[position + i] = buffer[offset + i]; // Or fall back to manual write if not. } } node.usedBytes = Math.max(node.usedBytes, position + length); return length; }, llseek: function (stream, offset, whence) { var position = offset; if (whence === 1) { // SEEK_CUR. position += stream.position; } else if (whence === 2) { // SEEK_END. if (FS.isFile(stream.node.mode)) { position += stream.node.usedBytes; } } if (position < 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } return position; }, allocate: function (stream, offset, length) { MEMFS.expandFileStorage(stream.node, offset + length); stream.node.usedBytes = Math.max(stream.node.usedBytes, offset + length); }, mmap: function (stream, buffer, offset, length, position, prot, flags) { if (!FS.isFile(stream.node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.ENODEV); } var ptr; var allocated; var contents = stream.node.contents; // Only make a new copy when MAP_PRIVATE is specified. if (!(flags & 2) && (contents.buffer === buffer || contents.buffer === buffer.buffer)) { // We can't emulate MAP_SHARED when the file is not backed by the buffer // we're mapping to (e.g. the HEAP buffer). allocated = false; ptr = contents.byteOffset; } else { // Try to avoid unnecessary slices. if (position > 0 || position + length < stream.node.usedBytes) { if (contents.subarray) { contents = contents.subarray(position, position + length); } else { contents = Array.prototype.slice.call(contents, position, position + length); } } allocated = true; ptr = _malloc(length); if (!ptr) { throw new FS.ErrnoError(ERRNO_CODES.ENOMEM); } buffer.set(contents, ptr); } return { ptr: ptr, allocated: allocated }; }, msync: function (stream, buffer, offset, length, mmapFlags) { if (!FS.isFile(stream.node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.ENODEV); } if (mmapFlags & 2) { // MAP_PRIVATE calls need not to be synced back to underlying fs return 0; } var bytesWritten = MEMFS.stream_ops.write(stream, buffer, 0, length, offset, false); // should we check if bytesWritten and length are the same? return 0; } } }; var IDBFS = { dbs: {}, indexedDB: function () { if (typeof indexedDB !== 'undefined') return indexedDB; var ret = null; if (typeof window === 'object') ret = window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB; assert(ret, 'IDBFS used, but indexedDB not supported'); return ret; }, DB_VERSION: 21, DB_STORE_NAME: "FILE_DATA", mount: function (mount) { // reuse all of the core MEMFS functionality return MEMFS.mount.apply(null, arguments); }, syncfs: function (mount, populate, callback) { IDBFS.getLocalSet(mount, function (err, local) { if (err) return callback(err); IDBFS.getRemoteSet(mount, function (err, remote) { if (err) return callback(err); var src = populate ? remote : local; var dst = populate ? local : remote; IDBFS.reconcile(src, dst, callback); }); }); }, getDB: function (name, callback) { // check the cache first var db = IDBFS.dbs[name]; if (db) { return callback(null, db); } var req; try { req = IDBFS.indexedDB().open(name, IDBFS.DB_VERSION); } catch (e) { return callback(e); } if (!req) { return callback("Unable to connect to IndexedDB"); } req.onupgradeneeded = function (e) { var db = e.target.result; var transaction = e.target.transaction; var fileStore; if (db.objectStoreNames.contains(IDBFS.DB_STORE_NAME)) { fileStore = transaction.objectStore(IDBFS.DB_STORE_NAME); } else { fileStore = db.createObjectStore(IDBFS.DB_STORE_NAME); } if (!fileStore.indexNames.contains('timestamp')) { fileStore.createIndex('timestamp', 'timestamp', { unique: false }); } }; req.onsuccess = function () { db = req.result; // add to the cache IDBFS.dbs[name] = db; callback(null, db); }; req.onerror = function (e) { callback(this.error); e.preventDefault(); }; }, getLocalSet: function (mount, callback) { var entries = {}; function isRealDir(p) { return p !== '.' && p !== '..'; }; function toAbsolute(root) { return function (p) { return PATH.join2(root, p); } }; var check = FS.readdir(mount.mountpoint).filter(isRealDir).map(toAbsolute(mount.mountpoint)); while (check.length) { var path = check.pop(); var stat; try { stat = FS.stat(path); } catch (e) { return callback(e); } if (FS.isDir(stat.mode)) { check.push.apply(check, FS.readdir(path).filter(isRealDir).map(toAbsolute(path))); } entries[path] = { timestamp: stat.mtime }; } return callback(null, { type: 'local', entries: entries }); }, getRemoteSet: function (mount, callback) { var entries = {}; IDBFS.getDB(mount.mountpoint, function (err, db) { if (err) return callback(err); var transaction = db.transaction([IDBFS.DB_STORE_NAME], 'readonly'); transaction.onerror = function (e) { callback(this.error); e.preventDefault(); }; var store = transaction.objectStore(IDBFS.DB_STORE_NAME); var index = store.index('timestamp'); index.openKeyCursor().onsuccess = function (event) { var cursor = event.target.result; if (!cursor) { return callback(null, { type: 'remote', db: db, entries: entries }); } entries[cursor.primaryKey] = { timestamp: cursor.key }; cursor.continue(); }; }); }, loadLocalEntry: function (path, callback) { var stat, node; try { var lookup = FS.lookupPath(path); node = lookup.node; stat = FS.stat(path); } catch (e) { return callback(e); } if (FS.isDir(stat.mode)) { return callback(null, { timestamp: stat.mtime, mode: stat.mode }); } else if (FS.isFile(stat.mode)) { // Performance consideration: storing a normal JavaScript array to a IndexedDB is much slower than storing a typed array. // Therefore always convert the file contents to a typed array first before writing the data to IndexedDB. node.contents = MEMFS.getFileDataAsTypedArray(node); return callback(null, { timestamp: stat.mtime, mode: stat.mode, contents: node.contents }); } else { return callback(new Error('node type not supported')); } }, storeLocalEntry: function (path, entry, callback) { try { if (FS.isDir(entry.mode)) { FS.mkdir(path, entry.mode); } else if (FS.isFile(entry.mode)) { FS.writeFile(path, entry.contents, { encoding: 'binary', canOwn: true }); } else { return callback(new Error('node type not supported')); } FS.chmod(path, entry.mode); FS.utime(path, entry.timestamp, entry.timestamp); } catch (e) { return callback(e); } callback(null); }, removeLocalEntry: function (path, callback) { try { var lookup = FS.lookupPath(path); var stat = FS.stat(path); if (FS.isDir(stat.mode)) { FS.rmdir(path); } else if (FS.isFile(stat.mode)) { FS.unlink(path); } } catch (e) { return callback(e); } callback(null); }, loadRemoteEntry: function (store, path, callback) { var req = store.get(path); req.onsuccess = function (event) { callback(null, event.target.result); }; req.onerror = function (e) { callback(this.error); e.preventDefault(); }; }, storeRemoteEntry: function (store, path, entry, callback) { var req = store.put(entry, path); req.onsuccess = function () { callback(null); }; req.onerror = function (e) { callback(this.error); e.preventDefault(); }; }, removeRemoteEntry: function (store, path, callback) { var req = store.delete(path); req.onsuccess = function () { callback(null); }; req.onerror = function (e) { callback(this.error); e.preventDefault(); }; }, reconcile: function (src, dst, callback) { var total = 0; var create = []; Object.keys(src.entries).forEach(function (key) { var e = src.entries[key]; var e2 = dst.entries[key]; if (!e2 || e.timestamp > e2.timestamp) { create.push(key); total++; } }); var remove = []; Object.keys(dst.entries).forEach(function (key) { var e = dst.entries[key]; var e2 = src.entries[key]; if (!e2) { remove.push(key); total++; } }); if (!total) { return callback(null); } var errored = false; var completed = 0; var db = src.type === 'remote' ? src.db : dst.db; var transaction = db.transaction([IDBFS.DB_STORE_NAME], 'readwrite'); var store = transaction.objectStore(IDBFS.DB_STORE_NAME); function done(err) { if (err) { if (!done.errored) { done.errored = true; return callback(err); } return; } if (++completed >= total) { return callback(null); } }; transaction.onerror = function (e) { done(this.error); e.preventDefault(); }; // sort paths in ascending order so directory entries are created // before the files inside them create.sort().forEach(function (path) { if (dst.type === 'local') { IDBFS.loadRemoteEntry(store, path, function (err, entry) { if (err) return done(err); IDBFS.storeLocalEntry(path, entry, done); }); } else { IDBFS.loadLocalEntry(path, function (err, entry) { if (err) return done(err); IDBFS.storeRemoteEntry(store, path, entry, done); }); } }); // sort paths in descending order so files are deleted before their // parent directories remove.sort().reverse().forEach(function (path) { if (dst.type === 'local') { IDBFS.removeLocalEntry(path, done); } else { IDBFS.removeRemoteEntry(store, path, done); } }); } }; var NODEFS = { isWindows: false, staticInit: function () { NODEFS.isWindows = !!process.platform.match(/^win/); }, mount: function (mount) { assert(ENVIRONMENT_IS_NODE); return NODEFS.createNode(null, '/', NODEFS.getMode(mount.opts.root), 0); }, createNode: function (parent, name, mode, dev) { if (!FS.isDir(mode) && !FS.isFile(mode) && !FS.isLink(mode)) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } var node = FS.createNode(parent, name, mode); node.node_ops = NODEFS.node_ops; node.stream_ops = NODEFS.stream_ops; return node; }, getMode: function (path) { var stat; try { stat = fs.lstatSync(path); if (NODEFS.isWindows) { // On Windows, directories return permission bits 'rw-rw-rw-', even though they have 'rwxrwxrwx', so // propagate write bits to execute bits. stat.mode = stat.mode | ((stat.mode & 146) >> 1); } } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } return stat.mode; }, realPath: function (node) { var parts = []; while (node.parent !== node) { parts.push(node.name); node = node.parent; } parts.push(node.mount.opts.root); parts.reverse(); return PATH.join.apply(null, parts); }, flagsToPermissionStringMap: { 0: "r", 1: "r+", 2: "r+", 64: "r", 65: "r+", 66: "r+", 129: "rx+", 193: "rx+", 514: "w+", 577: "w", 578: "w+", 705: "wx", 706: "wx+", 1024: "a", 1025: "a", 1026: "a+", 1089: "a", 1090: "a+", 1153: "ax", 1154: "ax+", 1217: "ax", 1218: "ax+", 4096: "rs", 4098: "rs+" }, flagsToPermissionString: function (flags) { flags &= ~0x200000 /*O_PATH*/; // Ignore this flag from musl, otherwise node.js fails to open the file. flags &= ~0x800 /*O_NONBLOCK*/; // Ignore this flag from musl, otherwise node.js fails to open the file. flags &= ~0x8000 /*O_LARGEFILE*/; // Ignore this flag from musl, otherwise node.js fails to open the file. flags &= ~0x80000 /*O_CLOEXEC*/; // Some applications may pass it; it makes no sense for a single process. if (flags in NODEFS.flagsToPermissionStringMap) { return NODEFS.flagsToPermissionStringMap[flags]; } else { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } }, node_ops: { getattr: function (node) { var path = NODEFS.realPath(node); var stat; try { stat = fs.lstatSync(path); } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } // node.js v0.10.20 doesn't report blksize and blocks on Windows. Fake them with default blksize of 4096. // See http://support.microsoft.com/kb/140365 if (NODEFS.isWindows && !stat.blksize) { stat.blksize = 4096; } if (NODEFS.isWindows && !stat.blocks) { stat.blocks = (stat.size + stat.blksize - 1) / stat.blksize | 0; } return { dev: stat.dev, ino: stat.ino, mode: stat.mode, nlink: stat.nlink, uid: stat.uid, gid: stat.gid, rdev: stat.rdev, size: stat.size, atime: stat.atime, mtime: stat.mtime, ctime: stat.ctime, blksize: stat.blksize, blocks: stat.blocks }; }, setattr: function (node, attr) { var path = NODEFS.realPath(node); try { if (attr.mode !== undefined) { fs.chmodSync(path, attr.mode); // update the common node structure mode as well node.mode = attr.mode; } if (attr.timestamp !== undefined) { var date = new Date(attr.timestamp); fs.utimesSync(path, date, date); } if (attr.size !== undefined) { fs.truncateSync(path, attr.size); } } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, lookup: function (parent, name) { var path = PATH.join2(NODEFS.realPath(parent), name); var mode = NODEFS.getMode(path); return NODEFS.createNode(parent, name, mode); }, mknod: function (parent, name, mode, dev) { var node = NODEFS.createNode(parent, name, mode, dev); // create the backing node for this in the fs root as well var path = NODEFS.realPath(node); try { if (FS.isDir(node.mode)) { fs.mkdirSync(path, node.mode); } else { fs.writeFileSync(path, '', { mode: node.mode }); } } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } return node; }, rename: function (oldNode, newDir, newName) { var oldPath = NODEFS.realPath(oldNode); var newPath = PATH.join2(NODEFS.realPath(newDir), newName); try { fs.renameSync(oldPath, newPath); } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, unlink: function (parent, name) { var path = PATH.join2(NODEFS.realPath(parent), name); try { fs.unlinkSync(path); } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, rmdir: function (parent, name) { var path = PATH.join2(NODEFS.realPath(parent), name); try { fs.rmdirSync(path); } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, readdir: function (node) { var path = NODEFS.realPath(node); try { return fs.readdirSync(path); } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, symlink: function (parent, newName, oldPath) { var newPath = PATH.join2(NODEFS.realPath(parent), newName); try { fs.symlinkSync(oldPath, newPath); } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, readlink: function (node) { var path = NODEFS.realPath(node); try { path = fs.readlinkSync(path); path = NODEJS_PATH.relative(NODEJS_PATH.resolve(node.mount.opts.root), path); return path; } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } } }, stream_ops: { open: function (stream) { var path = NODEFS.realPath(stream.node); try { if (FS.isFile(stream.node.mode)) { stream.nfd = fs.openSync(path, NODEFS.flagsToPermissionString(stream.flags)); } } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, close: function (stream) { try { if (FS.isFile(stream.node.mode) && stream.nfd) { fs.closeSync(stream.nfd); } } catch (e) { if (!e.code) throw e; throw new FS.ErrnoError(ERRNO_CODES[e.code]); } }, read: function (stream, buffer, offset, length, position) { if (length === 0) return 0; // node errors on 0 length reads // FIXME this is terrible. var nbuffer = new Buffer(length); var res; try { res = fs.readSync(stream.nfd, nbuffer, 0, length, position); } catch (e) { throw new FS.ErrnoError(ERRNO_CODES[e.code]); } if (res > 0) { for (var i = 0; i < res; i++) { buffer[offset + i] = nbuffer[i]; } } return res; }, write: function (stream, buffer, offset, length, position) { // FIXME this is terrible. var nbuffer = new Buffer(buffer.subarray(offset, offset + length)); var res; try { res = fs.writeSync(stream.nfd, nbuffer, 0, length, position); } catch (e) { throw new FS.ErrnoError(ERRNO_CODES[e.code]); } return res; }, llseek: function (stream, offset, whence) { var position = offset; if (whence === 1) { // SEEK_CUR. position += stream.position; } else if (whence === 2) { // SEEK_END. if (FS.isFile(stream.node.mode)) { try { var stat = fs.fstatSync(stream.nfd); position += stat.size; } catch (e) { throw new FS.ErrnoError(ERRNO_CODES[e.code]); } } } if (position < 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } return position; } } }; var WORKERFS = { DIR_MODE: 16895, FILE_MODE: 33279, reader: null, mount: function (mount) { assert(ENVIRONMENT_IS_WORKER); if (!WORKERFS.reader) WORKERFS.reader = new FileReaderSync(); var root = WORKERFS.createNode(null, '/', WORKERFS.DIR_MODE, 0); var createdParents = {}; function ensureParent(path) { // return the parent node, creating subdirs as necessary var parts = path.split('/'); var parent = root; for (var i = 0; i < parts.length - 1; i++) { var curr = parts.slice(0, i + 1).join('/'); // Issue 4254: Using curr as a node name will prevent the node // from being found in FS.nameTable when FS.open is called on // a path which holds a child of this node, // given that all FS functions assume node names // are just their corresponding parts within their given path, // rather than incremental aggregates which include their parent's // directories. if (!createdParents[curr]) { createdParents[curr] = WORKERFS.createNode(parent, parts[i], WORKERFS.DIR_MODE, 0); } parent = createdParents[curr]; } return parent; } function base(path) { var parts = path.split('/'); return parts[parts.length - 1]; } // We also accept FileList here, by using Array.prototype Array.prototype.forEach.call(mount.opts["files"] || [], function (file) { WORKERFS.createNode(ensureParent(file.name), base(file.name), WORKERFS.FILE_MODE, 0, file, file.lastModifiedDate); }); (mount.opts["blobs"] || []).forEach(function (obj) { WORKERFS.createNode(ensureParent(obj["name"]), base(obj["name"]), WORKERFS.FILE_MODE, 0, obj["data"]); }); (mount.opts["packages"] || []).forEach(function (pack) { pack['metadata'].files.forEach(function (file) { var name = file.filename.substr(1); // remove initial slash WORKERFS.createNode(ensureParent(name), base(name), WORKERFS.FILE_MODE, 0, pack['blob'].slice(file.start, file.end)); }); }); return root; }, createNode: function (parent, name, mode, dev, contents, mtime) { var node = FS.createNode(parent, name, mode); node.mode = mode; node.node_ops = WORKERFS.node_ops; node.stream_ops = WORKERFS.stream_ops; node.timestamp = (mtime || new Date).getTime(); assert(WORKERFS.FILE_MODE !== WORKERFS.DIR_MODE); if (mode === WORKERFS.FILE_MODE) { node.size = contents.size; node.contents = contents; } else { node.size = 4096; node.contents = {}; } if (parent) { parent.contents[name] = node; } return node; }, node_ops: { getattr: function (node) { return { dev: 1, ino: undefined, mode: node.mode, nlink: 1, uid: 0, gid: 0, rdev: undefined, size: node.size, atime: new Date(node.timestamp), mtime: new Date(node.timestamp), ctime: new Date(node.timestamp), blksize: 4096, blocks: Math.ceil(node.size / 4096), }; }, setattr: function (node, attr) { if (attr.mode !== undefined) { node.mode = attr.mode; } if (attr.timestamp !== undefined) { node.timestamp = attr.timestamp; } }, lookup: function (parent, name) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); }, mknod: function (parent, name, mode, dev) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); }, rename: function (oldNode, newDir, newName) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); }, unlink: function (parent, name) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); }, rmdir: function (parent, name) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); }, readdir: function (node) { var entries = ['.', '..']; for (var key in node.contents) { if (!node.contents.hasOwnProperty(key)) { continue; } entries.push(key); } return entries; }, symlink: function (parent, newName, oldPath) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); }, readlink: function (node) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } }, stream_ops: { read: function (stream, buffer, offset, length, position) { if (position >= stream.node.size) return 0; var chunk = stream.node.contents.slice(position, position + length); var ab = WORKERFS.reader.readAsArrayBuffer(chunk); buffer.set(new Uint8Array(ab), offset); return chunk.size; }, write: function (stream, buffer, offset, length, position) { throw new FS.ErrnoError(ERRNO_CODES.EIO); }, llseek: function (stream, offset, whence) { var position = offset; if (whence === 1) { // SEEK_CUR. position += stream.position; } else if (whence === 2) { // SEEK_END. if (FS.isFile(stream.node.mode)) { position += stream.node.size; } } if (position < 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } return position; } } }; var _stdin = STATICTOP; STATICTOP += 16;; var _stdout = STATICTOP; STATICTOP += 16;; var _stderr = STATICTOP; STATICTOP += 16;; var FS = { root: null, mounts: [], devices: [null], streams: [], nextInode: 1, nameTable: null, currentPath: "/", initialized: false, ignorePermissions: true, trackingDelegate: {}, tracking: { openFlags: { READ: 1, WRITE: 2 } }, ErrnoError: null, genericErrors: {}, filesystems: null, syncFSRequests: 0, handleFSError: function (e) { if (!(e instanceof FS.ErrnoError)) throw e + ' : ' + stackTrace(); return ___setErrNo(e.errno); }, lookupPath: function (path, opts) { path = PATH.resolve(FS.cwd(), path); opts = opts || {}; if (!path) return { path: '', node: null }; var defaults = { follow_mount: true, recurse_count: 0 }; for (var key in defaults) { if (opts[key] === undefined) { opts[key] = defaults[key]; } } if (opts.recurse_count > 8) { // max recursive lookup of 8 throw new FS.ErrnoError(ERRNO_CODES.ELOOP); } // split the path var parts = PATH.normalizeArray(path.split('/').filter(function (p) { return !!p; }), false); // start at the root var current = FS.root; var current_path = '/'; for (var i = 0; i < parts.length; i++) { var islast = (i === parts.length - 1); if (islast && opts.parent) { // stop resolving break; } current = FS.lookupNode(current, parts[i]); current_path = PATH.join2(current_path, parts[i]); // jump to the mount's root node if this is a mountpoint if (FS.isMountpoint(current)) { if (!islast || (islast && opts.follow_mount)) { current = current.mounted.root; } } // by default, lookupPath will not follow a symlink if it is the final path component. // setting opts.follow = true will override this behavior. if (!islast || opts.follow) { var count = 0; while (FS.isLink(current.mode)) { var link = FS.readlink(current_path); current_path = PATH.resolve(PATH.dirname(current_path), link); var lookup = FS.lookupPath(current_path, { recurse_count: opts.recurse_count }); current = lookup.node; if (count++ > 40) { // limit max consecutive symlinks to 40 (SYMLOOP_MAX). throw new FS.ErrnoError(ERRNO_CODES.ELOOP); } } } } return { path: current_path, node: current }; }, getPath: function (node) { var path; while (true) { if (FS.isRoot(node)) { var mount = node.mount.mountpoint; if (!path) return mount; return mount[mount.length - 1] !== '/' ? mount + '/' + path : mount + path; } path = path ? node.name + '/' + path : node.name; node = node.parent; } }, hashName: function (parentid, name) { var hash = 0; for (var i = 0; i < name.length; i++) { hash = ((hash << 5) - hash + name.charCodeAt(i)) | 0; } return ((parentid + hash) >>> 0) % FS.nameTable.length; }, hashAddNode: function (node) { var hash = FS.hashName(node.parent.id, node.name); node.name_next = FS.nameTable[hash]; FS.nameTable[hash] = node; }, hashRemoveNode: function (node) { var hash = FS.hashName(node.parent.id, node.name); if (FS.nameTable[hash] === node) { FS.nameTable[hash] = node.name_next; } else { var current = FS.nameTable[hash]; while (current) { if (current.name_next === node) { current.name_next = node.name_next; break; } current = current.name_next; } } }, lookupNode: function (parent, name) { var err = FS.mayLookup(parent); if (err) { throw new FS.ErrnoError(err, parent); } var hash = FS.hashName(parent.id, name); for (var node = FS.nameTable[hash]; node; node = node.name_next) { var nodeName = node.name; if (node.parent.id === parent.id && nodeName === name) { return node; } } // if we failed to find it in the cache, call into the VFS return FS.lookup(parent, name); }, createNode: function (parent, name, mode, rdev) { if (!FS.FSNode) { FS.FSNode = function (parent, name, mode, rdev) { if (!parent) { parent = this; // root node sets parent to itself } this.parent = parent; this.mount = parent.mount; this.mounted = null; this.id = FS.nextInode++; this.name = name; this.mode = mode; this.node_ops = {}; this.stream_ops = {}; this.rdev = rdev; }; FS.FSNode.prototype = {}; // compatibility var readMode = 292 | 73; var writeMode = 146; // NOTE we must use Object.defineProperties instead of individual calls to // Object.defineProperty in order to make closure compiler happy Object.defineProperties(FS.FSNode.prototype, { read: { get: function () { return (this.mode & readMode) === readMode; }, set: function (val) { val ? this.mode |= readMode : this.mode &= ~readMode; } }, write: { get: function () { return (this.mode & writeMode) === writeMode; }, set: function (val) { val ? this.mode |= writeMode : this.mode &= ~writeMode; } }, isFolder: { get: function () { return FS.isDir(this.mode); } }, isDevice: { get: function () { return FS.isChrdev(this.mode); } } }); } var node = new FS.FSNode(parent, name, mode, rdev); FS.hashAddNode(node); return node; }, destroyNode: function (node) { FS.hashRemoveNode(node); }, isRoot: function (node) { return node === node.parent; }, isMountpoint: function (node) { return !!node.mounted; }, isFile: function (mode) { return (mode & 61440) === 32768; }, isDir: function (mode) { return (mode & 61440) === 16384; }, isLink: function (mode) { return (mode & 61440) === 40960; }, isChrdev: function (mode) { return (mode & 61440) === 8192; }, isBlkdev: function (mode) { return (mode & 61440) === 24576; }, isFIFO: function (mode) { return (mode & 61440) === 4096; }, isSocket: function (mode) { return (mode & 49152) === 49152; }, flagModes: { "r": 0, "rs": 1052672, "r+": 2, "w": 577, "wx": 705, "xw": 705, "w+": 578, "wx+": 706, "xw+": 706, "a": 1089, "ax": 1217, "xa": 1217, "a+": 1090, "ax+": 1218, "xa+": 1218 }, modeStringToFlags: function (str) { var flags = FS.flagModes[str]; if (typeof flags === 'undefined') { throw new Error('Unknown file open mode: ' + str); } return flags; }, flagsToPermissionString: function (flag) { var perms = ['r', 'w', 'rw'][flag & 3]; if ((flag & 512)) { perms += 'w'; } return perms; }, nodePermissions: function (node, perms) { if (FS.ignorePermissions) { return 0; } // return 0 if any user, group or owner bits are set. if (perms.indexOf('r') !== -1 && !(node.mode & 292)) { return ERRNO_CODES.EACCES; } else if (perms.indexOf('w') !== -1 && !(node.mode & 146)) { return ERRNO_CODES.EACCES; } else if (perms.indexOf('x') !== -1 && !(node.mode & 73)) { return ERRNO_CODES.EACCES; } return 0; }, mayLookup: function (dir) { var err = FS.nodePermissions(dir, 'x'); if (err) return err; if (!dir.node_ops.lookup) return ERRNO_CODES.EACCES; return 0; }, mayCreate: function (dir, name) { try { var node = FS.lookupNode(dir, name); return ERRNO_CODES.EEXIST; } catch (e) { } return FS.nodePermissions(dir, 'wx'); }, mayDelete: function (dir, name, isdir) { var node; try { node = FS.lookupNode(dir, name); } catch (e) { return e.errno; } var err = FS.nodePermissions(dir, 'wx'); if (err) { return err; } if (isdir) { if (!FS.isDir(node.mode)) { return ERRNO_CODES.ENOTDIR; } if (FS.isRoot(node) || FS.getPath(node) === FS.cwd()) { return ERRNO_CODES.EBUSY; } } else { if (FS.isDir(node.mode)) { return ERRNO_CODES.EISDIR; } } return 0; }, mayOpen: function (node, flags) { if (!node) { return ERRNO_CODES.ENOENT; } if (FS.isLink(node.mode)) { return ERRNO_CODES.ELOOP; } else if (FS.isDir(node.mode)) { if (FS.flagsToPermissionString(flags) !== 'r' || // opening for write (flags & 512)) { // TODO: check for O_SEARCH? (== search for dir only) return ERRNO_CODES.EISDIR; } } return FS.nodePermissions(node, FS.flagsToPermissionString(flags)); }, MAX_OPEN_FDS: 4096, nextfd: function (fd_start, fd_end) { fd_start = fd_start || 0; fd_end = fd_end || FS.MAX_OPEN_FDS; for (var fd = fd_start; fd <= fd_end; fd++) { if (!FS.streams[fd]) { return fd; } } throw new FS.ErrnoError(ERRNO_CODES.EMFILE); }, getStream: function (fd) { return FS.streams[fd]; }, createStream: function (stream, fd_start, fd_end) { if (!FS.FSStream) { FS.FSStream = function () { }; FS.FSStream.prototype = {}; // compatibility Object.defineProperties(FS.FSStream.prototype, { object: { get: function () { return this.node; }, set: function (val) { this.node = val; } }, isRead: { get: function () { return (this.flags & 2097155) !== 1; } }, isWrite: { get: function () { return (this.flags & 2097155) !== 0; } }, isAppend: { get: function () { return (this.flags & 1024); } } }); } // clone it, so we can return an instance of FSStream var newStream = new FS.FSStream(); for (var p in stream) { newStream[p] = stream[p]; } stream = newStream; var fd = FS.nextfd(fd_start, fd_end); stream.fd = fd; FS.streams[fd] = stream; return stream; }, closeStream: function (fd) { FS.streams[fd] = null; }, chrdev_stream_ops: { open: function (stream) { var device = FS.getDevice(stream.node.rdev); // override node's stream ops with the device's stream.stream_ops = device.stream_ops; // forward the open call if (stream.stream_ops.open) { stream.stream_ops.open(stream); } }, llseek: function () { throw new FS.ErrnoError(ERRNO_CODES.ESPIPE); } }, major: function (dev) { return ((dev) >> 8); }, minor: function (dev) { return ((dev) & 0xff); }, makedev: function (ma, mi) { return ((ma) << 8 | (mi)); }, registerDevice: function (dev, ops) { FS.devices[dev] = { stream_ops: ops }; }, getDevice: function (dev) { return FS.devices[dev]; }, getMounts: function (mount) { var mounts = []; var check = [mount]; while (check.length) { var m = check.pop(); mounts.push(m); check.push.apply(check, m.mounts); } return mounts; }, syncfs: function (populate, callback) { if (typeof (populate) === 'function') { callback = populate; populate = false; } FS.syncFSRequests++; if (FS.syncFSRequests > 1) { console.log('warning: ' + FS.syncFSRequests + ' FS.syncfs operations in flight at once, probably just doing extra work'); } var mounts = FS.getMounts(FS.root.mount); var completed = 0; function doCallback(err) { assert(FS.syncFSRequests > 0); FS.syncFSRequests--; return callback(err); } function done(err) { if (err) { if (!done.errored) { done.errored = true; return doCallback(err); } return; } if (++completed >= mounts.length) { doCallback(null); } }; // sync all mounts mounts.forEach(function (mount) { if (!mount.type.syncfs) { return done(null); } mount.type.syncfs(mount, populate, done); }); }, mount: function (type, opts, mountpoint) { var root = mountpoint === '/'; var pseudo = !mountpoint; var node; if (root && FS.root) { throw new FS.ErrnoError(ERRNO_CODES.EBUSY); } else if (!root && !pseudo) { var lookup = FS.lookupPath(mountpoint, { follow_mount: false }); mountpoint = lookup.path; // use the absolute path node = lookup.node; if (FS.isMountpoint(node)) { throw new FS.ErrnoError(ERRNO_CODES.EBUSY); } if (!FS.isDir(node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR); } } var mount = { type: type, opts: opts, mountpoint: mountpoint, mounts: [] }; // create a root node for the fs var mountRoot = type.mount(mount); mountRoot.mount = mount; mount.root = mountRoot; if (root) { FS.root = mountRoot; } else if (node) { // set as a mountpoint node.mounted = mount; // add the new mount to the current mount's children if (node.mount) { node.mount.mounts.push(mount); } } return mountRoot; }, unmount: function (mountpoint) { var lookup = FS.lookupPath(mountpoint, { follow_mount: false }); if (!FS.isMountpoint(lookup.node)) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } // destroy the nodes for this mount, and all its child mounts var node = lookup.node; var mount = node.mounted; var mounts = FS.getMounts(mount); Object.keys(FS.nameTable).forEach(function (hash) { var current = FS.nameTable[hash]; while (current) { var next = current.name_next; if (mounts.indexOf(current.mount) !== -1) { FS.destroyNode(current); } current = next; } }); // no longer a mountpoint node.mounted = null; // remove this mount from the child mounts var idx = node.mount.mounts.indexOf(mount); assert(idx !== -1); node.mount.mounts.splice(idx, 1); }, lookup: function (parent, name) { return parent.node_ops.lookup(parent, name); }, mknod: function (path, mode, dev) { var lookup = FS.lookupPath(path, { parent: true }); var parent = lookup.node; var name = PATH.basename(path); if (!name || name === '.' || name === '..') { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } var err = FS.mayCreate(parent, name); if (err) { throw new FS.ErrnoError(err); } if (!parent.node_ops.mknod) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } return parent.node_ops.mknod(parent, name, mode, dev); }, create: function (path, mode) { mode = mode !== undefined ? mode : 438 /* 0666 */; mode &= 4095; mode |= 32768; return FS.mknod(path, mode, 0); }, mkdir: function (path, mode) { mode = mode !== undefined ? mode : 511 /* 0777 */; mode &= 511 | 512; mode |= 16384; return FS.mknod(path, mode, 0); }, mkdirTree: function (path, mode) { var dirs = path.split('/'); var d = ''; for (var i = 0; i < dirs.length; ++i) { if (!dirs[i]) continue; d += '/' + dirs[i]; try { FS.mkdir(d, mode); } catch (e) { if (e.errno != ERRNO_CODES.EEXIST) throw e; } } }, mkdev: function (path, mode, dev) { if (typeof (dev) === 'undefined') { dev = mode; mode = 438 /* 0666 */; } mode |= 8192; return FS.mknod(path, mode, dev); }, symlink: function (oldpath, newpath) { if (!PATH.resolve(oldpath)) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } var lookup = FS.lookupPath(newpath, { parent: true }); var parent = lookup.node; if (!parent) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } var newname = PATH.basename(newpath); var err = FS.mayCreate(parent, newname); if (err) { throw new FS.ErrnoError(err); } if (!parent.node_ops.symlink) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } return parent.node_ops.symlink(parent, newname, oldpath); }, rename: function (old_path, new_path) { var old_dirname = PATH.dirname(old_path); var new_dirname = PATH.dirname(new_path); var old_name = PATH.basename(old_path); var new_name = PATH.basename(new_path); // parents must exist var lookup, old_dir, new_dir; try { lookup = FS.lookupPath(old_path, { parent: true }); old_dir = lookup.node; lookup = FS.lookupPath(new_path, { parent: true }); new_dir = lookup.node; } catch (e) { throw new FS.ErrnoError(ERRNO_CODES.EBUSY); } if (!old_dir || !new_dir) throw new FS.ErrnoError(ERRNO_CODES.ENOENT); // need to be part of the same mount if (old_dir.mount !== new_dir.mount) { throw new FS.ErrnoError(ERRNO_CODES.EXDEV); } // source must exist var old_node = FS.lookupNode(old_dir, old_name); // old path should not be an ancestor of the new path var relative = PATH.relative(old_path, new_dirname); if (relative.charAt(0) !== '.') { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } // new path should not be an ancestor of the old path relative = PATH.relative(new_path, old_dirname); if (relative.charAt(0) !== '.') { throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY); } // see if the new path already exists var new_node; try { new_node = FS.lookupNode(new_dir, new_name); } catch (e) { // not fatal } // early out if nothing needs to change if (old_node === new_node) { return; } // we'll need to delete the old entry var isdir = FS.isDir(old_node.mode); var err = FS.mayDelete(old_dir, old_name, isdir); if (err) { throw new FS.ErrnoError(err); } // need delete permissions if we'll be overwriting. // need create permissions if new doesn't already exist. err = new_node ? FS.mayDelete(new_dir, new_name, isdir) : FS.mayCreate(new_dir, new_name); if (err) { throw new FS.ErrnoError(err); } if (!old_dir.node_ops.rename) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } if (FS.isMountpoint(old_node) || (new_node && FS.isMountpoint(new_node))) { throw new FS.ErrnoError(ERRNO_CODES.EBUSY); } // if we are going to change the parent, check write permissions if (new_dir !== old_dir) { err = FS.nodePermissions(old_dir, 'w'); if (err) { throw new FS.ErrnoError(err); } } try { if (FS.trackingDelegate['willMovePath']) { FS.trackingDelegate['willMovePath'](old_path, new_path); } } catch (e) { console.log("FS.trackingDelegate['willMovePath']('" + old_path + "', '" + new_path + "') threw an exception: " + e.message); } // remove the node from the lookup hash FS.hashRemoveNode(old_node); // do the underlying fs rename try { old_dir.node_ops.rename(old_node, new_dir, new_name); } catch (e) { throw e; } finally { // add the node back to the hash (in case node_ops.rename // changed its name) FS.hashAddNode(old_node); } try { if (FS.trackingDelegate['onMovePath']) FS.trackingDelegate['onMovePath'](old_path, new_path); } catch (e) { console.log("FS.trackingDelegate['onMovePath']('" + old_path + "', '" + new_path + "') threw an exception: " + e.message); } }, rmdir: function (path) { var lookup = FS.lookupPath(path, { parent: true }); var parent = lookup.node; var name = PATH.basename(path); var node = FS.lookupNode(parent, name); var err = FS.mayDelete(parent, name, true); if (err) { throw new FS.ErrnoError(err); } if (!parent.node_ops.rmdir) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } if (FS.isMountpoint(node)) { throw new FS.ErrnoError(ERRNO_CODES.EBUSY); } try { if (FS.trackingDelegate['willDeletePath']) { FS.trackingDelegate['willDeletePath'](path); } } catch (e) { console.log("FS.trackingDelegate['willDeletePath']('" + path + "') threw an exception: " + e.message); } parent.node_ops.rmdir(parent, name); FS.destroyNode(node); try { if (FS.trackingDelegate['onDeletePath']) FS.trackingDelegate['onDeletePath'](path); } catch (e) { console.log("FS.trackingDelegate['onDeletePath']('" + path + "') threw an exception: " + e.message); } }, readdir: function (path) { var lookup = FS.lookupPath(path, { follow: true }); var node = lookup.node; if (!node.node_ops.readdir) { throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR); } return node.node_ops.readdir(node); }, unlink: function (path) { var lookup = FS.lookupPath(path, { parent: true }); var parent = lookup.node; var name = PATH.basename(path); var node = FS.lookupNode(parent, name); var err = FS.mayDelete(parent, name, false); if (err) { // According to POSIX, we should map EISDIR to EPERM, but // we instead do what Linux does (and we must, as we use // the musl linux libc). throw new FS.ErrnoError(err); } if (!parent.node_ops.unlink) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } if (FS.isMountpoint(node)) { throw new FS.ErrnoError(ERRNO_CODES.EBUSY); } try { if (FS.trackingDelegate['willDeletePath']) { FS.trackingDelegate['willDeletePath'](path); } } catch (e) { console.log("FS.trackingDelegate['willDeletePath']('" + path + "') threw an exception: " + e.message); } parent.node_ops.unlink(parent, name); FS.destroyNode(node); try { if (FS.trackingDelegate['onDeletePath']) FS.trackingDelegate['onDeletePath'](path); } catch (e) { console.log("FS.trackingDelegate['onDeletePath']('" + path + "') threw an exception: " + e.message); } }, readlink: function (path) { var lookup = FS.lookupPath(path); var link = lookup.node; if (!link) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } if (!link.node_ops.readlink) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } return PATH.resolve(FS.getPath(link.parent), link.node_ops.readlink(link)); }, stat: function (path, dontFollow) { var lookup = FS.lookupPath(path, { follow: !dontFollow }); var node = lookup.node; if (!node) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } if (!node.node_ops.getattr) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } return node.node_ops.getattr(node); }, lstat: function (path) { return FS.stat(path, true); }, chmod: function (path, mode, dontFollow) { var node; if (typeof path === 'string') { var lookup = FS.lookupPath(path, { follow: !dontFollow }); node = lookup.node; } else { node = path; } if (!node.node_ops.setattr) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } node.node_ops.setattr(node, { mode: (mode & 4095) | (node.mode & ~4095), timestamp: Date.now() }); }, lchmod: function (path, mode) { FS.chmod(path, mode, true); }, fchmod: function (fd, mode) { var stream = FS.getStream(fd); if (!stream) { throw new FS.ErrnoError(ERRNO_CODES.EBADF); } FS.chmod(stream.node, mode); }, chown: function (path, uid, gid, dontFollow) { var node; if (typeof path === 'string') { var lookup = FS.lookupPath(path, { follow: !dontFollow }); node = lookup.node; } else { node = path; } if (!node.node_ops.setattr) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } node.node_ops.setattr(node, { timestamp: Date.now() // we ignore the uid / gid for now }); }, lchown: function (path, uid, gid) { FS.chown(path, uid, gid, true); }, fchown: function (fd, uid, gid) { var stream = FS.getStream(fd); if (!stream) { throw new FS.ErrnoError(ERRNO_CODES.EBADF); } FS.chown(stream.node, uid, gid); }, truncate: function (path, len) { if (len < 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } var node; if (typeof path === 'string') { var lookup = FS.lookupPath(path, { follow: true }); node = lookup.node; } else { node = path; } if (!node.node_ops.setattr) { throw new FS.ErrnoError(ERRNO_CODES.EPERM); } if (FS.isDir(node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.EISDIR); } if (!FS.isFile(node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } var err = FS.nodePermissions(node, 'w'); if (err) { throw new FS.ErrnoError(err); } node.node_ops.setattr(node, { size: len, timestamp: Date.now() }); }, ftruncate: function (fd, len) { var stream = FS.getStream(fd); if (!stream) { throw new FS.ErrnoError(ERRNO_CODES.EBADF); } if ((stream.flags & 2097155) === 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } FS.truncate(stream.node, len); }, utime: function (path, atime, mtime) { var lookup = FS.lookupPath(path, { follow: true }); var node = lookup.node; node.node_ops.setattr(node, { timestamp: Math.max(atime, mtime) }); }, open: function (path, flags, mode, fd_start, fd_end) { if (path === "") { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } flags = typeof flags === 'string' ? FS.modeStringToFlags(flags) : flags; mode = typeof mode === 'undefined' ? 438 /* 0666 */ : mode; if ((flags & 64)) { mode = (mode & 4095) | 32768; } else { mode = 0; } var node; if (typeof path === 'object') { node = path; } else { path = PATH.normalize(path); try { var lookup = FS.lookupPath(path, { follow: !(flags & 131072) }); node = lookup.node; } catch (e) { // ignore } } // perhaps we need to create the node var created = false; if ((flags & 64)) { if (node) { // if O_CREAT and O_EXCL are set, error out if the node already exists if ((flags & 128)) { throw new FS.ErrnoError(ERRNO_CODES.EEXIST); } } else { // node doesn't exist, try to create it node = FS.mknod(path, mode, 0); created = true; } } if (!node) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } // can't truncate a device if (FS.isChrdev(node.mode)) { flags &= ~512; } // if asked only for a directory, then this must be one if ((flags & 65536) && !FS.isDir(node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR); } // check permissions, if this is not a file we just created now (it is ok to // create and write to a file with read-only permissions; it is read-only // for later use) if (!created) { var err = FS.mayOpen(node, flags); if (err) { throw new FS.ErrnoError(err); } } // do truncation if necessary if ((flags & 512)) { FS.truncate(node, 0); } // we've already handled these, don't pass down to the underlying vfs flags &= ~(128 | 512); // register the stream with the filesystem var stream = FS.createStream({ node: node, path: FS.getPath(node), // we want the absolute path to the node flags: flags, seekable: true, position: 0, stream_ops: node.stream_ops, // used by the file family libc calls (fopen, fwrite, ferror, etc.) ungotten: [], error: false }, fd_start, fd_end); // call the new stream's open function if (stream.stream_ops.open) { stream.stream_ops.open(stream); } if (Module['logReadFiles'] && !(flags & 1)) { if (!FS.readFiles) FS.readFiles = {}; if (!(path in FS.readFiles)) { FS.readFiles[path] = 1; Module['printErr']('read file: ' + path); } } try { if (FS.trackingDelegate['onOpenFile']) { var trackingFlags = 0; if ((flags & 2097155) !== 1) { trackingFlags |= FS.tracking.openFlags.READ; } if ((flags & 2097155) !== 0) { trackingFlags |= FS.tracking.openFlags.WRITE; } FS.trackingDelegate['onOpenFile'](path, trackingFlags); } } catch (e) { console.log("FS.trackingDelegate['onOpenFile']('" + path + "', flags) threw an exception: " + e.message); } return stream; }, close: function (stream) { if (stream.getdents) stream.getdents = null; // free readdir state try { if (stream.stream_ops.close) { stream.stream_ops.close(stream); } } catch (e) { throw e; } finally { FS.closeStream(stream.fd); } }, llseek: function (stream, offset, whence) { if (!stream.seekable || !stream.stream_ops.llseek) { throw new FS.ErrnoError(ERRNO_CODES.ESPIPE); } stream.position = stream.stream_ops.llseek(stream, offset, whence); stream.ungotten = []; return stream.position; }, read: function (stream, buffer, offset, length, position) { if (length < 0 || position < 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } if ((stream.flags & 2097155) === 1) { throw new FS.ErrnoError(ERRNO_CODES.EBADF); } if (FS.isDir(stream.node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.EISDIR); } if (!stream.stream_ops.read) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } var seeking = true; if (typeof position === 'undefined') { position = stream.position; seeking = false; } else if (!stream.seekable) { throw new FS.ErrnoError(ERRNO_CODES.ESPIPE); } var bytesRead = stream.stream_ops.read(stream, buffer, offset, length, position); if (!seeking) stream.position += bytesRead; return bytesRead; }, write: function (stream, buffer, offset, length, position, canOwn) { if (length < 0 || position < 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } if ((stream.flags & 2097155) === 0) { throw new FS.ErrnoError(ERRNO_CODES.EBADF); } if (FS.isDir(stream.node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.EISDIR); } if (!stream.stream_ops.write) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } if (stream.flags & 1024) { // seek to the end before writing in append mode FS.llseek(stream, 0, 2); } var seeking = true; if (typeof position === 'undefined') { position = stream.position; seeking = false; } else if (!stream.seekable) { throw new FS.ErrnoError(ERRNO_CODES.ESPIPE); } var bytesWritten = stream.stream_ops.write(stream, buffer, offset, length, position, canOwn); if (!seeking) stream.position += bytesWritten; try { if (stream.path && FS.trackingDelegate['onWriteToFile']) FS.trackingDelegate['onWriteToFile'](stream.path); } catch (e) { console.log("FS.trackingDelegate['onWriteToFile']('" + path + "') threw an exception: " + e.message); } return bytesWritten; }, allocate: function (stream, offset, length) { if (offset < 0 || length <= 0) { throw new FS.ErrnoError(ERRNO_CODES.EINVAL); } if ((stream.flags & 2097155) === 0) { throw new FS.ErrnoError(ERRNO_CODES.EBADF); } if (!FS.isFile(stream.node.mode) && !FS.isDir(stream.node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.ENODEV); } if (!stream.stream_ops.allocate) { throw new FS.ErrnoError(ERRNO_CODES.EOPNOTSUPP); } stream.stream_ops.allocate(stream, offset, length); }, mmap: function (stream, buffer, offset, length, position, prot, flags) { // TODO if PROT is PROT_WRITE, make sure we have write access if ((stream.flags & 2097155) === 1) { throw new FS.ErrnoError(ERRNO_CODES.EACCES); } if (!stream.stream_ops.mmap) { throw new FS.ErrnoError(ERRNO_CODES.ENODEV); } return stream.stream_ops.mmap(stream, buffer, offset, length, position, prot, flags); }, msync: function (stream, buffer, offset, length, mmapFlags) { if (!stream || !stream.stream_ops.msync) { return 0; } return stream.stream_ops.msync(stream, buffer, offset, length, mmapFlags); }, munmap: function (stream) { return 0; }, ioctl: function (stream, cmd, arg) { if (!stream.stream_ops.ioctl) { throw new FS.ErrnoError(ERRNO_CODES.ENOTTY); } return stream.stream_ops.ioctl(stream, cmd, arg); }, readFile: function (path, opts) { opts = opts || {}; opts.flags = opts.flags || 'r'; opts.encoding = opts.encoding || 'binary'; if (opts.encoding !== 'utf8' && opts.encoding !== 'binary') { throw new Error('Invalid encoding type "' + opts.encoding + '"'); } var ret; var stream = FS.open(path, opts.flags); var stat = FS.stat(path); var length = stat.size; var buf = new Uint8Array(length); FS.read(stream, buf, 0, length, 0); if (opts.encoding === 'utf8') { ret = UTF8ArrayToString(buf, 0); } else if (opts.encoding === 'binary') { ret = buf; } FS.close(stream); return ret; }, writeFile: function (path, data, opts) { opts = opts || {}; opts.flags = opts.flags || 'w'; opts.encoding = opts.encoding || 'utf8'; if (opts.encoding !== 'utf8' && opts.encoding !== 'binary') { throw new Error('Invalid encoding type "' + opts.encoding + '"'); } var stream = FS.open(path, opts.flags, opts.mode); if (opts.encoding === 'utf8') { var buf = new Uint8Array(lengthBytesUTF8(data) + 1); var actualNumBytes = stringToUTF8Array(data, buf, 0, buf.length); FS.write(stream, buf, 0, actualNumBytes, 0, opts.canOwn); } else if (opts.encoding === 'binary') { FS.write(stream, data, 0, data.length, 0, opts.canOwn); } FS.close(stream); }, cwd: function () { return FS.currentPath; }, chdir: function (path) { var lookup = FS.lookupPath(path, { follow: true }); if (lookup.node === null) { throw new FS.ErrnoError(ERRNO_CODES.ENOENT); } if (!FS.isDir(lookup.node.mode)) { throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR); } var err = FS.nodePermissions(lookup.node, 'x'); if (err) { throw new FS.ErrnoError(err); } FS.currentPath = lookup.path; }, createDefaultDirectories: function () { FS.mkdir('/tmp'); FS.mkdir('/home'); FS.mkdir('/home/web_user'); }, createDefaultDevices: function () { // create /dev FS.mkdir('/dev'); // setup /dev/null FS.registerDevice(FS.makedev(1, 3), { read: function () { return 0; }, write: function (stream, buffer, offset, length, pos) { return length; } }); FS.mkdev('/dev/null', FS.makedev(1, 3)); // setup /dev/tty and /dev/tty1 // stderr needs to print output using Module['printErr'] // so we register a second tty just for it. TTY.register(FS.makedev(5, 0), TTY.default_tty_ops); TTY.register(FS.makedev(6, 0), TTY.default_tty1_ops); FS.mkdev('/dev/tty', FS.makedev(5, 0)); FS.mkdev('/dev/tty1', FS.makedev(6, 0)); // setup /dev/[u]random var random_device; if (typeof crypto !== 'undefined') { // for modern web browsers var randomBuffer = new Uint8Array(1); random_device = function () { crypto.getRandomValues(randomBuffer); return randomBuffer[0]; }; } else if (ENVIRONMENT_IS_NODE) { // for nodejs random_device = function () { return require('crypto').randomBytes(1)[0]; }; } else { // default for ES5 platforms random_device = function () { return (Math.random() * 256) | 0; }; } FS.createDevice('/dev', 'random', random_device); FS.createDevice('/dev', 'urandom', random_device); // we're not going to emulate the actual shm device, // just create the tmp dirs that reside in it commonly FS.mkdir('/dev/shm'); FS.mkdir('/dev/shm/tmp'); }, createSpecialDirectories: function () { // create /proc/self/fd which allows /proc/self/fd/6 => readlink gives the name of the stream for fd 6 (see test_unistd_ttyname) FS.mkdir('/proc'); FS.mkdir('/proc/self'); FS.mkdir('/proc/self/fd'); FS.mount({ mount: function () { var node = FS.createNode('/proc/self', 'fd', 16384 | 511 /* 0777 */, 73); node.node_ops = { lookup: function (parent, name) { var fd = +name; var stream = FS.getStream(fd); if (!stream) throw new FS.ErrnoError(ERRNO_CODES.EBADF); var ret = { parent: null, mount: { mountpoint: 'fake' }, node_ops: { readlink: function () { return stream.path } } }; ret.parent = ret; // make it look like a simple root node return ret; } }; return node; } }, {}, '/proc/self/fd'); }, createStandardStreams: function () { // TODO deprecate the old functionality of a single // input / output callback and that utilizes FS.createDevice // and instead require a unique set of stream ops // by default, we symlink the standard streams to the // default tty devices. however, if the standard streams // have been overwritten we create a unique device for // them instead. if (Module['stdin']) { FS.createDevice('/dev', 'stdin', Module['stdin']); } else { FS.symlink('/dev/tty', '/dev/stdin'); } if (Module['stdout']) { FS.createDevice('/dev', 'stdout', null, Module['stdout']); } else { FS.symlink('/dev/tty', '/dev/stdout'); } if (Module['stderr']) { FS.createDevice('/dev', 'stderr', null, Module['stderr']); } else { FS.symlink('/dev/tty1', '/dev/stderr'); } // open default streams for the stdin, stdout and stderr devices var stdin = FS.open('/dev/stdin', 'r'); assert(stdin.fd === 0, 'invalid handle for stdin (' + stdin.fd + ')'); var stdout = FS.open('/dev/stdout', 'w'); assert(stdout.fd === 1, 'invalid handle for stdout (' + stdout.fd + ')'); var stderr = FS.open('/dev/stderr', 'w'); assert(stderr.fd === 2, 'invalid handle for stderr (' + stderr.fd + ')'); }, ensureErrnoError: function () { if (FS.ErrnoError) return; FS.ErrnoError = function ErrnoError(errno, node) { //Module.printErr(stackTrace()); // useful for debugging this.node = node; this.setErrno = function (errno) { this.errno = errno; for (var key in ERRNO_CODES) { if (ERRNO_CODES[key] === errno) { this.code = key; break; } } }; this.setErrno(errno); this.message = ERRNO_MESSAGES[errno]; }; FS.ErrnoError.prototype = new Error(); FS.ErrnoError.prototype.constructor = FS.ErrnoError; // Some errors may happen quite a bit, to avoid overhead we reuse them (and suffer a lack of stack info) [ERRNO_CODES.ENOENT].forEach(function (code) { FS.genericErrors[code] = new FS.ErrnoError(code); FS.genericErrors[code].stack = ''; }); }, staticInit: function () { FS.ensureErrnoError(); FS.nameTable = new Array(4096); FS.mount(MEMFS, {}, '/'); FS.createDefaultDirectories(); FS.createDefaultDevices(); FS.createSpecialDirectories(); FS.filesystems = { 'MEMFS': MEMFS, 'IDBFS': IDBFS, 'NODEFS': NODEFS, 'WORKERFS': WORKERFS, }; }, init: function (input, output, error) { assert(!FS.init.initialized, 'FS.init was previously called. If you want to initialize later with custom parameters, remove any earlier calls (note that one is automatically added to the generated code)'); FS.init.initialized = true; FS.ensureErrnoError(); // Allow Module.stdin etc. to provide defaults, if none explicitly passed to us here Module['stdin'] = input || Module['stdin']; Module['stdout'] = output || Module['stdout']; Module['stderr'] = error || Module['stderr']; FS.createStandardStreams(); }, quit: function () { FS.init.initialized = false; // force-flush all streams, so we get musl std streams printed out var fflush = Module['_fflush']; if (fflush) fflush(0); // close all of our streams for (var i = 0; i < FS.streams.length; i++) { var stream = FS.streams[i]; if (!stream) { continue; } FS.close(stream); } }, getMode: function (canRead, canWrite) { var mode = 0; if (canRead) mode |= 292 | 73; if (canWrite) mode |= 146; return mode; }, joinPath: function (parts, forceRelative) { var path = PATH.join.apply(null, parts); if (forceRelative && path[0] == '/') path = path.substr(1); return path; }, absolutePath: function (relative, base) { return PATH.resolve(base, relative); }, standardizePath: function (path) { return PATH.normalize(path); }, findObject: function (path, dontResolveLastLink) { var ret = FS.analyzePath(path, dontResolveLastLink); if (ret.exists) { return ret.object; } else { ___setErrNo(ret.error); return null; } }, analyzePath: function (path, dontResolveLastLink) { // operate from within the context of the symlink's target try { var lookup = FS.lookupPath(path, { follow: !dontResolveLastLink }); path = lookup.path; } catch (e) { } var ret = { isRoot: false, exists: false, error: 0, name: null, path: null, object: null, parentExists: false, parentPath: null, parentObject: null }; try { var lookup = FS.lookupPath(path, { parent: true }); ret.parentExists = true; ret.parentPath = lookup.path; ret.parentObject = lookup.node; ret.name = PATH.basename(path); lookup = FS.lookupPath(path, { follow: !dontResolveLastLink }); ret.exists = true; ret.path = lookup.path; ret.object = lookup.node; ret.name = lookup.node.name; ret.isRoot = lookup.path === '/'; } catch (e) { ret.error = e.errno; }; return ret; }, createFolder: function (parent, name, canRead, canWrite) { var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name); var mode = FS.getMode(canRead, canWrite); return FS.mkdir(path, mode); }, createPath: function (parent, path, canRead, canWrite) { parent = typeof parent === 'string' ? parent : FS.getPath(parent); var parts = path.split('/').reverse(); while (parts.length) { var part = parts.pop(); if (!part) continue; var current = PATH.join2(parent, part); try { FS.mkdir(current); } catch (e) { // ignore EEXIST } parent = current; } return current; }, createFile: function (parent, name, properties, canRead, canWrite) { var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name); var mode = FS.getMode(canRead, canWrite); return FS.create(path, mode); }, createDataFile: function (parent, name, data, canRead, canWrite, canOwn) { var path = name ? PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name) : parent; var mode = FS.getMode(canRead, canWrite); var node = FS.create(path, mode); if (data) { if (typeof data === 'string') { var arr = new Array(data.length); for (var i = 0, len = data.length; i < len; ++i) arr[i] = data.charCodeAt(i); data = arr; } // make sure we can write to the file FS.chmod(node, mode | 146); var stream = FS.open(node, 'w'); FS.write(stream, data, 0, data.length, 0, canOwn); FS.close(stream); FS.chmod(node, mode); } return node; }, createDevice: function (parent, name, input, output) { var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name); var mode = FS.getMode(!!input, !!output); if (!FS.createDevice.major) FS.createDevice.major = 64; var dev = FS.makedev(FS.createDevice.major++, 0); // Create a fake device that a set of stream ops to emulate // the old behavior. FS.registerDevice(dev, { open: function (stream) { stream.seekable = false; }, close: function (stream) { // flush any pending line data if (output && output.buffer && output.buffer.length) { output(10); } }, read: function (stream, buffer, offset, length, pos /* ignored */) { var bytesRead = 0; for (var i = 0; i < length; i++) { var result; try { result = input(); } catch (e) { throw new FS.ErrnoError(ERRNO_CODES.EIO); } if (result === undefined && bytesRead === 0) { throw new FS.ErrnoError(ERRNO_CODES.EAGAIN); } if (result === null || result === undefined) break; bytesRead++; buffer[offset + i] = result; } if (bytesRead) { stream.node.timestamp = Date.now(); } return bytesRead; }, write: function (stream, buffer, offset, length, pos) { for (var i = 0; i < length; i++) { try { output(buffer[offset + i]); } catch (e) { throw new FS.ErrnoError(ERRNO_CODES.EIO); } } if (length) { stream.node.timestamp = Date.now(); } return i; } }); return FS.mkdev(path, mode, dev); }, createLink: function (parent, name, target, canRead, canWrite) { var path = PATH.join2(typeof parent === 'string' ? parent : FS.getPath(parent), name); return FS.symlink(target, path); }, forceLoadFile: function (obj) { if (obj.isDevice || obj.isFolder || obj.link || obj.contents) return true; var success = true; if (typeof XMLHttpRequest !== 'undefined') { throw new Error("Lazy loading should have been performed (contents set) in createLazyFile, but it was not. Lazy loading only works in web workers. Use --embed-file or --preload-file in emcc on the main thread."); } else if (Module['read']) { // Command-line. try { // WARNING: Can't read binary files in V8's d8 or tracemonkey's js, as // read() will try to parse UTF8. obj.contents = intArrayFromString(Module['read'](obj.url), true); obj.usedBytes = obj.contents.length; } catch (e) { success = false; } } else { throw new Error('Cannot load without read() or XMLHttpRequest.'); } if (!success) ___setErrNo(ERRNO_CODES.EIO); return success; }, createLazyFile: function (parent, name, url, canRead, canWrite) { // Lazy chunked Uint8Array (implements get and length from Uint8Array). Actual getting is abstracted away for eventual reuse. function LazyUint8Array() { this.lengthKnown = false; this.chunks = []; // Loaded chunks. Index is the chunk number } LazyUint8Array.prototype.get = function LazyUint8Array_get(idx) { if (idx > this.length - 1 || idx < 0) { return undefined; } var chunkOffset = idx % this.chunkSize; var chunkNum = (idx / this.chunkSize) | 0; return this.getter(chunkNum)[chunkOffset]; } LazyUint8Array.prototype.setDataGetter = function LazyUint8Array_setDataGetter(getter) { this.getter = getter; } LazyUint8Array.prototype.cacheLength = function LazyUint8Array_cacheLength() { // Find length var xhr = new XMLHttpRequest(); xhr.open('HEAD', url, false); xhr.send(null); if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status); var datalength = Number(xhr.getResponseHeader("Content-length")); var header; var hasByteServing = (header = xhr.getResponseHeader("Accept-Ranges")) && header === "bytes"; var usesGzip = (header = xhr.getResponseHeader("Content-Encoding")) && header === "gzip"; var chunkSize = 1024 * 1024; // Chunk size in bytes if (!hasByteServing) chunkSize = datalength; // Function to get a range from the remote URL. var doXHR = (function (from, to) { if (from > to) throw new Error("invalid range (" + from + ", " + to + ") or no bytes requested!"); if (to > datalength - 1) throw new Error("only " + datalength + " bytes available! programmer error!"); // TODO: Use mozResponseArrayBuffer, responseStream, etc. if available. var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); if (datalength !== chunkSize) xhr.setRequestHeader("Range", "bytes=" + from + "-" + to); // Some hints to the browser that we want binary data. if (typeof Uint8Array != 'undefined') xhr.responseType = 'arraybuffer'; if (xhr.overrideMimeType) { xhr.overrideMimeType('text/plain; charset=x-user-defined'); } xhr.send(null); if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status); if (xhr.response !== undefined) { return new Uint8Array(xhr.response || []); } else { return intArrayFromString(xhr.responseText || '', true); } }); var lazyArray = this; lazyArray.setDataGetter(function (chunkNum) { var start = chunkNum * chunkSize; var end = (chunkNum + 1) * chunkSize - 1; // including this byte end = Math.min(end, datalength - 1); // if datalength-1 is selected, this is the last block if (typeof (lazyArray.chunks[chunkNum]) === "undefined") { lazyArray.chunks[chunkNum] = doXHR(start, end); } if (typeof (lazyArray.chunks[chunkNum]) === "undefined") throw new Error("doXHR failed!"); return lazyArray.chunks[chunkNum]; }); if (usesGzip || !datalength) { // if the server uses gzip or doesn't supply the length, we have to download the whole file to get the (uncompressed) length chunkSize = datalength = 1; // this will force getter(0)/doXHR do download the whole file datalength = this.getter(0).length; chunkSize = datalength; console.log("LazyFiles on gzip forces download of the whole file when length is accessed"); } this._length = datalength; this._chunkSize = chunkSize; this.lengthKnown = true; } if (typeof XMLHttpRequest !== 'undefined') { if (!ENVIRONMENT_IS_WORKER) throw 'Cannot do synchronous binary XHRs outside webworkers in modern browsers. Use --embed-file or --preload-file in emcc'; var lazyArray = new LazyUint8Array(); Object.defineProperties(lazyArray, { length: { get: function () { if (!this.lengthKnown) { this.cacheLength(); } return this._length; } }, chunkSize: { get: function () { if (!this.lengthKnown) { this.cacheLength(); } return this._chunkSize; } } }); var properties = { isDevice: false, contents: lazyArray }; } else { var properties = { isDevice: false, url: url }; } var node = FS.createFile(parent, name, properties, canRead, canWrite); // This is a total hack, but I want to get this lazy file code out of the // core of MEMFS. If we want to keep this lazy file concept I feel it should // be its own thin LAZYFS proxying calls to MEMFS. if (properties.contents) { node.contents = properties.contents; } else if (properties.url) { node.contents = null; node.url = properties.url; } // Add a function that defers querying the file size until it is asked the first time. Object.defineProperties(node, { usedBytes: { get: function () { return this.contents.length; } } }); // override each stream op with one that tries to force load the lazy file first var stream_ops = {}; var keys = Object.keys(node.stream_ops); keys.forEach(function (key) { var fn = node.stream_ops[key]; stream_ops[key] = function forceLoadLazyFile() { if (!FS.forceLoadFile(node)) { throw new FS.ErrnoError(ERRNO_CODES.EIO); } return fn.apply(null, arguments); }; }); // use a custom read function stream_ops.read = function stream_ops_read(stream, buffer, offset, length, position) { if (!FS.forceLoadFile(node)) { throw new FS.ErrnoError(ERRNO_CODES.EIO); } var contents = stream.node.contents; if (position >= contents.length) return 0; var size = Math.min(contents.length - position, length); assert(size >= 0); if (contents.slice) { // normal array for (var i = 0; i < size; i++) { buffer[offset + i] = contents[position + i]; } } else { for (var i = 0; i < size; i++) { // LazyUint8Array from sync binary XHR buffer[offset + i] = contents.get(position + i); } } return size; }; node.stream_ops = stream_ops; return node; }, createPreloadedFile: function (parent, name, url, canRead, canWrite, onload, onerror, dontCreateFile, canOwn, preFinish) { Browser.init(); // XXX perhaps this method should move onto Browser? // TODO we should allow people to just pass in a complete filename instead // of parent and name being that we just join them anyways var fullname = name ? PATH.resolve(PATH.join2(parent, name)) : parent; var dep = getUniqueRunDependency('cp ' + fullname); // might have several active requests for the same fullname function processData(byteArray) { function finish(byteArray) { if (preFinish) preFinish(); if (!dontCreateFile) { FS.createDataFile(parent, name, byteArray, canRead, canWrite, canOwn); } if (onload) onload(); removeRunDependency(dep); } var handled = false; Module['preloadPlugins'].forEach(function (plugin) { if (handled) return; if (plugin['canHandle'](fullname)) { plugin['handle'](byteArray, fullname, finish, function () { if (onerror) onerror(); removeRunDependency(dep); }); handled = true; } }); if (!handled) finish(byteArray); } addRunDependency(dep); if (typeof url == 'string') { Browser.asyncLoad(url, function (byteArray) { processData(byteArray); }, onerror); } else { processData(url); } }, indexedDB: function () { return window.indexedDB || window.mozIndexedDB || window.webkitIndexedDB || window.msIndexedDB; }, DB_NAME: function () { return 'EM_FS_' + window.location.pathname; }, DB_VERSION: 20, DB_STORE_NAME: "FILE_DATA", saveFilesToDB: function (paths, onload, onerror) { onload = onload || function () { }; onerror = onerror || function () { }; var indexedDB = FS.indexedDB(); try { var openRequest = indexedDB.open(FS.DB_NAME(), FS.DB_VERSION); } catch (e) { return onerror(e); } openRequest.onupgradeneeded = function openRequest_onupgradeneeded() { console.log('creating db'); var db = openRequest.result; db.createObjectStore(FS.DB_STORE_NAME); }; openRequest.onsuccess = function openRequest_onsuccess() { var db = openRequest.result; var transaction = db.transaction([FS.DB_STORE_NAME], 'readwrite'); var files = transaction.objectStore(FS.DB_STORE_NAME); var ok = 0, fail = 0, total = paths.length; function finish() { if (fail == 0) onload(); else onerror(); } paths.forEach(function (path) { var putRequest = files.put(FS.analyzePath(path).object.contents, path); putRequest.onsuccess = function putRequest_onsuccess() { ok++; if (ok + fail == total) finish() }; putRequest.onerror = function putRequest_onerror() { fail++; if (ok + fail == total) finish() }; }); transaction.onerror = onerror; }; openRequest.onerror = onerror; }, loadFilesFromDB: function (paths, onload, onerror) { onload = onload || function () { }; onerror = onerror || function () { }; var indexedDB = FS.indexedDB(); try { var openRequest = indexedDB.open(FS.DB_NAME(), FS.DB_VERSION); } catch (e) { return onerror(e); } openRequest.onupgradeneeded = onerror; // no database to load from openRequest.onsuccess = function openRequest_onsuccess() { var db = openRequest.result; try { var transaction = db.transaction([FS.DB_STORE_NAME], 'readonly'); } catch (e) { onerror(e); return; } var files = transaction.objectStore(FS.DB_STORE_NAME); var ok = 0, fail = 0, total = paths.length; function finish() { if (fail == 0) onload(); else onerror(); } paths.forEach(function (path) { var getRequest = files.get(path); getRequest.onsuccess = function getRequest_onsuccess() { if (FS.analyzePath(path).exists) { FS.unlink(path); } FS.createDataFile(PATH.dirname(path), PATH.basename(path), getRequest.result, true, true, true); ok++; if (ok + fail == total) finish(); }; getRequest.onerror = function getRequest_onerror() { fail++; if (ok + fail == total) finish() }; }); transaction.onerror = onerror; }; openRequest.onerror = onerror; } }; var SYSCALLS = { DEFAULT_POLLMASK: 5, mappings: {}, umask: 511, calculateAt: function (dirfd, path) { if (path[0] !== '/') { // relative path var dir; if (dirfd === -100) { dir = FS.cwd(); } else { var dirstream = FS.getStream(dirfd); if (!dirstream) throw new FS.ErrnoError(ERRNO_CODES.EBADF); dir = dirstream.path; } path = PATH.join2(dir, path); } return path; }, doStat: function (func, path, buf) { try { var stat = func(path); } catch (e) { if (e && e.node && PATH.normalize(path) !== PATH.normalize(FS.getPath(e.node))) { // an error occurred while trying to look up the path; we should just report ENOTDIR return -ERRNO_CODES.ENOTDIR; } throw e; } HEAP32[((buf) >> 2)] = stat.dev; HEAP32[(((buf) + (4)) >> 2)] = 0; HEAP32[(((buf) + (8)) >> 2)] = stat.ino; HEAP32[(((buf) + (12)) >> 2)] = stat.mode; HEAP32[(((buf) + (16)) >> 2)] = stat.nlink; HEAP32[(((buf) + (20)) >> 2)] = stat.uid; HEAP32[(((buf) + (24)) >> 2)] = stat.gid; HEAP32[(((buf) + (28)) >> 2)] = stat.rdev; HEAP32[(((buf) + (32)) >> 2)] = 0; HEAP32[(((buf) + (36)) >> 2)] = stat.size; HEAP32[(((buf) + (40)) >> 2)] = 4096; HEAP32[(((buf) + (44)) >> 2)] = stat.blocks; HEAP32[(((buf) + (48)) >> 2)] = (stat.atime.getTime() / 1000) | 0; HEAP32[(((buf) + (52)) >> 2)] = 0; HEAP32[(((buf) + (56)) >> 2)] = (stat.mtime.getTime() / 1000) | 0; HEAP32[(((buf) + (60)) >> 2)] = 0; HEAP32[(((buf) + (64)) >> 2)] = (stat.ctime.getTime() / 1000) | 0; HEAP32[(((buf) + (68)) >> 2)] = 0; HEAP32[(((buf) + (72)) >> 2)] = stat.ino; return 0; }, doMsync: function (addr, stream, len, flags) { var buffer = new Uint8Array(HEAPU8.subarray(addr, addr + len)); FS.msync(stream, buffer, 0, len, flags); }, doMkdir: function (path, mode) { // remove a trailing slash, if one - /a/b/ has basename of '', but // we want to create b in the context of this function path = PATH.normalize(path); if (path[path.length - 1] === '/') path = path.substr(0, path.length - 1); FS.mkdir(path, mode, 0); return 0; }, doMknod: function (path, mode, dev) { // we don't want this in the JS API as it uses mknod to create all nodes. switch (mode & 61440) { case 32768: case 8192: case 24576: case 4096: case 49152: break; default: return -ERRNO_CODES.EINVAL; } FS.mknod(path, mode, dev); return 0; }, doReadlink: function (path, buf, bufsize) { if (bufsize <= 0) return -ERRNO_CODES.EINVAL; var ret = FS.readlink(path); var len = Math.min(bufsize, lengthBytesUTF8(ret)); var endChar = HEAP8[buf + len]; stringToUTF8(ret, buf, bufsize + 1); // readlink is one of the rare functions that write out a C string, but does never append a null to the output buffer(!) // stringToUTF8() always appends a null byte, so restore the character under the null byte after the write. HEAP8[buf + len] = endChar; return len; }, doAccess: function (path, amode) { if (amode & ~7) { // need a valid mode return -ERRNO_CODES.EINVAL; } var node; var lookup = FS.lookupPath(path, { follow: true }); node = lookup.node; var perms = ''; if (amode & 4) perms += 'r'; if (amode & 2) perms += 'w'; if (amode & 1) perms += 'x'; if (perms /* otherwise, they've just passed F_OK */ && FS.nodePermissions(node, perms)) { return -ERRNO_CODES.EACCES; } return 0; }, doDup: function (path, flags, suggestFD) { var suggest = FS.getStream(suggestFD); if (suggest) FS.close(suggest); return FS.open(path, flags, 0, suggestFD, suggestFD).fd; }, doReadv: function (stream, iov, iovcnt, offset) { var ret = 0; for (var i = 0; i < iovcnt; i++) { var ptr = HEAP32[(((iov) + (i * 8)) >> 2)]; var len = HEAP32[(((iov) + (i * 8 + 4)) >> 2)]; var curr = FS.read(stream, HEAP8, ptr, len, offset); if (curr < 0) return -1; ret += curr; if (curr < len) break; // nothing more to read } return ret; }, doWritev: function (stream, iov, iovcnt, offset) { var ret = 0; for (var i = 0; i < iovcnt; i++) { var ptr = HEAP32[(((iov) + (i * 8)) >> 2)]; var len = HEAP32[(((iov) + (i * 8 + 4)) >> 2)]; var curr = FS.write(stream, HEAP8, ptr, len, offset); if (curr < 0) return -1; ret += curr; } return ret; }, varargs: 0, get: function (varargs) { SYSCALLS.varargs += 4; var ret = HEAP32[(((SYSCALLS.varargs) - (4)) >> 2)]; return ret; }, getStr: function () { var ret = Pointer_stringify(SYSCALLS.get()); return ret; }, getStreamFromFD: function () { var stream = FS.getStream(SYSCALLS.get()); if (!stream) throw new FS.ErrnoError(ERRNO_CODES.EBADF); return stream; }, getSocketFromFD: function () { var socket = SOCKFS.getSocket(SYSCALLS.get()); if (!socket) throw new FS.ErrnoError(ERRNO_CODES.EBADF); return socket; }, getSocketAddress: function (allowNull) { var addrp = SYSCALLS.get(), addrlen = SYSCALLS.get(); if (allowNull && addrp === 0) return null; var info = __read_sockaddr(addrp, addrlen); if (info.errno) throw new FS.ErrnoError(info.errno); info.addr = DNS.lookup_addr(info.addr) || info.addr; return info; }, get64: function () { var low = SYSCALLS.get(), high = SYSCALLS.get(); if (low >= 0) assert(high === 0); else assert(high === -1); return low; }, getZero: function () { assert(SYSCALLS.get() === 0); } }; function ___syscall91(which, varargs) { SYSCALLS.varargs = varargs; try { // munmap var addr = SYSCALLS.get(), len = SYSCALLS.get(); // TODO: support unmmap'ing parts of allocations var info = SYSCALLS.mappings[addr]; if (!info) return 0; if (len === info.len) { var stream = FS.getStream(info.fd); SYSCALLS.doMsync(addr, stream, len, info.flags) FS.munmap(stream); SYSCALLS.mappings[addr] = null; if (info.allocated) { _free(info.malloc); } } return 0; } catch (e) { if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e); return -e.errno; } } function __embind_register_emval(rawType, name) { name = readLatin1String(name); registerType(rawType, { name: name, 'fromWireType': function (handle) { var rv = emval_handle_array[handle].value; __emval_decref(handle); return rv; }, 'toWireType': function (destructors, value) { return __emval_register(value); }, 'argPackAdvance': 8, 'readValueFromPointer': simpleReadValueFromPointer, destructorFunction: null, // This type does not need a destructor // TODO: do we need a deleteObject here? write a test where // emval is passed into JS via an interface }); } function ___syscall54(which, varargs) { SYSCALLS.varargs = varargs; try { // ioctl var stream = SYSCALLS.getStreamFromFD(), op = SYSCALLS.get(); switch (op) { case 21505: { if (!stream.tty) return -ERRNO_CODES.ENOTTY; return 0; } case 21506: { if (!stream.tty) return -ERRNO_CODES.ENOTTY; return 0; // no-op, not actually adjusting terminal settings } case 21519: { if (!stream.tty) return -ERRNO_CODES.ENOTTY; var argp = SYSCALLS.get(); HEAP32[((argp) >> 2)] = 0; return 0; } case 21520: { if (!stream.tty) return -ERRNO_CODES.ENOTTY; return -ERRNO_CODES.EINVAL; // not supported } case 21531: { var argp = SYSCALLS.get(); return FS.ioctl(stream, op, argp); } case 21523: { // TODO: in theory we should write to the winsize struct that gets // passed in, but for now musl doesn't read anything on it if (!stream.tty) return -ERRNO_CODES.ENOTTY; return 0; } default: abort('bad ioctl syscall ' + op); } } catch (e) { if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e); return -e.errno; } } var _environ = STATICTOP; STATICTOP += 16;; var ___environ = _environ; function ___buildEnvironment(env) { // WARNING: Arbitrary limit! var MAX_ENV_VALUES = 64; var TOTAL_ENV_SIZE = 1024; // Statically allocate memory for the environment. var poolPtr; var envPtr; if (!___buildEnvironment.called) { ___buildEnvironment.called = true; // Set default values. Use string keys for Closure Compiler compatibility. ENV['USER'] = ENV['LOGNAME'] = 'web_user'; ENV['PATH'] = '/'; ENV['PWD'] = '/'; ENV['HOME'] = '/home/web_user'; ENV['LANG'] = 'C'; ENV['_'] = Module['thisProgram']; // Allocate memory. poolPtr = allocate(TOTAL_ENV_SIZE, 'i8', ALLOC_STATIC); envPtr = allocate(MAX_ENV_VALUES * 4, 'i8*', ALLOC_STATIC); HEAP32[((envPtr) >> 2)] = poolPtr; HEAP32[((_environ) >> 2)] = envPtr; } else { envPtr = HEAP32[((_environ) >> 2)]; poolPtr = HEAP32[((envPtr) >> 2)]; } // Collect key=value lines. var strings = []; var totalSize = 0; for (var key in env) { if (typeof env[key] === 'string') { var line = key + '=' + env[key]; strings.push(line); totalSize += line.length; } } if (totalSize > TOTAL_ENV_SIZE) { throw new Error('Environment size exceeded TOTAL_ENV_SIZE!'); } // Make new. var ptrSize = 4; for (var i = 0; i < strings.length; i++) { var line = strings[i]; writeAsciiToMemory(line, poolPtr); HEAP32[(((envPtr) + (i * ptrSize)) >> 2)] = poolPtr; poolPtr += line.length + 1; } HEAP32[(((envPtr) + (strings.length * ptrSize)) >> 2)] = 0; } var ENV = {}; function _getenv(name) { // char *getenv(const char *name); // http://pubs.opengroup.org/onlinepubs/009695399/functions/getenv.html if (name === 0) return 0; name = Pointer_stringify(name); if (!ENV.hasOwnProperty(name)) return 0; if (_getenv.ret) _free(_getenv.ret); _getenv.ret = allocate(intArrayFromString(ENV[name]), 'i8', ALLOC_NORMAL); return _getenv.ret; } function __isLeapYear(year) { return year % 4 === 0 && (year % 100 !== 0 || year % 400 === 0); } function __arraySum(array, index) { var sum = 0; for (var i = 0; i <= index; sum += array[i++]); return sum; } var __MONTH_DAYS_LEAP = [31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]; var __MONTH_DAYS_REGULAR = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]; function __addDays(date, days) { var newDate = new Date(date.getTime()); while (days > 0) { var leap = __isLeapYear(newDate.getFullYear()); var currentMonth = newDate.getMonth(); var daysInCurrentMonth = (leap ? __MONTH_DAYS_LEAP : __MONTH_DAYS_REGULAR)[currentMonth]; if (days > daysInCurrentMonth - newDate.getDate()) { // we spill over to next month days -= (daysInCurrentMonth - newDate.getDate() + 1); newDate.setDate(1); if (currentMonth < 11) { newDate.setMonth(currentMonth + 1) } else { newDate.setMonth(0); newDate.setFullYear(newDate.getFullYear() + 1); } } else { // we stay in current month newDate.setDate(newDate.getDate() + days); return newDate; } } return newDate; } function _strftime(s, maxsize, format, tm) { // size_t strftime(char *restrict s, size_t maxsize, const char *restrict format, const struct tm *restrict timeptr); // http://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html var tm_zone = HEAP32[(((tm) + (40)) >> 2)]; var date = { tm_sec: HEAP32[((tm) >> 2)], tm_min: HEAP32[(((tm) + (4)) >> 2)], tm_hour: HEAP32[(((tm) + (8)) >> 2)], tm_mday: HEAP32[(((tm) + (12)) >> 2)], tm_mon: HEAP32[(((tm) + (16)) >> 2)], tm_year: HEAP32[(((tm) + (20)) >> 2)], tm_wday: HEAP32[(((tm) + (24)) >> 2)], tm_yday: HEAP32[(((tm) + (28)) >> 2)], tm_isdst: HEAP32[(((tm) + (32)) >> 2)], tm_gmtoff: HEAP32[(((tm) + (36)) >> 2)], tm_zone: tm_zone ? Pointer_stringify(tm_zone) : '' }; var pattern = Pointer_stringify(format); // expand format var EXPANSION_RULES_1 = { '%c': '%a %b %d %H:%M:%S %Y', // Replaced by the locale's appropriate date and time representation - e.g., Mon Aug 3 14:02:01 2013 '%D': '%m/%d/%y', // Equivalent to %m / %d / %y '%F': '%Y-%m-%d', // Equivalent to %Y - %m - %d '%h': '%b', // Equivalent to %b '%r': '%I:%M:%S %p', // Replaced by the time in a.m. and p.m. notation '%R': '%H:%M', // Replaced by the time in 24-hour notation '%T': '%H:%M:%S', // Replaced by the time '%x': '%m/%d/%y', // Replaced by the locale's appropriate date representation '%X': '%H:%M:%S' // Replaced by the locale's appropriate date representation }; for (var rule in EXPANSION_RULES_1) { pattern = pattern.replace(new RegExp(rule, 'g'), EXPANSION_RULES_1[rule]); } var WEEKDAYS = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday']; var MONTHS = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']; function leadingSomething(value, digits, character) { var str = typeof value === 'number' ? value.toString() : (value || ''); while (str.length < digits) { str = character[0] + str; } return str; }; function leadingNulls(value, digits) { return leadingSomething(value, digits, '0'); }; function compareByDay(date1, date2) { function sgn(value) { return value < 0 ? -1 : (value > 0 ? 1 : 0); }; var compare; if ((compare = sgn(date1.getFullYear() - date2.getFullYear())) === 0) { if ((compare = sgn(date1.getMonth() - date2.getMonth())) === 0) { compare = sgn(date1.getDate() - date2.getDate()); } } return compare; }; function getFirstWeekStartDate(janFourth) { switch (janFourth.getDay()) { case 0: // Sunday return new Date(janFourth.getFullYear() - 1, 11, 29); case 1: // Monday return janFourth; case 2: // Tuesday return new Date(janFourth.getFullYear(), 0, 3); case 3: // Wednesday return new Date(janFourth.getFullYear(), 0, 2); case 4: // Thursday return new Date(janFourth.getFullYear(), 0, 1); case 5: // Friday return new Date(janFourth.getFullYear() - 1, 11, 31); case 6: // Saturday return new Date(janFourth.getFullYear() - 1, 11, 30); } }; function getWeekBasedYear(date) { var thisDate = __addDays(new Date(date.tm_year + 1900, 0, 1), date.tm_yday); var janFourthThisYear = new Date(thisDate.getFullYear(), 0, 4); var janFourthNextYear = new Date(thisDate.getFullYear() + 1, 0, 4); var firstWeekStartThisYear = getFirstWeekStartDate(janFourthThisYear); var firstWeekStartNextYear = getFirstWeekStartDate(janFourthNextYear); if (compareByDay(firstWeekStartThisYear, thisDate) <= 0) { // this date is after the start of the first week of this year if (compareByDay(firstWeekStartNextYear, thisDate) <= 0) { return thisDate.getFullYear() + 1; } else { return thisDate.getFullYear(); } } else { return thisDate.getFullYear() - 1; } }; var EXPANSION_RULES_2 = { '%a': function (date) { return WEEKDAYS[date.tm_wday].substring(0, 3); }, '%A': function (date) { return WEEKDAYS[date.tm_wday]; }, '%b': function (date) { return MONTHS[date.tm_mon].substring(0, 3); }, '%B': function (date) { return MONTHS[date.tm_mon]; }, '%C': function (date) { var year = date.tm_year + 1900; return leadingNulls((year / 100) | 0, 2); }, '%d': function (date) { return leadingNulls(date.tm_mday, 2); }, '%e': function (date) { return leadingSomething(date.tm_mday, 2, ' '); }, '%g': function (date) { // %g, %G, and %V give values according to the ISO 8601:2000 standard week-based year. // In this system, weeks begin on a Monday and week 1 of the year is the week that includes // January 4th, which is also the week that includes the first Thursday of the year, and // is also the first week that contains at least four days in the year. // If the first Monday of January is the 2nd, 3rd, or 4th, the preceding days are part of // the last week of the preceding year; thus, for Saturday 2nd January 1999, // %G is replaced by 1998 and %V is replaced by 53. If December 29th, 30th, // or 31st is a Monday, it and any following days are part of week 1 of the following year. // Thus, for Tuesday 30th December 1997, %G is replaced by 1998 and %V is replaced by 01. return getWeekBasedYear(date).toString().substring(2); }, '%G': function (date) { return getWeekBasedYear(date); }, '%H': function (date) { return leadingNulls(date.tm_hour, 2); }, '%I': function (date) { var twelveHour = date.tm_hour; if (twelveHour == 0) twelveHour = 12; else if (twelveHour > 12) twelveHour -= 12; return leadingNulls(twelveHour, 2); }, '%j': function (date) { // Day of the year (001-366) return leadingNulls(date.tm_mday + __arraySum(__isLeapYear(date.tm_year + 1900) ? __MONTH_DAYS_LEAP : __MONTH_DAYS_REGULAR, date.tm_mon - 1), 3); }, '%m': function (date) { return leadingNulls(date.tm_mon + 1, 2); }, '%M': function (date) { return leadingNulls(date.tm_min, 2); }, '%n': function () { return '\n'; }, '%p': function (date) { if (date.tm_hour >= 0 && date.tm_hour < 12) { return 'AM'; } else { return 'PM'; } }, '%S': function (date) { return leadingNulls(date.tm_sec, 2); }, '%t': function () { return '\t'; }, '%u': function (date) { var day = new Date(date.tm_year + 1900, date.tm_mon + 1, date.tm_mday, 0, 0, 0, 0); return day.getDay() || 7; }, '%U': function (date) { // Replaced by the week number of the year as a decimal number [00,53]. // The first Sunday of January is the first day of week 1; // days in the new year before this are in week 0. [ tm_year, tm_wday, tm_yday] var janFirst = new Date(date.tm_year + 1900, 0, 1); var firstSunday = janFirst.getDay() === 0 ? janFirst : __addDays(janFirst, 7 - janFirst.getDay()); var endDate = new Date(date.tm_year + 1900, date.tm_mon, date.tm_mday); // is target date after the first Sunday? if (compareByDay(firstSunday, endDate) < 0) { // calculate difference in days between first Sunday and endDate var februaryFirstUntilEndMonth = __arraySum(__isLeapYear(endDate.getFullYear()) ? __MONTH_DAYS_LEAP : __MONTH_DAYS_REGULAR, endDate.getMonth() - 1) - 31; var firstSundayUntilEndJanuary = 31 - firstSunday.getDate(); var days = firstSundayUntilEndJanuary + februaryFirstUntilEndMonth + endDate.getDate(); return leadingNulls(Math.ceil(days / 7), 2); } return compareByDay(firstSunday, janFirst) === 0 ? '01' : '00'; }, '%V': function (date) { // Replaced by the week number of the year (Monday as the first day of the week) // as a decimal number [01,53]. If the week containing 1 January has four // or more days in the new year, then it is considered week 1. // Otherwise, it is the last week of the previous year, and the next week is week 1. // Both January 4th and the first Thursday of January are always in week 1. [ tm_year, tm_wday, tm_yday] var janFourthThisYear = new Date(date.tm_year + 1900, 0, 4); var janFourthNextYear = new Date(date.tm_year + 1901, 0, 4); var firstWeekStartThisYear = getFirstWeekStartDate(janFourthThisYear); var firstWeekStartNextYear = getFirstWeekStartDate(janFourthNextYear); var endDate = __addDays(new Date(date.tm_year + 1900, 0, 1), date.tm_yday); if (compareByDay(endDate, firstWeekStartThisYear) < 0) { // if given date is before this years first week, then it belongs to the 53rd week of last year return '53'; } if (compareByDay(firstWeekStartNextYear, endDate) <= 0) { // if given date is after next years first week, then it belongs to the 01th week of next year return '01'; } // given date is in between CW 01..53 of this calendar year var daysDifference; if (firstWeekStartThisYear.getFullYear() < date.tm_year + 1900) { // first CW of this year starts last year daysDifference = date.tm_yday + 32 - firstWeekStartThisYear.getDate() } else { // first CW of this year starts this year daysDifference = date.tm_yday + 1 - firstWeekStartThisYear.getDate(); } return leadingNulls(Math.ceil(daysDifference / 7), 2); }, '%w': function (date) { var day = new Date(date.tm_year + 1900, date.tm_mon + 1, date.tm_mday, 0, 0, 0, 0); return day.getDay(); }, '%W': function (date) { // Replaced by the week number of the year as a decimal number [00,53]. // The first Monday of January is the first day of week 1; // days in the new year before this are in week 0. [ tm_year, tm_wday, tm_yday] var janFirst = new Date(date.tm_year, 0, 1); var firstMonday = janFirst.getDay() === 1 ? janFirst : __addDays(janFirst, janFirst.getDay() === 0 ? 1 : 7 - janFirst.getDay() + 1); var endDate = new Date(date.tm_year + 1900, date.tm_mon, date.tm_mday); // is target date after the first Monday? if (compareByDay(firstMonday, endDate) < 0) { var februaryFirstUntilEndMonth = __arraySum(__isLeapYear(endDate.getFullYear()) ? __MONTH_DAYS_LEAP : __MONTH_DAYS_REGULAR, endDate.getMonth() - 1) - 31; var firstMondayUntilEndJanuary = 31 - firstMonday.getDate(); var days = firstMondayUntilEndJanuary + februaryFirstUntilEndMonth + endDate.getDate(); return leadingNulls(Math.ceil(days / 7), 2); } return compareByDay(firstMonday, janFirst) === 0 ? '01' : '00'; }, '%y': function (date) { // Replaced by the last two digits of the year as a decimal number [00,99]. [ tm_year] return (date.tm_year + 1900).toString().substring(2); }, '%Y': function (date) { // Replaced by the year as a decimal number (for example, 1997). [ tm_year] return date.tm_year + 1900; }, '%z': function (date) { // Replaced by the offset from UTC in the ISO 8601:2000 standard format ( +hhmm or -hhmm ). // For example, "-0430" means 4 hours 30 minutes behind UTC (west of Greenwich). var off = date.tm_gmtoff; var ahead = off >= 0; off = Math.abs(off) / 60; // convert from minutes into hhmm format (which means 60 minutes = 100 units) off = (off / 60) * 100 + (off % 60); return (ahead ? '+' : '-') + String("0000" + off).slice(-4); }, '%Z': function (date) { return date.tm_zone; }, '%%': function () { return '%'; } }; for (var rule in EXPANSION_RULES_2) { if (pattern.indexOf(rule) >= 0) { pattern = pattern.replace(new RegExp(rule, 'g'), EXPANSION_RULES_2[rule](date)); } } var bytes = intArrayFromString(pattern, false); if (bytes.length > maxsize) { return 0; } writeArrayToMemory(bytes, s); return bytes.length - 1; } function _strftime_l(s, maxsize, format, tm) { return _strftime(s, maxsize, format, tm); // no locale support yet } function ___map_file(pathname, size) { ___setErrNo(ERRNO_CODES.EPERM); return -1; } function _emscripten_memcpy_big(dest, src, num) { HEAPU8.set(HEAPU8.subarray(src, src + num), dest); return dest; } function __embind_register_enum_value( rawEnumType, name, enumValue ) { var enumType = requireRegisteredType(rawEnumType, 'enum'); name = readLatin1String(name); var Enum = enumType.constructor; var Value = Object.create(enumType.constructor.prototype, { value: { value: enumValue }, constructor: { value: createNamedFunction(enumType.name + '_' + name, function () { }) }, }); Enum.values[enumValue] = Value; Enum[name] = Value; } var _llvm_pow_f64 = Math_pow; function ___gxx_personality_v0() { } function _pthread_mutex_destroy() { } function _pthread_cond_wait() { return 0; } function __embind_register_memory_view(rawType, dataTypeIndex, name) { var typeMapping = [ Int8Array, Uint8Array, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array, ]; var TA = typeMapping[dataTypeIndex]; function decodeMemoryView(handle) { handle = handle >> 2; var heap = HEAPU32; var size = heap[handle]; // in elements var data = heap[handle + 1]; // byte offset into emscripten heap return new TA(heap['buffer'], data, size); } name = readLatin1String(name); registerType(rawType, { name: name, 'fromWireType': decodeMemoryView, 'argPackAdvance': 8, 'readValueFromPointer': decodeMemoryView, }, { ignoreDuplicateRegistrations: true, }); } function ensureOverloadTable(proto, methodName, humanName) { if (undefined === proto[methodName].overloadTable) { var prevFunc = proto[methodName]; // Inject an overload resolver function that routes to the appropriate overload based on the number of arguments. proto[methodName] = function () { // TODO This check can be removed in -O3 level "unsafe" optimizations. if (!proto[methodName].overloadTable.hasOwnProperty(arguments.length)) { throwBindingError("Function '" + humanName + "' called with an invalid number of arguments (" + arguments.length + ") - expects one of (" + proto[methodName].overloadTable + ")!"); } return proto[methodName].overloadTable[arguments.length].apply(this, arguments); }; // Move the previous function into the overload table. proto[methodName].overloadTable = []; proto[methodName].overloadTable[prevFunc.argCount] = prevFunc; } } function exposePublicSymbol(name, value, numArguments) { if (Module.hasOwnProperty(name)) { if (undefined === numArguments || (undefined !== Module[name].overloadTable && undefined !== Module[name].overloadTable[numArguments])) { throwBindingError("Cannot register public name '" + name + "' twice"); } // We are exposing a function with the same name as an existing function. Create an overload table and a function selector // that routes between the two. ensureOverloadTable(Module, name, name); if (Module.hasOwnProperty(numArguments)) { throwBindingError("Cannot register multiple overloads of a function with the same number of arguments (" + numArguments + ")!"); } // Add the new function into the overload table. Module[name].overloadTable[numArguments] = value; } else { Module[name] = value; if (undefined !== numArguments) { Module[name].numArguments = numArguments; } } } function enumReadValueFromPointer(name, shift, signed) { switch (shift) { case 0: return function (pointer) { var heap = signed ? HEAP8 : HEAPU8; return this['fromWireType'](heap[pointer]); }; case 1: return function (pointer) { var heap = signed ? HEAP16 : HEAPU16; return this['fromWireType'](heap[pointer >> 1]); }; case 2: return function (pointer) { var heap = signed ? HEAP32 : HEAPU32; return this['fromWireType'](heap[pointer >> 2]); }; default: throw new TypeError("Unknown integer type: " + name); } } function __embind_register_enum( rawType, name, size, isSigned ) { var shift = getShiftFromSize(size); name = readLatin1String(name); function ctor() { } ctor.values = {}; registerType(rawType, { name: name, constructor: ctor, 'fromWireType': function (c) { return this.constructor.values[c]; }, 'toWireType': function (destructors, c) { return c.value; }, 'argPackAdvance': 8, 'readValueFromPointer': enumReadValueFromPointer(name, shift, isSigned), destructorFunction: null, }); exposePublicSymbol(name, ctor); } function __emval_incref(handle) { if (handle > 4) { emval_handle_array[handle].refcount += 1; } } function ___assert_fail(condition, filename, line, func) { ABORT = true; throw 'Assertion failed: ' + Pointer_stringify(condition) + ', at: ' + [filename ? Pointer_stringify(filename) : 'unknown filename', line, func ? Pointer_stringify(func) : 'unknown function'] + ' at ' + stackTrace(); } function __embind_register_void(rawType, name) { name = readLatin1String(name); registerType(rawType, { isVoid: true, // void return values can be optimized out sometimes name: name, 'argPackAdvance': 0, 'fromWireType': function () { return undefined; }, 'toWireType': function (destructors, o) { // TODO: assert if anything else is given? return undefined; }, }); } function _pthread_mutexattr_init() { } function _pthread_mutexattr_settype() { } function _abort() { Module['abort'](); } function _pthread_once(ptr, func) { if (!_pthread_once.seen) _pthread_once.seen = {}; if (ptr in _pthread_once.seen) return; Module['dynCall_v'](func); _pthread_once.seen[ptr] = 1; } function ClassHandle_isAliasOf(other) { if (!(this instanceof ClassHandle)) { return false; } if (!(other instanceof ClassHandle)) { return false; } var leftClass = this.$$.ptrType.registeredClass; var left = this.$$.ptr; var rightClass = other.$$.ptrType.registeredClass; var right = other.$$.ptr; while (leftClass.baseClass) { left = leftClass.upcast(left); leftClass = leftClass.baseClass; } while (rightClass.baseClass) { right = rightClass.upcast(right); rightClass = rightClass.baseClass; } return leftClass === rightClass && left === right; } function shallowCopyInternalPointer(o) { return { count: o.count, deleteScheduled: o.deleteScheduled, preservePointerOnDelete: o.preservePointerOnDelete, ptr: o.ptr, ptrType: o.ptrType, smartPtr: o.smartPtr, smartPtrType: o.smartPtrType, }; } function throwInstanceAlreadyDeleted(obj) { function getInstanceTypeName(handle) { return handle.$$.ptrType.registeredClass.name; } throwBindingError(getInstanceTypeName(obj) + ' instance already deleted'); } function ClassHandle_clone() { if (!this.$$.ptr) { throwInstanceAlreadyDeleted(this); } if (this.$$.preservePointerOnDelete) { this.$$.count.value += 1; return this; } else { var clone = Object.create(Object.getPrototypeOf(this), { $$: { value: shallowCopyInternalPointer(this.$$), } }); clone.$$.count.value += 1; clone.$$.deleteScheduled = false; return clone; } } function runDestructor(handle) { var $$ = handle.$$; if ($$.smartPtr) { $$.smartPtrType.rawDestructor($$.smartPtr); } else { $$.ptrType.registeredClass.rawDestructor($$.ptr); } } function ClassHandle_delete() { if (!this.$$.ptr) { throwInstanceAlreadyDeleted(this); } if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) { throwBindingError('Object already scheduled for deletion'); } this.$$.count.value -= 1; var toDelete = 0 === this.$$.count.value; if (toDelete) { runDestructor(this); } if (!this.$$.preservePointerOnDelete) { this.$$.smartPtr = undefined; this.$$.ptr = undefined; } } function ClassHandle_isDeleted() { return !this.$$.ptr; } var delayFunction = undefined; var deletionQueue = []; function flushPendingDeletes() { while (deletionQueue.length) { var obj = deletionQueue.pop(); obj.$$.deleteScheduled = false; obj['delete'](); } } function ClassHandle_deleteLater() { if (!this.$$.ptr) { throwInstanceAlreadyDeleted(this); } if (this.$$.deleteScheduled && !this.$$.preservePointerOnDelete) { throwBindingError('Object already scheduled for deletion'); } deletionQueue.push(this); if (deletionQueue.length === 1 && delayFunction) { delayFunction(flushPendingDeletes); } this.$$.deleteScheduled = true; return this; } function init_ClassHandle() { ClassHandle.prototype['isAliasOf'] = ClassHandle_isAliasOf; ClassHandle.prototype['clone'] = ClassHandle_clone; ClassHandle.prototype['delete'] = ClassHandle_delete; ClassHandle.prototype['isDeleted'] = ClassHandle_isDeleted; ClassHandle.prototype['deleteLater'] = ClassHandle_deleteLater; } function ClassHandle() { } var registeredPointers = {}; function RegisteredClass( name, constructor, instancePrototype, rawDestructor, baseClass, getActualType, upcast, downcast ) { this.name = name; this.constructor = constructor; this.instancePrototype = instancePrototype; this.rawDestructor = rawDestructor; this.baseClass = baseClass; this.getActualType = getActualType; this.upcast = upcast; this.downcast = downcast; this.pureVirtualFunctions = []; } function upcastPointer(ptr, ptrClass, desiredClass) { while (ptrClass !== desiredClass) { if (!ptrClass.upcast) { throwBindingError("Expected null or instance of " + desiredClass.name + ", got an instance of " + ptrClass.name); } ptr = ptrClass.upcast(ptr); ptrClass = ptrClass.baseClass; } return ptr; } function constNoSmartPtrRawPointerToWireType(destructors, handle) { if (handle === null) { if (this.isReference) { throwBindingError('null is not a valid ' + this.name); } return 0; } if (!handle.$$) { throwBindingError('Cannot pass "' + _embind_repr(handle) + '" as a ' + this.name); } if (!handle.$$.ptr) { throwBindingError('Cannot pass deleted object as a pointer of type ' + this.name); } var handleClass = handle.$$.ptrType.registeredClass; var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass); return ptr; } function genericPointerToWireType(destructors, handle) { if (handle === null) { if (this.isReference) { throwBindingError('null is not a valid ' + this.name); } if (this.isSmartPointer) { var ptr = this.rawConstructor(); if (destructors !== null) { destructors.push(this.rawDestructor, ptr); } return ptr; } else { return 0; } } if (!handle.$$) { throwBindingError('Cannot pass "' + _embind_repr(handle) + '" as a ' + this.name); } if (!handle.$$.ptr) { throwBindingError('Cannot pass deleted object as a pointer of type ' + this.name); } if (!this.isConst && handle.$$.ptrType.isConst) { throwBindingError('Cannot convert argument of type ' + (handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name) + ' to parameter type ' + this.name); } var handleClass = handle.$$.ptrType.registeredClass; var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass); if (this.isSmartPointer) { // TODO: this is not strictly true // We could support BY_EMVAL conversions from raw pointers to smart pointers // because the smart pointer can hold a reference to the handle if (undefined === handle.$$.smartPtr) { throwBindingError('Passing raw pointer to smart pointer is illegal'); } switch (this.sharingPolicy) { case 0: // NONE // no upcasting if (handle.$$.smartPtrType === this) { ptr = handle.$$.smartPtr; } else { throwBindingError('Cannot convert argument of type ' + (handle.$$.smartPtrType ? handle.$$.smartPtrType.name : handle.$$.ptrType.name) + ' to parameter type ' + this.name); } break; case 1: // INTRUSIVE ptr = handle.$$.smartPtr; break; case 2: // BY_EMVAL if (handle.$$.smartPtrType === this) { ptr = handle.$$.smartPtr; } else { var clonedHandle = handle['clone'](); ptr = this.rawShare( ptr, __emval_register(function () { clonedHandle['delete'](); }) ); if (destructors !== null) { destructors.push(this.rawDestructor, ptr); } } break; default: throwBindingError('Unsupporting sharing policy'); } } return ptr; } function nonConstNoSmartPtrRawPointerToWireType(destructors, handle) { if (handle === null) { if (this.isReference) { throwBindingError('null is not a valid ' + this.name); } return 0; } if (!handle.$$) { throwBindingError('Cannot pass "' + _embind_repr(handle) + '" as a ' + this.name); } if (!handle.$$.ptr) { throwBindingError('Cannot pass deleted object as a pointer of type ' + this.name); } if (handle.$$.ptrType.isConst) { throwBindingError('Cannot convert argument of type ' + handle.$$.ptrType.name + ' to parameter type ' + this.name); } var handleClass = handle.$$.ptrType.registeredClass; var ptr = upcastPointer(handle.$$.ptr, handleClass, this.registeredClass); return ptr; } function RegisteredPointer_getPointee(ptr) { if (this.rawGetPointee) { ptr = this.rawGetPointee(ptr); } return ptr; } function RegisteredPointer_destructor(ptr) { if (this.rawDestructor) { this.rawDestructor(ptr); } } function RegisteredPointer_deleteObject(handle) { if (handle !== null) { handle['delete'](); } } function downcastPointer(ptr, ptrClass, desiredClass) { if (ptrClass === desiredClass) { return ptr; } if (undefined === desiredClass.baseClass) { return null; // no conversion } var rv = downcastPointer(ptr, ptrClass, desiredClass.baseClass); if (rv === null) { return null; } return desiredClass.downcast(rv); } function getInheritedInstanceCount() { return Object.keys(registeredInstances).length; } function getLiveInheritedInstances() { var rv = []; for (var k in registeredInstances) { if (registeredInstances.hasOwnProperty(k)) { rv.push(registeredInstances[k]); } } return rv; } function setDelayFunction(fn) { delayFunction = fn; if (deletionQueue.length && delayFunction) { delayFunction(flushPendingDeletes); } } function init_embind() { Module['getInheritedInstanceCount'] = getInheritedInstanceCount; Module['getLiveInheritedInstances'] = getLiveInheritedInstances; Module['flushPendingDeletes'] = flushPendingDeletes; Module['setDelayFunction'] = setDelayFunction; } var registeredInstances = {}; function getBasestPointer(class_, ptr) { if (ptr === undefined) { throwBindingError('ptr should not be undefined'); } while (class_.baseClass) { ptr = class_.upcast(ptr); class_ = class_.baseClass; } return ptr; } function getInheritedInstance(class_, ptr) { ptr = getBasestPointer(class_, ptr); return registeredInstances[ptr]; } function makeClassHandle(prototype, record) { if (!record.ptrType || !record.ptr) { throwInternalError('makeClassHandle requires ptr and ptrType'); } var hasSmartPtrType = !!record.smartPtrType; var hasSmartPtr = !!record.smartPtr; if (hasSmartPtrType !== hasSmartPtr) { throwInternalError('Both smartPtrType and smartPtr must be specified'); } record.count = { value: 1 }; return Object.create(prototype, { $$: { value: record, }, }); } function RegisteredPointer_fromWireType(ptr) { // ptr is a raw pointer (or a raw smartpointer) // rawPointer is a maybe-null raw pointer var rawPointer = this.getPointee(ptr); if (!rawPointer) { this.destructor(ptr); return null; } var registeredInstance = getInheritedInstance(this.registeredClass, rawPointer); if (undefined !== registeredInstance) { // JS object has been neutered, time to repopulate it if (0 === registeredInstance.$$.count.value) { registeredInstance.$$.ptr = rawPointer; registeredInstance.$$.smartPtr = ptr; return registeredInstance['clone'](); } else { // else, just increment reference count on existing object // it already has a reference to the smart pointer var rv = registeredInstance['clone'](); this.destructor(ptr); return rv; } } function makeDefaultHandle() { if (this.isSmartPointer) { return makeClassHandle(this.registeredClass.instancePrototype, { ptrType: this.pointeeType, ptr: rawPointer, smartPtrType: this, smartPtr: ptr, }); } else { return makeClassHandle(this.registeredClass.instancePrototype, { ptrType: this, ptr: ptr, }); } } var actualType = this.registeredClass.getActualType(rawPointer); var registeredPointerRecord = registeredPointers[actualType]; if (!registeredPointerRecord) { return makeDefaultHandle.call(this); } var toType; if (this.isConst) { toType = registeredPointerRecord.constPointerType; } else { toType = registeredPointerRecord.pointerType; } var dp = downcastPointer( rawPointer, this.registeredClass, toType.registeredClass); if (dp === null) { return makeDefaultHandle.call(this); } if (this.isSmartPointer) { return makeClassHandle(toType.registeredClass.instancePrototype, { ptrType: toType, ptr: dp, smartPtrType: this, smartPtr: ptr, }); } else { return makeClassHandle(toType.registeredClass.instancePrototype, { ptrType: toType, ptr: dp, }); } } function init_RegisteredPointer() { RegisteredPointer.prototype.getPointee = RegisteredPointer_getPointee; RegisteredPointer.prototype.destructor = RegisteredPointer_destructor; RegisteredPointer.prototype['argPackAdvance'] = 8; RegisteredPointer.prototype['readValueFromPointer'] = simpleReadValueFromPointer; RegisteredPointer.prototype['deleteObject'] = RegisteredPointer_deleteObject; RegisteredPointer.prototype['fromWireType'] = RegisteredPointer_fromWireType; } function RegisteredPointer( name, registeredClass, isReference, isConst, // smart pointer properties isSmartPointer, pointeeType, sharingPolicy, rawGetPointee, rawConstructor, rawShare, rawDestructor ) { this.name = name; this.registeredClass = registeredClass; this.isReference = isReference; this.isConst = isConst; // smart pointer properties this.isSmartPointer = isSmartPointer; this.pointeeType = pointeeType; this.sharingPolicy = sharingPolicy; this.rawGetPointee = rawGetPointee; this.rawConstructor = rawConstructor; this.rawShare = rawShare; this.rawDestructor = rawDestructor; if (!isSmartPointer && registeredClass.baseClass === undefined) { if (isConst) { this['toWireType'] = constNoSmartPtrRawPointerToWireType; this.destructorFunction = null; } else { this['toWireType'] = nonConstNoSmartPtrRawPointerToWireType; this.destructorFunction = null; } } else { this['toWireType'] = genericPointerToWireType; // Here we must leave this.destructorFunction undefined, since whether genericPointerToWireType returns // a pointer that needs to be freed up is runtime-dependent, and cannot be evaluated at registration time. // TODO: Create an alternative mechanism that allows removing the use of var destructors = []; array in // craftInvokerFunction altogether. } } function replacePublicSymbol(name, value, numArguments) { if (!Module.hasOwnProperty(name)) { throwInternalError('Replacing nonexistant public symbol'); } // If there's an overload table for this symbol, replace the symbol in the overload table instead. if (undefined !== Module[name].overloadTable && undefined !== numArguments) { Module[name].overloadTable[numArguments] = value; } else { Module[name] = value; Module[name].argCount = numArguments; } } function requireFunction(signature, rawFunction) { signature = readLatin1String(signature); function makeDynCaller(dynCall) { var args = []; for (var i = 1; i < signature.length; ++i) { args.push('a' + i); } var name = 'dynCall_' + signature + '_' + rawFunction; var body = 'return function ' + name + '(' + args.join(', ') + ') {\n'; body += ' return dynCall(rawFunction' + (args.length ? ', ' : '') + args.join(', ') + ');\n'; body += '};\n'; return (new Function('dynCall', 'rawFunction', body))(dynCall, rawFunction); } var fp; if (Module['FUNCTION_TABLE_' + signature] !== undefined) { fp = Module['FUNCTION_TABLE_' + signature][rawFunction]; } else if (typeof FUNCTION_TABLE !== "undefined") { fp = FUNCTION_TABLE[rawFunction]; } else { // asm.js does not give direct access to the function tables, // and thus we must go through the dynCall interface which allows // calling into a signature's function table by pointer value. // // https://github.com/dherman/asm.js/issues/83 // // This has three main penalties: // - dynCall is another function call in the path from JavaScript to C++. // - JITs may not predict through the function table indirection at runtime. var dc = Module["asm"]['dynCall_' + signature]; if (dc === undefined) { // We will always enter this branch if the signature // contains 'f' and PRECISE_F32 is not enabled. // // Try again, replacing 'f' with 'd'. dc = Module["asm"]['dynCall_' + signature.replace(/f/g, 'd')]; if (dc === undefined) { throwBindingError("No dynCall invoker for signature: " + signature); } } fp = makeDynCaller(dc); } if (typeof fp !== "function") { throwBindingError("unknown function pointer with signature " + signature + ": " + rawFunction); } return fp; } var UnboundTypeError = undefined; function throwUnboundTypeError(message, types) { var unboundTypes = []; var seen = {}; function visit(type) { if (seen[type]) { return; } if (registeredTypes[type]) { return; } if (typeDependencies[type]) { typeDependencies[type].forEach(visit); return; } unboundTypes.push(type); seen[type] = true; } types.forEach(visit); throw new UnboundTypeError(message + ': ' + unboundTypes.map(getTypeName).join([', '])); } function __embind_register_class( rawType, rawPointerType, rawConstPointerType, baseClassRawType, getActualTypeSignature, getActualType, upcastSignature, upcast, downcastSignature, downcast, name, destructorSignature, rawDestructor ) { name = readLatin1String(name); getActualType = requireFunction(getActualTypeSignature, getActualType); if (upcast) { upcast = requireFunction(upcastSignature, upcast); } if (downcast) { downcast = requireFunction(downcastSignature, downcast); } rawDestructor = requireFunction(destructorSignature, rawDestructor); var legalFunctionName = makeLegalFunctionName(name); exposePublicSymbol(legalFunctionName, function () { // this code cannot run if baseClassRawType is zero throwUnboundTypeError('Cannot construct ' + name + ' due to unbound types', [baseClassRawType]); }); whenDependentTypesAreResolved( [rawType, rawPointerType, rawConstPointerType], baseClassRawType ? [baseClassRawType] : [], function (base) { base = base[0]; var baseClass; var basePrototype; if (baseClassRawType) { baseClass = base.registeredClass; basePrototype = baseClass.instancePrototype; } else { basePrototype = ClassHandle.prototype; } var constructor = createNamedFunction(legalFunctionName, function () { if (Object.getPrototypeOf(this) !== instancePrototype) { throw new BindingError("Use 'new' to construct " + name); } if (undefined === registeredClass.constructor_body) { throw new BindingError(name + " has no accessible constructor"); } var body = registeredClass.constructor_body[arguments.length]; if (undefined === body) { throw new BindingError("Tried to invoke ctor of " + name + " with invalid number of parameters (" + arguments.length + ") - expected (" + Object.keys(registeredClass.constructor_body).toString() + ") parameters instead!"); } return body.apply(this, arguments); }); var instancePrototype = Object.create(basePrototype, { constructor: { value: constructor }, }); constructor.prototype = instancePrototype; var registeredClass = new RegisteredClass( name, constructor, instancePrototype, rawDestructor, baseClass, getActualType, upcast, downcast); var referenceConverter = new RegisteredPointer( name, registeredClass, true, false, false); var pointerConverter = new RegisteredPointer( name + '*', registeredClass, false, false, false); var constPointerConverter = new RegisteredPointer( name + ' const*', registeredClass, false, true, false); registeredPointers[rawType] = { pointerType: pointerConverter, constPointerType: constPointerConverter }; replacePublicSymbol(legalFunctionName, constructor); return [referenceConverter, pointerConverter, constPointerConverter]; } ); } function ___lock() { } function ___unlock() { } function _pthread_getspecific(key) { return PTHREAD_SPECIFIC[key] || 0; } function __exit(status) { // void _exit(int status); // http://pubs.opengroup.org/onlinepubs/000095399/functions/exit.html Module['exit'](status); } function _exit(status) { __exit(status); } function _pthread_setspecific(key, value) { if (!(key in PTHREAD_SPECIFIC)) { return ERRNO_CODES.EINVAL; } PTHREAD_SPECIFIC[key] = value; return 0; } function ___cxa_allocate_exception(size) { return _malloc(size); } function ___cxa_pure_virtual() { ABORT = true; throw 'Pure virtual function called!'; } var _llvm_ctlz_i32 = true; function floatReadValueFromPointer(name, shift) { switch (shift) { case 2: return function (pointer) { return this['fromWireType'](HEAPF32[pointer >> 2]); }; case 3: return function (pointer) { return this['fromWireType'](HEAPF64[pointer >> 3]); }; default: throw new TypeError("Unknown float type: " + name); } } function __embind_register_float(rawType, name, size) { var shift = getShiftFromSize(size); name = readLatin1String(name); registerType(rawType, { name: name, 'fromWireType': function (value) { return value; }, 'toWireType': function (destructors, value) { // todo: Here we have an opportunity for -O3 level "unsafe" optimizations: we could // avoid the following if() and assume value is of proper type. if (typeof value !== "number" && typeof value !== "boolean") { throw new TypeError('Cannot convert "' + _embind_repr(value) + '" to ' + this.name); } return value; }, 'argPackAdvance': 8, 'readValueFromPointer': floatReadValueFromPointer(name, shift), destructorFunction: null, // This type does not need a destructor }); } function ___cxa_begin_catch(ptr) { var info = EXCEPTIONS.infos[ptr]; if (info && !info.caught) { info.caught = true; __ZSt18uncaught_exceptionv.uncaught_exception--; } if (info) info.rethrown = false; EXCEPTIONS.caught.push(ptr); EXCEPTIONS.addRef(EXCEPTIONS.deAdjust(ptr)); return ptr; } function ___syscall140(which, varargs) { SYSCALLS.varargs = varargs; try { // llseek var stream = SYSCALLS.getStreamFromFD(), offset_high = SYSCALLS.get(), offset_low = SYSCALLS.get(), result = SYSCALLS.get(), whence = SYSCALLS.get(); // NOTE: offset_high is unused - Emscripten's off_t is 32-bit var offset = offset_low; FS.llseek(stream, offset, whence); HEAP32[((result) >> 2)] = stream.position; if (stream.getdents && offset === 0 && whence === 0) stream.getdents = null; // reset readdir state return 0; } catch (e) { if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e); return -e.errno; } } function ___syscall6(which, varargs) { SYSCALLS.varargs = varargs; try { // close var stream = SYSCALLS.getStreamFromFD(); FS.close(stream); return 0; } catch (e) { if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e); return -e.errno; } } function __embind_register_std_wstring(rawType, charSize, name) { // nb. do not cache HEAPU16 and HEAPU32, they may be destroyed by enlargeMemory(). name = readLatin1String(name); var getHeap, shift; if (charSize === 2) { getHeap = function () { return HEAPU16; }; shift = 1; } else if (charSize === 4) { getHeap = function () { return HEAPU32; }; shift = 2; } registerType(rawType, { name: name, 'fromWireType': function (value) { var HEAP = getHeap(); var length = HEAPU32[value >> 2]; var a = new Array(length); var start = (value + 4) >> shift; for (var i = 0; i < length; ++i) { a[i] = String.fromCharCode(HEAP[start + i]); } _free(value); return a.join(''); }, 'toWireType': function (destructors, value) { // assumes 4-byte alignment var HEAP = getHeap(); var length = value.length; var ptr = _malloc(4 + length * charSize); HEAPU32[ptr >> 2] = length; var start = (ptr + 4) >> shift; for (var i = 0; i < length; ++i) { HEAP[start + i] = value.charCodeAt(i); } if (destructors !== null) { destructors.push(_free, ptr); } return ptr; }, 'argPackAdvance': 8, 'readValueFromPointer': simpleReadValueFromPointer, destructorFunction: function (ptr) { _free(ptr); }, }); } function heap32VectorToArray(count, firstElement) { var array = []; for (var i = 0; i < count; i++) { array.push(HEAP32[(firstElement >> 2) + i]); } return array; } function runDestructors(destructors) { while (destructors.length) { var ptr = destructors.pop(); var del = destructors.pop(); del(ptr); } } function __embind_register_class_constructor( rawClassType, argCount, rawArgTypesAddr, invokerSignature, invoker, rawConstructor ) { var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr); invoker = requireFunction(invokerSignature, invoker); whenDependentTypesAreResolved([], [rawClassType], function (classType) { classType = classType[0]; var humanName = 'constructor ' + classType.name; if (undefined === classType.registeredClass.constructor_body) { classType.registeredClass.constructor_body = []; } if (undefined !== classType.registeredClass.constructor_body[argCount - 1]) { throw new BindingError("Cannot register multiple constructors with identical number of parameters (" + (argCount - 1) + ") for class '" + classType.name + "'! Overload resolution is currently only performed using the parameter count, not actual type info!"); } classType.registeredClass.constructor_body[argCount - 1] = function unboundTypeHandler() { throwUnboundTypeError('Cannot construct ' + classType.name + ' due to unbound types', rawArgTypes); }; whenDependentTypesAreResolved([], rawArgTypes, function (argTypes) { classType.registeredClass.constructor_body[argCount - 1] = function constructor_body() { if (arguments.length !== argCount - 1) { throwBindingError(humanName + ' called with ' + arguments.length + ' arguments, expected ' + (argCount - 1)); } var destructors = []; var args = new Array(argCount); args[0] = rawConstructor; for (var i = 1; i < argCount; ++i) { args[i] = argTypes[i]['toWireType'](destructors, arguments[i - 1]); } var ptr = invoker.apply(null, args); runDestructors(destructors); return argTypes[0]['fromWireType'](ptr); }; return []; }); return []; }); } function new_(constructor, argumentList) { if (!(constructor instanceof Function)) { throw new TypeError('new_ called with constructor type ' + typeof (constructor) + " which is not a function"); } /* * Previously, the following line was just: function dummy() {}; * Unfortunately, Chrome was preserving 'dummy' as the object's name, even though at creation, the 'dummy' has the * correct constructor name. Thus, objects created with IMVU.new would show up in the debugger as 'dummy', which * isn't very helpful. Using IMVU.createNamedFunction addresses the issue. Doublely-unfortunately, there's no way * to write a test for this behavior. -NRD 2013.02.22 */ var dummy = createNamedFunction(constructor.name || 'unknownFunctionName', function () { }); dummy.prototype = constructor.prototype; var obj = new dummy; var r = constructor.apply(obj, argumentList); return (r instanceof Object) ? r : obj; } function craftInvokerFunction(humanName, argTypes, classType, cppInvokerFunc, cppTargetFunc) { // humanName: a human-readable string name for the function to be generated. // argTypes: An array that contains the embind type objects for all types in the function signature. // argTypes[0] is the type object for the function return value. // argTypes[1] is the type object for function this object/class type, or null if not crafting an invoker for a class method. // argTypes[2...] are the actual function parameters. // classType: The embind type object for the class to be bound, or null if this is not a method of a class. // cppInvokerFunc: JS Function object to the C++-side function that interops into C++ code. // cppTargetFunc: Function pointer (an integer to FUNCTION_TABLE) to the target C++ function the cppInvokerFunc will end up calling. var argCount = argTypes.length; if (argCount < 2) { throwBindingError("argTypes array size mismatch! Must at least get return value and 'this' types!"); } var isClassMethodFunc = (argTypes[1] !== null && classType !== null); // Free functions with signature "void function()" do not need an invoker that marshalls between wire types. // TODO: This omits argument count check - enable only at -O3 or similar. // if (ENABLE_UNSAFE_OPTS && argCount == 2 && argTypes[0].name == "void" && !isClassMethodFunc) { // return FUNCTION_TABLE[fn]; // } var argsList = ""; var argsListWired = ""; for (var i = 0; i < argCount - 2; ++i) { argsList += (i !== 0 ? ", " : "") + "arg" + i; argsListWired += (i !== 0 ? ", " : "") + "arg" + i + "Wired"; } var invokerFnBody = "return function " + makeLegalFunctionName(humanName) + "(" + argsList + ") {\n" + "if (arguments.length !== " + (argCount - 2) + ") {\n" + "throwBindingError('function " + humanName + " called with ' + arguments.length + ' arguments, expected " + (argCount - 2) + " args!');\n" + "}\n"; // Determine if we need to use a dynamic stack to store the destructors for the function parameters. // TODO: Remove this completely once all function invokers are being dynamically generated. var needsDestructorStack = false; for (var i = 1; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here. if (argTypes[i] !== null && argTypes[i].destructorFunction === undefined) { // The type does not define a destructor function - must use dynamic stack needsDestructorStack = true; break; } } if (needsDestructorStack) { invokerFnBody += "var destructors = [];\n"; } var dtorStack = needsDestructorStack ? "destructors" : "null"; var args1 = ["throwBindingError", "invoker", "fn", "runDestructors", "retType", "classParam"]; var args2 = [throwBindingError, cppInvokerFunc, cppTargetFunc, runDestructors, argTypes[0], argTypes[1]]; if (isClassMethodFunc) { invokerFnBody += "var thisWired = classParam.toWireType(" + dtorStack + ", this);\n"; } for (var i = 0; i < argCount - 2; ++i) { invokerFnBody += "var arg" + i + "Wired = argType" + i + ".toWireType(" + dtorStack + ", arg" + i + "); // " + argTypes[i + 2].name + "\n"; args1.push("argType" + i); args2.push(argTypes[i + 2]); } if (isClassMethodFunc) { argsListWired = "thisWired" + (argsListWired.length > 0 ? ", " : "") + argsListWired; } var returns = (argTypes[0].name !== "void"); invokerFnBody += (returns ? "var rv = " : "") + "invoker(fn" + (argsListWired.length > 0 ? ", " : "") + argsListWired + ");\n"; if (needsDestructorStack) { invokerFnBody += "runDestructors(destructors);\n"; } else { for (var i = isClassMethodFunc ? 1 : 2; i < argTypes.length; ++i) { // Skip return value at index 0 - it's not deleted here. Also skip class type if not a method. var paramName = (i === 1 ? "thisWired" : ("arg" + (i - 2) + "Wired")); if (argTypes[i].destructorFunction !== null) { invokerFnBody += paramName + "_dtor(" + paramName + "); // " + argTypes[i].name + "\n"; args1.push(paramName + "_dtor"); args2.push(argTypes[i].destructorFunction); } } } if (returns) { invokerFnBody += "var ret = retType.fromWireType(rv);\n" + "return ret;\n"; } else { } invokerFnBody += "}\n"; args1.push(invokerFnBody); var invokerFunction = new_(Function, args1).apply(null, args2); return invokerFunction; } function __embind_register_class_function( rawClassType, methodName, argCount, rawArgTypesAddr, // [ReturnType, ThisType, Args...] invokerSignature, rawInvoker, context, isPureVirtual ) { var rawArgTypes = heap32VectorToArray(argCount, rawArgTypesAddr); methodName = readLatin1String(methodName); rawInvoker = requireFunction(invokerSignature, rawInvoker); whenDependentTypesAreResolved([], [rawClassType], function (classType) { classType = classType[0]; var humanName = classType.name + '.' + methodName; if (isPureVirtual) { classType.registeredClass.pureVirtualFunctions.push(methodName); } function unboundTypesHandler() { throwUnboundTypeError('Cannot call ' + humanName + ' due to unbound types', rawArgTypes); } var proto = classType.registeredClass.instancePrototype; var method = proto[methodName]; if (undefined === method || (undefined === method.overloadTable && method.className !== classType.name && method.argCount === argCount - 2)) { // This is the first overload to be registered, OR we are replacing a function in the base class with a function in the derived class. unboundTypesHandler.argCount = argCount - 2; unboundTypesHandler.className = classType.name; proto[methodName] = unboundTypesHandler; } else { // There was an existing function with the same name registered. Set up a function overload routing table. ensureOverloadTable(proto, methodName, humanName); proto[methodName].overloadTable[argCount - 2] = unboundTypesHandler; } whenDependentTypesAreResolved([], rawArgTypes, function (argTypes) { var memberFunction = craftInvokerFunction(humanName, argTypes, classType, rawInvoker, context); // Replace the initial unbound-handler-stub function with the appropriate member function, now that all types // are resolved. If multiple overloads are registered for this function, the function goes into an overload table. if (undefined === proto[methodName].overloadTable) { // Set argCount in case an overload is registered later memberFunction.argCount = argCount - 2; proto[methodName] = memberFunction; } else { proto[methodName].overloadTable[argCount - 2] = memberFunction; } return []; }); return []; }); } function ___syscall146(which, varargs) { SYSCALLS.varargs = varargs; try { // writev var stream = SYSCALLS.getStreamFromFD(), iov = SYSCALLS.get(), iovcnt = SYSCALLS.get(); return SYSCALLS.doWritev(stream, iov, iovcnt); } catch (e) { if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e); return -e.errno; } } function ___syscall145(which, varargs) { SYSCALLS.varargs = varargs; try { // readv var stream = SYSCALLS.getStreamFromFD(), iov = SYSCALLS.get(), iovcnt = SYSCALLS.get(); return SYSCALLS.doReadv(stream, iov, iovcnt); } catch (e) { if (typeof FS === 'undefined' || !(e instanceof FS.ErrnoError)) abort(e); return -e.errno; } } var ___dso_handle = STATICTOP; STATICTOP += 16;; embind_init_charCodes(); BindingError = Module['BindingError'] = extendError(Error, 'BindingError');; InternalError = Module['InternalError'] = extendError(Error, 'InternalError');; init_emval();; FS.staticInit(); __ATINIT__.unshift(function () { if (!Module["noFSInit"] && !FS.init.initialized) FS.init() }); __ATMAIN__.push(function () { FS.ignorePermissions = false }); __ATEXIT__.push(function () { FS.quit() }); Module["FS_createFolder"] = FS.createFolder; Module["FS_createPath"] = FS.createPath; Module["FS_createDataFile"] = FS.createDataFile; Module["FS_createPreloadedFile"] = FS.createPreloadedFile; Module["FS_createLazyFile"] = FS.createLazyFile; Module["FS_createLink"] = FS.createLink; Module["FS_createDevice"] = FS.createDevice; Module["FS_unlink"] = FS.unlink;; __ATINIT__.unshift(function () { TTY.init() }); __ATEXIT__.push(function () { TTY.shutdown() });; if (ENVIRONMENT_IS_NODE) { var fs = require("fs"); var NODEJS_PATH = require("path"); NODEFS.staticInit(); }; ___buildEnvironment(ENV);; init_ClassHandle(); init_RegisteredPointer(); init_embind();; UnboundTypeError = Module['UnboundTypeError'] = extendError(Error, 'UnboundTypeError');; DYNAMICTOP_PTR = allocate(1, "i32", ALLOC_STATIC); STACK_BASE = STACKTOP = Runtime.alignMemory(STATICTOP); STACK_MAX = STACK_BASE + TOTAL_STACK; DYNAMIC_BASE = Runtime.alignMemory(STACK_MAX); HEAP32[DYNAMICTOP_PTR >> 2] = DYNAMIC_BASE; staticSealed = true; // seal the static portion of memory Module['wasmTableSize'] = 3304; Module['wasmMaxTableSize'] = 3304; function invoke_iiiiiiii(index, a1, a2, a3, a4, a5, a6, a7) { try { return Module["dynCall_iiiiiiii"](index, a1, a2, a3, a4, a5, a6, a7); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiii(index, a1, a2, a3) { try { return Module["dynCall_iiii"](index, a1, a2, a3); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_viiiiii(index, a1, a2, a3, a4, a5, a6) { try { Module["dynCall_viiiiii"](index, a1, a2, a3, a4, a5, a6); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_viiiii(index, a1, a2, a3, a4, a5) { try { Module["dynCall_viiiii"](index, a1, a2, a3, a4, a5); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_viiiiiii(index, a1, a2, a3, a4, a5, a6, a7) { try { Module["dynCall_viiiiiii"](index, a1, a2, a3, a4, a5, a6, a7); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiiiid(index, a1, a2, a3, a4, a5, a6) { try { return Module["dynCall_iiiiiid"](index, a1, a2, a3, a4, a5, a6); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_i(index) { try { return Module["dynCall_i"](index); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_vi(index, a1) { try { Module["dynCall_vi"](index, a1); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_vii(index, a1, a2) { try { Module["dynCall_vii"](index, a1, a2); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiiiii(index, a1, a2, a3, a4, a5, a6) { try { return Module["dynCall_iiiiiii"](index, a1, a2, a3, a4, a5, a6); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_ii(index, a1) { try { return Module["dynCall_ii"](index, a1); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_viijii(index, a1, a2, a3, a4, a5, a6) { try { Module["dynCall_viijii"](index, a1, a2, a3, a4, a5, a6); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiiij(index, a1, a2, a3, a4, a5, a6) { try { return Module["dynCall_iiiiij"](index, a1, a2, a3, a4, a5, a6); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_viii(index, a1, a2, a3) { try { Module["dynCall_viii"](index, a1, a2, a3); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_v(index) { try { Module["dynCall_v"](index); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiiiiiii(index, a1, a2, a3, a4, a5, a6, a7, a8) { try { return Module["dynCall_iiiiiiiii"](index, a1, a2, a3, a4, a5, a6, a7, a8); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiii(index, a1, a2, a3, a4) { try { return Module["dynCall_iiiii"](index, a1, a2, a3, a4); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_viiii(index, a1, a2, a3, a4) { try { Module["dynCall_viiii"](index, a1, a2, a3, a4); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iii(index, a1, a2) { try { return Module["dynCall_iii"](index, a1, a2); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiiid(index, a1, a2, a3, a4, a5) { try { return Module["dynCall_iiiiid"](index, a1, a2, a3, a4, a5); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } function invoke_iiiiii(index, a1, a2, a3, a4, a5) { try { return Module["dynCall_iiiiii"](index, a1, a2, a3, a4, a5); } catch (e) { if (typeof e !== 'number' && e !== 'longjmp') throw e; Module["setThrew"](1, 0); } } Module.asmGlobalArg = { "Math": Math, "Int8Array": Int8Array, "Int16Array": Int16Array, "Int32Array": Int32Array, "Uint8Array": Uint8Array, "Uint16Array": Uint16Array, "Uint32Array": Uint32Array, "Float32Array": Float32Array, "Float64Array": Float64Array, "NaN": NaN, "Infinity": Infinity, "byteLength": byteLength }; Module.asmLibraryArg = { "abort": abort, "assert": assert, "enlargeMemory": enlargeMemory, "getTotalMemory": getTotalMemory, "abortOnCannotGrowMemory": abortOnCannotGrowMemory, "invoke_iiiiiiii": invoke_iiiiiiii, "invoke_iiii": invoke_iiii, "invoke_viiiiii": invoke_viiiiii, "invoke_viiiii": invoke_viiiii, "invoke_viiiiiii": invoke_viiiiiii, "invoke_iiiiiid": invoke_iiiiiid, "invoke_i": invoke_i, "invoke_vi": invoke_vi, "invoke_vii": invoke_vii, "invoke_iiiiiii": invoke_iiiiiii, "invoke_ii": invoke_ii, "invoke_viijii": invoke_viijii, "invoke_iiiiij": invoke_iiiiij, "invoke_viii": invoke_viii, "invoke_v": invoke_v, "invoke_iiiiiiiii": invoke_iiiiiiiii, "invoke_iiiii": invoke_iiiii, "invoke_viiii": invoke_viiii, "invoke_iii": invoke_iii, "invoke_iiiiid": invoke_iiiiid, "invoke_iiiiii": invoke_iiiiii, "floatReadValueFromPointer": floatReadValueFromPointer, "simpleReadValueFromPointer": simpleReadValueFromPointer, "throwInternalError": throwInternalError, "get_first_emval": get_first_emval, "getLiveInheritedInstances": getLiveInheritedInstances, "___assert_fail": ___assert_fail, "__ZSt18uncaught_exceptionv": __ZSt18uncaught_exceptionv, "ClassHandle": ClassHandle, "getShiftFromSize": getShiftFromSize, "__addDays": __addDays, "___cxa_begin_catch": ___cxa_begin_catch, "_emscripten_memcpy_big": _emscripten_memcpy_big, "runDestructor": runDestructor, "throwInstanceAlreadyDeleted": throwInstanceAlreadyDeleted, "__embind_register_std_string": __embind_register_std_string, "init_RegisteredPointer": init_RegisteredPointer, "ClassHandle_isAliasOf": ClassHandle_isAliasOf, "flushPendingDeletes": flushPendingDeletes, "_pthread_mutexattr_settype": _pthread_mutexattr_settype, "makeClassHandle": makeClassHandle, "whenDependentTypesAreResolved": whenDependentTypesAreResolved, "__embind_register_class_constructor": __embind_register_class_constructor, "___cxa_atexit": ___cxa_atexit, "init_ClassHandle": init_ClassHandle, "___syscall140": ___syscall140, "ClassHandle_clone": ClassHandle_clone, "___syscall145": ___syscall145, "___syscall146": ___syscall146, "RegisteredClass": RegisteredClass, "___cxa_find_matching_catch": ___cxa_find_matching_catch, "embind_init_charCodes": embind_init_charCodes, "___setErrNo": ___setErrNo, "__embind_register_bool": __embind_register_bool, "___resumeException": ___resumeException, "createNamedFunction": createNamedFunction, "___syscall91": ___syscall91, "___buildEnvironment": ___buildEnvironment, "__emval_decref": __emval_decref, "_pthread_once": _pthread_once, "init_embind": init_embind, "constNoSmartPtrRawPointerToWireType": constNoSmartPtrRawPointerToWireType, "heap32VectorToArray": heap32VectorToArray, "ClassHandle_delete": ClassHandle_delete, "___lock": ___lock, "___syscall6": ___syscall6, "ensureOverloadTable": ensureOverloadTable, "__embind_register_emval": __embind_register_emval, "new_": new_, "downcastPointer": downcastPointer, "_exit": _exit, "replacePublicSymbol": replacePublicSymbol, "__embind_register_class": __embind_register_class, "_llvm_pow_f64": _llvm_pow_f64, "ClassHandle_deleteLater": ClassHandle_deleteLater, "___syscall54": ___syscall54, "RegisteredPointer_deleteObject": RegisteredPointer_deleteObject, "ClassHandle_isDeleted": ClassHandle_isDeleted, "__embind_register_integer": __embind_register_integer, "___cxa_allocate_exception": ___cxa_allocate_exception, "__emval_take_value": __emval_take_value, "__isLeapYear": __isLeapYear, "enumReadValueFromPointer": enumReadValueFromPointer, "_embind_repr": _embind_repr, "_pthread_getspecific": _pthread_getspecific, "RegisteredPointer": RegisteredPointer, "_pthread_mutex_destroy": _pthread_mutex_destroy, "_getenv": _getenv, "runDestructors": runDestructors, "requireRegisteredType": requireRegisteredType, "makeLegalFunctionName": makeLegalFunctionName, "_pthread_key_create": _pthread_key_create, "upcastPointer": upcastPointer, "init_emval": init_emval, "shallowCopyInternalPointer": shallowCopyInternalPointer, "nonConstNoSmartPtrRawPointerToWireType": nonConstNoSmartPtrRawPointerToWireType, "_abort": _abort, "throwBindingError": throwBindingError, "getTypeName": getTypeName, "exposePublicSymbol": exposePublicSymbol, "RegisteredPointer_fromWireType": RegisteredPointer_fromWireType, "___cxa_pure_virtual": ___cxa_pure_virtual, "_strftime": _strftime, "_pthread_cond_wait": _pthread_cond_wait, "RegisteredPointer_destructor": RegisteredPointer_destructor, "__embind_register_memory_view": __embind_register_memory_view, "getInheritedInstance": getInheritedInstance, "setDelayFunction": setDelayFunction, "___gxx_personality_v0": ___gxx_personality_v0, "extendError": extendError, "__embind_register_void": __embind_register_void, "_strftime_l": _strftime_l, "RegisteredPointer_getPointee": RegisteredPointer_getPointee, "__emval_register": __emval_register, "__embind_register_std_wstring": __embind_register_std_wstring, "__embind_register_class_function": __embind_register_class_function, "__exit": __exit, "throwUnboundTypeError": throwUnboundTypeError, "__arraySum": __arraySum, "__emval_incref": __emval_incref, "readLatin1String": readLatin1String, "craftInvokerFunction": craftInvokerFunction, "getBasestPointer": getBasestPointer, "getInheritedInstanceCount": getInheritedInstanceCount, "__embind_register_float": __embind_register_float, "integerReadValueFromPointer": integerReadValueFromPointer, "___unlock": ___unlock, "__embind_register_enum_value": __embind_register_enum_value, "_pthread_mutexattr_init": _pthread_mutexattr_init, "_pthread_setspecific": _pthread_setspecific, "genericPointerToWireType": genericPointerToWireType, "registerType": registerType, "___cxa_throw": ___cxa_throw, "__embind_register_enum": __embind_register_enum, "count_emval_handles": count_emval_handles, "requireFunction": requireFunction, "_atexit": _atexit, "_pthread_mutex_init": _pthread_mutex_init, "___map_file": ___map_file, "DYNAMICTOP_PTR": DYNAMICTOP_PTR, "tempDoublePtr": tempDoublePtr, "ABORT": ABORT, "STACKTOP": STACKTOP, "STACK_MAX": STACK_MAX, "___dso_handle": ___dso_handle }; // EMSCRIPTEN_START_ASM var asm = Module["asm"]// EMSCRIPTEN_END_ASM (Module.asmGlobalArg, Module.asmLibraryArg, buffer); Module["asm"] = asm; var stackSave = Module["stackSave"] = function () { return Module["asm"]["stackSave"].apply(null, arguments) }; var setThrew = Module["setThrew"] = function () { return Module["asm"]["setThrew"].apply(null, arguments) }; var __GLOBAL__sub_I_shaderc_js_cpp = Module["__GLOBAL__sub_I_shaderc_js_cpp"] = function () { return Module["asm"]["__GLOBAL__sub_I_shaderc_js_cpp"].apply(null, arguments) }; var _fflush = Module["_fflush"] = function () { return Module["asm"]["_fflush"].apply(null, arguments) }; var ___cxa_is_pointer_type = Module["___cxa_is_pointer_type"] = function () { return Module["asm"]["___cxa_is_pointer_type"].apply(null, arguments) }; var _memset = Module["_memset"] = function () { return Module["asm"]["_memset"].apply(null, arguments) }; var __GLOBAL__sub_I_doc_cpp = Module["__GLOBAL__sub_I_doc_cpp"] = function () { return Module["asm"]["__GLOBAL__sub_I_doc_cpp"].apply(null, arguments) }; var _sbrk = Module["_sbrk"] = function () { return Module["asm"]["_sbrk"].apply(null, arguments) }; var _memcpy = Module["_memcpy"] = function () { return Module["asm"]["_memcpy"].apply(null, arguments) }; var _llvm_bswap_i32 = Module["_llvm_bswap_i32"] = function () { return Module["asm"]["_llvm_bswap_i32"].apply(null, arguments) }; var stackAlloc = Module["stackAlloc"] = function () { return Module["asm"]["stackAlloc"].apply(null, arguments) }; var getTempRet0 = Module["getTempRet0"] = function () { return Module["asm"]["getTempRet0"].apply(null, arguments) }; var __GLOBAL__sub_I_bind_cpp = Module["__GLOBAL__sub_I_bind_cpp"] = function () { return Module["asm"]["__GLOBAL__sub_I_bind_cpp"].apply(null, arguments) }; var setTempRet0 = Module["setTempRet0"] = function () { return Module["asm"]["setTempRet0"].apply(null, arguments) }; var _pthread_mutex_unlock = Module["_pthread_mutex_unlock"] = function () { return Module["asm"]["_pthread_mutex_unlock"].apply(null, arguments) }; var __GLOBAL__I_000101 = Module["__GLOBAL__I_000101"] = function () { return Module["asm"]["__GLOBAL__I_000101"].apply(null, arguments) }; var _emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = function () { return Module["asm"]["_emscripten_get_global_libc"].apply(null, arguments) }; var ___getTypeName = Module["___getTypeName"] = function () { return Module["asm"]["___getTypeName"].apply(null, arguments) }; var __GLOBAL__sub_I_iostream_cpp = Module["__GLOBAL__sub_I_iostream_cpp"] = function () { return Module["asm"]["__GLOBAL__sub_I_iostream_cpp"].apply(null, arguments) }; var _pthread_cond_broadcast = Module["_pthread_cond_broadcast"] = function () { return Module["asm"]["_pthread_cond_broadcast"].apply(null, arguments) }; var ___errno_location = Module["___errno_location"] = function () { return Module["asm"]["___errno_location"].apply(null, arguments) }; var ___cxa_can_catch = Module["___cxa_can_catch"] = function () { return Module["asm"]["___cxa_can_catch"].apply(null, arguments) }; var _free = Module["_free"] = function () { return Module["asm"]["_free"].apply(null, arguments) }; var runPostSets = Module["runPostSets"] = function () { return Module["asm"]["runPostSets"].apply(null, arguments) }; var establishStackSpace = Module["establishStackSpace"] = function () { return Module["asm"]["establishStackSpace"].apply(null, arguments) }; var _memmove = Module["_memmove"] = function () { return Module["asm"]["_memmove"].apply(null, arguments) }; var stackRestore = Module["stackRestore"] = function () { return Module["asm"]["stackRestore"].apply(null, arguments) }; var _malloc = Module["_malloc"] = function () { return Module["asm"]["_malloc"].apply(null, arguments) }; var _pthread_mutex_lock = Module["_pthread_mutex_lock"] = function () { return Module["asm"]["_pthread_mutex_lock"].apply(null, arguments) }; var _emscripten_replace_memory = Module["_emscripten_replace_memory"] = function () { return Module["asm"]["_emscripten_replace_memory"].apply(null, arguments) }; var __GLOBAL__sub_I_SPVRemapper_cpp = Module["__GLOBAL__sub_I_SPVRemapper_cpp"] = function () { return Module["asm"]["__GLOBAL__sub_I_SPVRemapper_cpp"].apply(null, arguments) }; var dynCall_iiiiiiii = Module["dynCall_iiiiiiii"] = function () { return Module["asm"]["dynCall_iiiiiiii"].apply(null, arguments) }; var dynCall_iiii = Module["dynCall_iiii"] = function () { return Module["asm"]["dynCall_iiii"].apply(null, arguments) }; var dynCall_viiiiii = Module["dynCall_viiiiii"] = function () { return Module["asm"]["dynCall_viiiiii"].apply(null, arguments) }; var dynCall_viiiii = Module["dynCall_viiiii"] = function () { return Module["asm"]["dynCall_viiiii"].apply(null, arguments) }; var dynCall_viiiiiii = Module["dynCall_viiiiiii"] = function () { return Module["asm"]["dynCall_viiiiiii"].apply(null, arguments) }; var dynCall_iiiiiid = Module["dynCall_iiiiiid"] = function () { return Module["asm"]["dynCall_iiiiiid"].apply(null, arguments) }; var dynCall_i = Module["dynCall_i"] = function () { return Module["asm"]["dynCall_i"].apply(null, arguments) }; var dynCall_vi = Module["dynCall_vi"] = function () { return Module["asm"]["dynCall_vi"].apply(null, arguments) }; var dynCall_vii = Module["dynCall_vii"] = function () { return Module["asm"]["dynCall_vii"].apply(null, arguments) }; var dynCall_iiiiiii = Module["dynCall_iiiiiii"] = function () { return Module["asm"]["dynCall_iiiiiii"].apply(null, arguments) }; var dynCall_ii = Module["dynCall_ii"] = function () { return Module["asm"]["dynCall_ii"].apply(null, arguments) }; var dynCall_viijii = Module["dynCall_viijii"] = function () { return Module["asm"]["dynCall_viijii"].apply(null, arguments) }; var dynCall_iiiiij = Module["dynCall_iiiiij"] = function () { return Module["asm"]["dynCall_iiiiij"].apply(null, arguments) }; var dynCall_viii = Module["dynCall_viii"] = function () { return Module["asm"]["dynCall_viii"].apply(null, arguments) }; var dynCall_v = Module["dynCall_v"] = function () { return Module["asm"]["dynCall_v"].apply(null, arguments) }; var dynCall_iiiiiiiii = Module["dynCall_iiiiiiiii"] = function () { return Module["asm"]["dynCall_iiiiiiiii"].apply(null, arguments) }; var dynCall_iiiii = Module["dynCall_iiiii"] = function () { return Module["asm"]["dynCall_iiiii"].apply(null, arguments) }; var dynCall_viiii = Module["dynCall_viiii"] = function () { return Module["asm"]["dynCall_viiii"].apply(null, arguments) }; var dynCall_iii = Module["dynCall_iii"] = function () { return Module["asm"]["dynCall_iii"].apply(null, arguments) }; var dynCall_iiiiid = Module["dynCall_iiiiid"] = function () { return Module["asm"]["dynCall_iiiiid"].apply(null, arguments) }; var dynCall_iiiiii = Module["dynCall_iiiiii"] = function () { return Module["asm"]["dynCall_iiiiii"].apply(null, arguments) }; ; Runtime.stackAlloc = Module['stackAlloc']; Runtime.stackSave = Module['stackSave']; Runtime.stackRestore = Module['stackRestore']; Runtime.establishStackSpace = Module['establishStackSpace']; Runtime.setTempRet0 = Module['setTempRet0']; Runtime.getTempRet0 = Module['getTempRet0']; // === Auto-generated postamble setup entry stuff === Module['asm'] = asm; if (memoryInitializer) { if (typeof Module['locateFile'] === 'function') { memoryInitializer = Module['locateFile'](memoryInitializer); } else if (Module['memoryInitializerPrefixURL']) { memoryInitializer = Module['memoryInitializerPrefixURL'] + memoryInitializer; } if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) { var data = Module['readBinary'](memoryInitializer); HEAPU8.set(data, Runtime.GLOBAL_BASE); } else { addRunDependency('memory initializer'); var applyMemoryInitializer = function (data) { if (data.byteLength) data = new Uint8Array(data); HEAPU8.set(data, Runtime.GLOBAL_BASE); // Delete the typed array that contains the large blob of the memory initializer request response so that // we won't keep unnecessary memory lying around. However, keep the XHR object itself alive so that e.g. // its .status field can still be accessed later. if (Module['memoryInitializerRequest']) delete Module['memoryInitializerRequest'].response; removeRunDependency('memory initializer'); } function doBrowserLoad() { Module['readAsync'](memoryInitializer, applyMemoryInitializer, function () { throw 'could not load memory initializer ' + memoryInitializer; }); } if (Module['memoryInitializerRequest']) { // a network request has already been created, just use that function useRequest() { var request = Module['memoryInitializerRequest']; if (request.status !== 200 && request.status !== 0) { // If you see this warning, the issue may be that you are using locateFile or memoryInitializerPrefixURL, and defining them in JS. That // means that the HTML file doesn't know about them, and when it tries to create the mem init request early, does it to the wrong place. // Look in your browser's devtools network console to see what's going on. console.warn('a problem seems to have happened with Module.memoryInitializerRequest, status: ' + request.status + ', retrying ' + memoryInitializer); doBrowserLoad(); return; } applyMemoryInitializer(request.response); } if (Module['memoryInitializerRequest'].response) { setTimeout(useRequest, 0); // it's already here; but, apply it asynchronously } else { Module['memoryInitializerRequest'].addEventListener('load', useRequest); // wait for it } } else { // fetch it from the network ourselves doBrowserLoad(); } } } /** * @constructor * @extends {Error} */ function ExitStatus(status) { this.name = "ExitStatus"; this.message = "Program terminated with exit(" + status + ")"; this.status = status; }; ExitStatus.prototype = new Error(); ExitStatus.prototype.constructor = ExitStatus; var initialStackTop; var preloadStartTime = null; var calledMain = false; dependenciesFulfilled = function runCaller() { // If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false) if (!Module['calledRun']) run(); if (!Module['calledRun']) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled } Module['callMain'] = Module.callMain = function callMain(args) { args = args || []; ensureInitRuntime(); var argc = args.length + 1; function pad() { for (var i = 0; i < 4 - 1; i++) { argv.push(0); } } var argv = [allocate(intArrayFromString(Module['thisProgram']), 'i8', ALLOC_NORMAL)]; pad(); for (var i = 0; i < argc - 1; i = i + 1) { argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_NORMAL)); pad(); } argv.push(0); argv = allocate(argv, 'i32', ALLOC_NORMAL); try { var ret = Module['_main'](argc, argv, 0); // if we're not running an evented main loop, it's time to exit exit(ret, /* implicit = */ true); } catch (e) { if (e instanceof ExitStatus) { // exit() throws this once it's done to make sure execution // has been stopped completely return; } else if (e == 'SimulateInfiniteLoop') { // running an evented main loop, don't immediately exit Module['noExitRuntime'] = true; return; } else { var toLog = e; if (e && typeof e === 'object' && e.stack) { toLog = [e, e.stack]; } Module.printErr('exception thrown: ' + toLog); Module['quit'](1, e); } } finally { calledMain = true; } } /** @type {function(Array=)} */ function run(args) { args = args || Module['arguments']; if (preloadStartTime === null) preloadStartTime = Date.now(); if (runDependencies > 0) { return; } preRun(); if (runDependencies > 0) return; // a preRun added a dependency, run will be called later if (Module['calledRun']) return; // run may have just been called through dependencies being fulfilled just in this very frame function doRun() { if (Module['calledRun']) return; // run may have just been called while the async setStatus time below was happening Module['calledRun'] = true; if (ABORT) return; ensureInitRuntime(); preMain(); if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized'](); if (Module['_main'] && shouldRunNow) Module['callMain'](args); postRun(); } if (Module['setStatus']) { Module['setStatus']('Running...'); setTimeout(function () { setTimeout(function () { Module['setStatus'](''); }, 1); doRun(); }, 1); } else { doRun(); } } Module['run'] = Module.run = run; function exit(status, implicit) { if (implicit && Module['noExitRuntime']) { return; } if (Module['noExitRuntime']) { } else { ABORT = true; EXITSTATUS = status; STACKTOP = initialStackTop; exitRuntime(); if (Module['onExit']) Module['onExit'](status); } if (ENVIRONMENT_IS_NODE) { process['exit'](status); } Module['quit'](status, new ExitStatus(status)); } Module['exit'] = Module.exit = exit; var abortDecorators = []; function abort(what) { if (Module['onAbort']) { Module['onAbort'](what); } if (what !== undefined) { Module.print(what); Module.printErr(what); what = JSON.stringify(what) } else { what = ''; } ABORT = true; EXITSTATUS = 1; var extra = '\nIf this abort() is unexpected, build with -s ASSERTIONS=1 which can give more information.'; var output = 'abort(' + what + ') at ' + stackTrace() + extra; if (abortDecorators) { abortDecorators.forEach(function (decorator) { output = decorator(output, what); }); } throw output; } Module['abort'] = Module.abort = abort; // {{PRE_RUN_ADDITIONS}} if (Module['preInit']) { if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']]; while (Module['preInit'].length > 0) { Module['preInit'].pop()(); } } // shouldRunNow refers to calling main(), not run(). var shouldRunNow = true; if (Module['noInitialRun']) { shouldRunNow = false; } run(); // {{POST_RUN_ADDITIONS}} // {{MODULE_ADDITIONS}} return returnPromise; }; return Shaderc; }); // export default Shaderc; // window.Shaderc = Shaderc;