#ifdef BUMP #extension GL_OES_standard_derivatives : enable #endif #ifdef LOGARITHMICDEPTH #extension GL_EXT_frag_depth : enable #endif precision highp float; // Constants #define RECIPROCAL_PI2 0.15915494 #define FRESNEL_MAXIMUM_ON_ROUGH 0.25 uniform vec3 vEyePosition; uniform vec3 vAmbientColor; uniform vec3 vReflectionColor; uniform vec4 vAlbedoColor; // CUSTOM CONTROLS uniform vec4 vLightingIntensity; uniform vec4 vCameraInfos; #ifdef OVERLOADEDVALUES uniform vec4 vOverloadedIntensity; uniform vec3 vOverloadedAmbient; uniform vec3 vOverloadedAlbedo; uniform vec3 vOverloadedReflectivity; uniform vec3 vOverloadedEmissive; uniform vec3 vOverloadedReflection; uniform vec3 vOverloadedMicroSurface; #endif #ifdef OVERLOADEDSHADOWVALUES uniform vec4 vOverloadedShadowIntensity; #endif // PBR CUSTOM CONSTANTS const float kPi = 3.1415926535897932384626433832795; // PBR HELPER METHODS float Square(float value) { return value * value; } float getLuminance(vec3 color) { return clamp(dot(color, vec3(0.2126, 0.7152, 0.0722)), 0., 1.); } float convertRoughnessToAverageSlope(float roughness) { // Calculate AlphaG as square of roughness; add epsilon to avoid numerical issues const float kMinimumVariance = 0.0005; float alphaG = Square(roughness) + kMinimumVariance; return alphaG; } // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007 float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG) { float tanSquared = (1.0 - dot * dot) / (dot * dot); return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared)); } float smithVisibilityG_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG) { return smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG); } // Trowbridge-Reitz (GGX) // Generalised Trowbridge-Reitz with gamma power=2.0 float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG) { // Note: alphaG is average slope (gradient) of the normals in slope-space. // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have // a tangent (gradient) closer to the macrosurface than this slope. float a2 = Square(alphaG); float d = NdotH * NdotH * (a2 - 1.0) + 1.0; return a2 / (kPi * d * d); } vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90) { return reflectance0 + (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotH, 0., 1.), 5.0); } vec3 FresnelSchlickEnvironmentGGX(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness) { // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness); return reflectance0 + weight * (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotN, 0., 1.), 5.0); } // Cook Torance Specular computation. vec3 computeSpecularTerm(float NdotH, float NdotL, float NdotV, float VdotH, float roughness, vec3 specularColor) { float alphaG = convertRoughnessToAverageSlope(roughness); float distribution = normalDistributionFunction_TrowbridgeReitzGGX(NdotH, alphaG); float visibility = smithVisibilityG_TrowbridgeReitzGGX_Walter(NdotL, NdotV, alphaG); visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integated in viibility to avoid issues when visibility function changes. vec3 fresnel = fresnelSchlickGGX(VdotH, specularColor, vec3(1., 1., 1.)); float specTerm = max(0., visibility * distribution) * NdotL; return fresnel * specTerm * kPi; // TODO: audit pi constants } float computeDiffuseTerm(float NdotL, float NdotV, float VdotH, float roughness) { // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of // of general coupled diffuse/specular models e.g. Ashikhmin Shirley. float diffuseFresnelNV = pow(clamp(1.0 - NdotL, 0.000001, 1.), 5.0); float diffuseFresnelNL = pow(clamp(1.0 - NdotV, 0.000001, 1.), 5.0); float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness; float diffuseFresnelTerm = (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) * (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV); return diffuseFresnelTerm * NdotL; // PI Test // diffuseFresnelTerm /= kPi; } float computeDefaultMicroSurface(float microSurface, vec3 reflectivityColor) { float kReflectivityNoAlphaWorkflow_SmoothnessMax = 0.95; float reflectivityLuminance = getLuminance(reflectivityColor); float reflectivityLuma = sqrt(reflectivityLuminance); microSurface = reflectivityLuma * kReflectivityNoAlphaWorkflow_SmoothnessMax; return microSurface; } vec3 toLinearSpace(vec3 color) { return vec3(pow(color.r, 2.2), pow(color.g, 2.2), pow(color.b, 2.2)); } vec3 toGammaSpace(vec3 color) { return vec3(pow(color.r, 1.0 / 2.2), pow(color.g, 1.0 / 2.2), pow(color.b, 1.0 / 2.2)); } #ifdef CAMERATONEMAP vec3 toneMaps(vec3 color) { color = max(color, 0.0); // TONE MAPPING / EXPOSURE color.rgb = color.rgb * vCameraInfos.x; float tuning = 1.5; // TODO: sync up so e.g. 18% greys are matched to exposure appropriately // PI Test // tuning *= kPi; vec3 tonemapped = 1.0 - exp2(-color.rgb * tuning); // simple local photographic tonemapper color.rgb = mix(color.rgb, tonemapped, 1.0); return color; } #endif #ifdef CAMERACONTRAST vec4 contrasts(vec4 color) { color = clamp(color, 0.0, 1.0); vec3 resultHighContrast = color.rgb * color.rgb * (3.0 - 2.0 * color.rgb); float contrast = vCameraInfos.y; if (contrast < 1.0) { // Decrease contrast: interpolate towards zero-contrast image (flat grey) color.rgb = mix(vec3(0.5, 0.5, 0.5), color.rgb, contrast); } else { // Increase contrast: apply simple shoulder-toe high contrast curve color.rgb = mix(color.rgb, resultHighContrast, contrast - 1.0); } return color; } #endif // END PBR HELPER METHODS uniform vec4 vReflectivityColor; uniform vec3 vEmissiveColor; // Input varying vec3 vPositionW; #ifdef NORMAL varying vec3 vNormalW; #endif #ifdef VERTEXCOLOR varying vec4 vColor; #endif // Lights #ifdef LIGHT0 uniform vec4 vLightData0; uniform vec4 vLightDiffuse0; #ifdef SPECULARTERM uniform vec3 vLightSpecular0; #endif #ifdef SHADOW0 #if defined(SPOTLIGHT0) || defined(DIRLIGHT0) varying vec4 vPositionFromLight0; uniform sampler2D shadowSampler0; #else uniform samplerCube shadowSampler0; #endif uniform vec3 shadowsInfo0; #endif #ifdef SPOTLIGHT0 uniform vec4 vLightDirection0; #endif #ifdef HEMILIGHT0 uniform vec3 vLightGround0; #endif #endif #ifdef LIGHT1 uniform vec4 vLightData1; uniform vec4 vLightDiffuse1; #ifdef SPECULARTERM uniform vec3 vLightSpecular1; #endif #ifdef SHADOW1 #if defined(SPOTLIGHT1) || defined(DIRLIGHT1) varying vec4 vPositionFromLight1; uniform sampler2D shadowSampler1; #else uniform samplerCube shadowSampler1; #endif uniform vec3 shadowsInfo1; #endif #ifdef SPOTLIGHT1 uniform vec4 vLightDirection1; #endif #ifdef HEMILIGHT1 uniform vec3 vLightGround1; #endif #endif #ifdef LIGHT2 uniform vec4 vLightData2; uniform vec4 vLightDiffuse2; #ifdef SPECULARTERM uniform vec3 vLightSpecular2; #endif #ifdef SHADOW2 #if defined(SPOTLIGHT2) || defined(DIRLIGHT2) varying vec4 vPositionFromLight2; uniform sampler2D shadowSampler2; #else uniform samplerCube shadowSampler2; #endif uniform vec3 shadowsInfo2; #endif #ifdef SPOTLIGHT2 uniform vec4 vLightDirection2; #endif #ifdef HEMILIGHT2 uniform vec3 vLightGround2; #endif #endif #ifdef LIGHT3 uniform vec4 vLightData3; uniform vec4 vLightDiffuse3; #ifdef SPECULARTERM uniform vec3 vLightSpecular3; #endif #ifdef SHADOW3 #if defined(SPOTLIGHT3) || defined(DIRLIGHT3) varying vec4 vPositionFromLight3; uniform sampler2D shadowSampler3; #else uniform samplerCube shadowSampler3; #endif uniform vec3 shadowsInfo3; #endif #ifdef SPOTLIGHT3 uniform vec4 vLightDirection3; #endif #ifdef HEMILIGHT3 uniform vec3 vLightGround3; #endif #endif // Samplers #ifdef ALBEDO varying vec2 vAlbedoUV; uniform sampler2D albedoSampler; uniform vec2 vAlbedoInfos; #endif #ifdef AMBIENT varying vec2 vAmbientUV; uniform sampler2D ambientSampler; uniform vec2 vAmbientInfos; #endif #ifdef OPACITY varying vec2 vOpacityUV; uniform sampler2D opacitySampler; uniform vec2 vOpacityInfos; #endif #ifdef EMISSIVE varying vec2 vEmissiveUV; uniform vec2 vEmissiveInfos; uniform sampler2D emissiveSampler; #endif #ifdef LIGHTMAP varying vec2 vLightmapUV; uniform vec2 vLightmapInfos; uniform sampler2D lightmapSampler; #endif #if defined(REFLECTIVITY) varying vec2 vReflectivityUV; uniform vec2 vReflectivityInfos; uniform sampler2D reflectivitySampler; #endif // Fresnel #ifdef FRESNEL float computeFresnelTerm(vec3 viewDirection, vec3 worldNormal, float bias, float power) { float fresnelTerm = pow(bias + abs(dot(viewDirection, worldNormal)), power); return clamp(fresnelTerm, 0., 1.); } #endif #ifdef OPACITYFRESNEL uniform vec4 opacityParts; #endif #ifdef EMISSIVEFRESNEL uniform vec4 emissiveLeftColor; uniform vec4 emissiveRightColor; #endif // Reflection #ifdef REFLECTION uniform vec2 vReflectionInfos; #ifdef REFLECTIONMAP_3D uniform samplerCube reflectionCubeSampler; #else uniform sampler2D reflection2DSampler; #endif #ifdef REFLECTIONMAP_SKYBOX varying vec3 vPositionUVW; #else #ifdef REFLECTIONMAP_EQUIRECTANGULAR varying vec3 vDirectionW; #endif #if defined(REFLECTIONMAP_PLANAR) || defined(REFLECTIONMAP_CUBIC) || defined(REFLECTIONMAP_PROJECTION) uniform mat4 reflectionMatrix; #endif #if defined(REFLECTIONMAP_SPHERICAL) || defined(REFLECTIONMAP_PROJECTION) uniform mat4 view; #endif #endif vec3 computeReflectionCoords(vec4 worldPos, vec3 worldNormal) { #ifdef REFLECTIONMAP_EQUIRECTANGULAR vec3 direction = normalize(vDirectionW); float t = clamp(direction.y * -0.5 + 0.5, 0., 1.0); float s = atan(direction.z, direction.x) * RECIPROCAL_PI2 + 0.5; return vec3(s, t, 0); #endif #ifdef REFLECTIONMAP_SPHERICAL vec3 viewDir = normalize(vec3(view * worldPos)); vec3 viewNormal = normalize(vec3(view * vec4(worldNormal, 0.0))); vec3 r = reflect(viewDir, viewNormal); r.z = r.z - 1.0; float m = 2.0 * length(r); return vec3(r.x / m + 0.5, 1.0 - r.y / m - 0.5, 0); #endif #ifdef REFLECTIONMAP_PLANAR vec3 viewDir = worldPos.xyz - vEyePosition; vec3 coords = normalize(reflect(viewDir, worldNormal)); return vec3(reflectionMatrix * vec4(coords, 1)); #endif #ifdef REFLECTIONMAP_CUBIC vec3 viewDir = worldPos.xyz - vEyePosition; vec3 coords = reflect(viewDir, worldNormal); #ifdef INVERTCUBICMAP coords.y = 1.0 - coords.y; #endif return vec3(reflectionMatrix * vec4(coords, 0)); #endif #ifdef REFLECTIONMAP_PROJECTION return vec3(reflectionMatrix * (view * worldPos)); #endif #ifdef REFLECTIONMAP_SKYBOX return vPositionUVW; #endif #ifdef REFLECTIONMAP_EXPLICIT return vec3(0, 0, 0); #endif } #endif // Shadows #ifdef SHADOWS float unpack(vec4 color) { const vec4 bit_shift = vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0); return dot(color, bit_shift); } #if defined(POINTLIGHT0) || defined(POINTLIGHT1) || defined(POINTLIGHT2) || defined(POINTLIGHT3) uniform vec2 depthValues; float computeShadowCube(vec3 lightPosition, samplerCube shadowSampler, float darkness, float bias) { vec3 directionToLight = vPositionW - lightPosition; float depth = length(directionToLight); depth = clamp(depth, 0., 1.0); directionToLight = normalize(directionToLight); directionToLight.y = - directionToLight.y; float shadow = unpack(textureCube(shadowSampler, directionToLight)) + bias; if (depth > shadow) { #ifdef OVERLOADEDSHADOWVALUES return mix(1.0, darkness, vOverloadedShadowIntensity.x); #else return darkness; #endif } return 1.0; } float computeShadowWithPCFCube(vec3 lightPosition, samplerCube shadowSampler, float mapSize, float bias, float darkness) { vec3 directionToLight = vPositionW - lightPosition; float depth = length(directionToLight); depth = clamp(depth, 0., 1.0); float diskScale = 2.0 / mapSize; directionToLight = normalize(directionToLight); directionToLight.y = -directionToLight.y; float visibility = 1.; vec3 poissonDisk[4]; poissonDisk[0] = vec3(-1.0, 1.0, -1.0); poissonDisk[1] = vec3(1.0, -1.0, -1.0); poissonDisk[2] = vec3(-1.0, -1.0, -1.0); poissonDisk[3] = vec3(1.0, -1.0, 1.0); // Poisson Sampling float biasedDepth = depth - bias; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[0] * diskScale)) < biasedDepth) visibility -= 0.25; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[1] * diskScale)) < biasedDepth) visibility -= 0.25; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[2] * diskScale)) < biasedDepth) visibility -= 0.25; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[3] * diskScale)) < biasedDepth) visibility -= 0.25; #ifdef OVERLOADEDSHADOWVALUES return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x)); #else return min(1.0, visibility + darkness); #endif } #endif #if defined(SPOTLIGHT0) || defined(SPOTLIGHT1) || defined(SPOTLIGHT2) || defined(SPOTLIGHT3) || defined(DIRLIGHT0) || defined(DIRLIGHT1) || defined(DIRLIGHT2) || defined(DIRLIGHT3) float computeShadow(vec4 vPositionFromLight, sampler2D shadowSampler, float darkness, float bias) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0) { return 1.0; } float shadow = unpack(texture2D(shadowSampler, uv)) + bias; if (depth.z > shadow) { #ifdef OVERLOADEDSHADOWVALUES return mix(1.0, darkness, vOverloadedShadowIntensity.x); #else return darkness; #endif } return 1.; } float computeShadowWithPCF(vec4 vPositionFromLight, sampler2D shadowSampler, float mapSize, float bias, float darkness) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0) { return 1.0; } float visibility = 1.; vec2 poissonDisk[4]; poissonDisk[0] = vec2(-0.94201624, -0.39906216); poissonDisk[1] = vec2(0.94558609, -0.76890725); poissonDisk[2] = vec2(-0.094184101, -0.92938870); poissonDisk[3] = vec2(0.34495938, 0.29387760); // Poisson Sampling float biasedDepth = depth.z - bias; if (unpack(texture2D(shadowSampler, uv + poissonDisk[0] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[1] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[2] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[3] / mapSize)) < biasedDepth) visibility -= 0.25; #ifdef OVERLOADEDSHADOWVALUES return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x)); #else return min(1.0, visibility + darkness); #endif } // Thanks to http://devmaster.net/ float unpackHalf(vec2 color) { return color.x + (color.y / 255.0); } float linstep(float low, float high, float v) { return clamp((v - low) / (high - low), 0.0, 1.0); } float ChebychevInequality(vec2 moments, float compare, float bias) { float p = smoothstep(compare - bias, compare, moments.x); float variance = max(moments.y - moments.x * moments.x, 0.02); float d = compare - moments.x; float p_max = linstep(0.2, 1.0, variance / (variance + d * d)); return clamp(max(p, p_max), 0.0, 1.0); } float computeShadowWithVSM(vec4 vPositionFromLight, sampler2D shadowSampler, float bias, float darkness) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0 || depth.z >= 1.0) { return 1.0; } vec4 texel = texture2D(shadowSampler, uv); vec2 moments = vec2(unpackHalf(texel.xy), unpackHalf(texel.zw)); #ifdef OVERLOADEDSHADOWVALUES return min(1.0, mix(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness, vOverloadedShadowIntensity.x)); #else return min(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness); #endif } #endif #endif // Bump #ifdef BUMP varying vec2 vBumpUV; uniform vec2 vBumpInfos; uniform sampler2D bumpSampler; // Thanks to http://www.thetenthplanet.de/archives/1180 mat3 cotangent_frame(vec3 normal, vec3 p, vec2 uv) { // get edge vectors of the pixel triangle vec3 dp1 = dFdx(p); vec3 dp2 = dFdy(p); vec2 duv1 = dFdx(uv); vec2 duv2 = dFdy(uv); // solve the linear system vec3 dp2perp = cross(dp2, normal); vec3 dp1perp = cross(normal, dp1); vec3 tangent = dp2perp * duv1.x + dp1perp * duv2.x; vec3 binormal = dp2perp * duv1.y + dp1perp * duv2.y; // construct a scale-invariant frame float invmax = inversesqrt(max(dot(tangent, tangent), dot(binormal, binormal))); return mat3(tangent * invmax, binormal * invmax, normal); } vec3 perturbNormal(vec3 viewDir) { vec3 map = texture2D(bumpSampler, vBumpUV).xyz; map = map * 255. / 127. - 128. / 127.; mat3 TBN = cotangent_frame(vNormalW * vBumpInfos.y, -viewDir, vBumpUV); return normalize(TBN * map); } #endif #ifdef CLIPPLANE varying float fClipDistance; #endif #ifdef LOGARITHMICDEPTH uniform float logarithmicDepthConstant; varying float vFragmentDepth; #endif // Fog #ifdef FOG #define FOGMODE_NONE 0. #define FOGMODE_EXP 1. #define FOGMODE_EXP2 2. #define FOGMODE_LINEAR 3. #define E 2.71828 uniform vec4 vFogInfos; uniform vec3 vFogColor; varying float fFogDistance; float CalcFogFactor() { float fogCoeff = 1.0; float fogStart = vFogInfos.y; float fogEnd = vFogInfos.z; float fogDensity = vFogInfos.w; if (FOGMODE_LINEAR == vFogInfos.x) { fogCoeff = (fogEnd - fFogDistance) / (fogEnd - fogStart); } else if (FOGMODE_EXP == vFogInfos.x) { fogCoeff = 1.0 / pow(E, fFogDistance * fogDensity); } else if (FOGMODE_EXP2 == vFogInfos.x) { fogCoeff = 1.0 / pow(E, fFogDistance * fFogDistance * fogDensity * fogDensity); } return clamp(fogCoeff, 0.0, 1.0); } #endif // Light Computing struct lightingInfo { vec3 diffuse; #ifdef SPECULARTERM vec3 specular; #endif }; lightingInfo computeLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) { lightingInfo result; vec3 lightVectorW; float attenuation = 1.0; if (lightData.w == 0.) { vec3 direction = lightData.xyz - vPositionW; attenuation = max(0., 1.0 - length(direction) / range); lightVectorW = normalize(direction); } else { lightVectorW = normalize(-lightData.xyz); } // diffuse vec3 H = normalize(viewDirectionW + lightVectorW); float NdotL = max(0.00000000001, dot(vNormal, lightVectorW)); float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H)); float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness); result.diffuse = diffuseTerm * diffuseColor * attenuation; #ifdef SPECULARTERM // Specular float NdotH = max(0.00000000001, dot(vNormal, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * attenuation; #endif return result; } lightingInfo computeSpotLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec4 lightDirection, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) { lightingInfo result; vec3 direction = lightData.xyz - vPositionW; vec3 lightVectorW = normalize(direction); float attenuation = max(0., 1.0 - length(direction) / range); // diffuse float cosAngle = max(0.0000001, dot(-lightDirection.xyz, lightVectorW)); float spotAtten = 0.0; if (cosAngle >= lightDirection.w) { cosAngle = max(0., pow(cosAngle, lightData.w)); spotAtten = clamp((cosAngle - lightDirection.w) / (1. - cosAngle), 0.0, 1.0); // Diffuse vec3 H = normalize(viewDirectionW - lightDirection.xyz); float NdotL = max(0.00000000001, dot(vNormal, -lightDirection.xyz)); float VdotH = clamp(dot(viewDirectionW, H), 0.00000000001, 1.0); float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness); result.diffuse = diffuseTerm * diffuseColor * attenuation * spotAtten; #ifdef SPECULARTERM // Specular float NdotH = max(0.00000000001, dot(vNormal, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * attenuation * spotAtten; #endif return result; } result.diffuse = vec3(0.); #ifdef SPECULARTERM result.specular = vec3(0.); #endif return result; } lightingInfo computeHemisphericLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, vec3 groundColor, float roughness, float NdotV) { lightingInfo result; vec3 lightVectorW = normalize(lightData.xyz); // Diffuse float ndl = dot(vNormal, lightData.xyz) * 0.5 + 0.5; result.diffuse = mix(groundColor, diffuseColor, ndl); #ifdef SPECULARTERM // Specular vec3 H = normalize(viewDirectionW + lightVectorW); float NdotH = max(0.00000000001, dot(vNormal, H)); float NdotL = max(0.00000000001, ndl); float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm; #endif return result; } void main(void) { // Clip plane #ifdef CLIPPLANE if (fClipDistance > 0.0) discard; #endif vec3 viewDirectionW = normalize(vEyePosition - vPositionW); // Base color vec4 baseColor = vec4(1., 1., 1., 1.); vec3 albedoColor = vAlbedoColor.rgb; // Alpha float alpha = vAlbedoColor.a; #ifdef ALBEDO baseColor = texture2D(albedoSampler, vAlbedoUV); baseColor = vec4(toLinearSpace(baseColor.rgb), baseColor.a); #ifdef ALPHATEST if (baseColor.a < 0.4) discard; #endif #ifdef ALPHAFROMALBEDO alpha *= baseColor.a; #endif baseColor.rgb *= vAlbedoInfos.y; #endif #ifdef VERTEXCOLOR baseColor.rgb *= vColor.rgb; #endif #ifdef OVERLOADEDVALUES baseColor.rgb = mix(baseColor.rgb, vOverloadedAlbedo, vOverloadedIntensity.y); albedoColor.rgb = mix(albedoColor.rgb, vOverloadedAlbedo, vOverloadedIntensity.y); #endif // Bump #ifdef NORMAL vec3 normalW = normalize(vNormalW); #else vec3 normalW = vec3(1.0, 1.0, 1.0); #endif #ifdef BUMP normalW = perturbNormal(viewDirectionW); #endif // Ambient color vec3 baseAmbientColor = vec3(1., 1., 1.); #ifdef AMBIENT baseAmbientColor = texture2D(ambientSampler, vAmbientUV).rgb * vAmbientInfos.y; #ifdef OVERLOADEDVALUES baseAmbientColor.rgb = mix(baseAmbientColor.rgb, vOverloadedAmbient, vOverloadedIntensity.x); #endif #endif // Specular map float microSurface = vReflectivityColor.a; vec3 reflectivityColor = vReflectivityColor.rgb; #ifdef OVERLOADEDVALUES reflectivityColor.rgb = mix(reflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z); #endif #ifdef REFLECTIVITY vec4 reflectivityMapColor = texture2D(reflectivitySampler, vReflectivityUV); reflectivityColor = toLinearSpace(reflectivityMapColor.rgb); #ifdef OVERLOADEDVALUES reflectivityColor.rgb = mix(reflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z); #endif #ifdef MICROSURFACEFROMREFLECTIVITYMAP microSurface = reflectivityMapColor.a; #else microSurface = computeDefaultMicroSurface(microSurface, reflectivityColor); #endif #endif #ifdef OVERLOADEDVALUES microSurface = mix(microSurface, vOverloadedMicroSurface.x, vOverloadedMicroSurface.y); #endif // Apply Energy Conservation taking in account the environment level only if the environment is present. float reflectance = max(max(reflectivityColor.r, reflectivityColor.g), reflectivityColor.b); baseColor.rgb = (1. - reflectance) * baseColor.rgb; // Compute Specular Fresnel + Reflectance. float NdotV = max(0.00000000001, dot(normalW, viewDirectionW)); // Adapt microSurface. microSurface = clamp(microSurface, 0., 1.) * 0.98; // Call rough to not conflict with previous one. float rough = clamp(1. - microSurface, 0.000001, 1.0); // Lighting vec3 diffuseBase = vec3(0., 0., 0.); #ifdef OVERLOADEDSHADOWVALUES vec3 shadowedOnlyDiffuseBase = vec3(1., 1., 1.); #endif #ifdef SPECULARTERM vec3 specularBase = vec3(0., 0., 0.); #endif float shadow = 1.; #ifdef LIGHT0 #ifndef SPECULARTERM vec3 vLightSpecular0 = vec3(0.0); #endif #ifdef SPOTLIGHT0 lightingInfo info = computeSpotLighting(viewDirectionW, normalW, vLightData0, vLightDirection0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV); #endif #ifdef HEMILIGHT0 lightingInfo info = computeHemisphericLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightGround0, rough, NdotV); #endif #if defined(POINTLIGHT0) || defined(DIRLIGHT0) lightingInfo info = computeLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV); #endif #ifdef SHADOW0 #ifdef SHADOWVSM0 shadow = computeShadowWithVSM(vPositionFromLight0, shadowSampler0, shadowsInfo0.z, shadowsInfo0.x); #else #ifdef SHADOWPCF0 #if defined(POINTLIGHT0) shadow = computeShadowWithPCFCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x); #else shadow = computeShadowWithPCF(vPositionFromLight0, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x); #endif #else #if defined(POINTLIGHT0) shadow = computeShadowCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z); #else shadow = computeShadow(vPositionFromLight0, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z); #endif #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif #ifdef LIGHT1 #ifndef SPECULARTERM vec3 vLightSpecular1 = vec3(0.0); #endif #ifdef SPOTLIGHT1 info = computeSpotLighting(viewDirectionW, normalW, vLightData1, vLightDirection1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV); #endif #ifdef HEMILIGHT1 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightGround1, rough, NdotV); #endif #if defined(POINTLIGHT1) || defined(DIRLIGHT1) info = computeLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV); #endif #ifdef SHADOW1 #ifdef SHADOWVSM1 shadow = computeShadowWithVSM(vPositionFromLight1, shadowSampler1, shadowsInfo1.z, shadowsInfo1.x); #else #ifdef SHADOWPCF1 #if defined(POINTLIGHT1) shadow = computeShadowWithPCFCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x); #else shadow = computeShadowWithPCF(vPositionFromLight1, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x); #endif #else #if defined(POINTLIGHT1) shadow = computeShadowCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z); #else shadow = computeShadow(vPositionFromLight1, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z); #endif #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif #ifdef LIGHT2 #ifndef SPECULARTERM vec3 vLightSpecular2 = vec3(0.0); #endif #ifdef SPOTLIGHT2 info = computeSpotLighting(viewDirectionW, normalW, vLightData2, vLightDirection2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV); #endif #ifdef HEMILIGHT2 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightGround2, rough, NdotV); #endif #if defined(POINTLIGHT2) || defined(DIRLIGHT2) info = computeLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV); #endif #ifdef SHADOW2 #ifdef SHADOWVSM2 shadow = computeShadowWithVSM(vPositionFromLight2, shadowSampler2, shadowsInfo2.z, shadowsInfo2.x); #else #ifdef SHADOWPCF2 #if defined(POINTLIGHT2) shadow = computeShadowWithPCFCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x); #else shadow = computeShadowWithPCF(vPositionFromLight2, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x); #endif #else #if defined(POINTLIGHT2) shadow = computeShadowCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z); #else shadow = computeShadow(vPositionFromLight2, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z); #endif #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif #ifdef LIGHT3 #ifndef SPECULARTERM vec3 vLightSpecular3 = vec3(0.0); #endif #ifdef SPOTLIGHT3 info = computeSpotLighting(viewDirectionW, normalW, vLightData3, vLightDirection3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV); #endif #ifdef HEMILIGHT3 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightGround3, rough, NdotV); #endif #if defined(POINTLIGHT3) || defined(DIRLIGHT3) info = computeLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV); #endif #ifdef SHADOW3 #ifdef SHADOWVSM3 shadow = computeShadowWithVSM(vPositionFromLight3, shadowSampler3, shadowsInfo3.z, shadowsInfo3.x); #else #ifdef SHADOWPCF3 #if defined(POINTLIGHT3) shadow = computeShadowWithPCFCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x); #else shadow = computeShadowWithPCF(vPositionFromLight3, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x); #endif #else #if defined(POINTLIGHT3) shadow = computeShadowCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z); #else shadow = computeShadow(vPositionFromLight3, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z); #endif #endif #endif #else shadow = 1.; #endif diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif // Reflection vec3 reflectionColor = vReflectionColor.rgb; vec3 ambientReflectionColor = vReflectionColor.rgb; #ifdef REFLECTION vec3 vReflectionUVW = computeReflectionCoords(vec4(vPositionW, 1.0), normalW); #ifdef REFLECTIONMAP_3D // Go mat -> blurry reflexion according to microSurface float bias = 20. * (1.0 - microSurface); reflectionColor = textureCube(reflectionCubeSampler, vReflectionUVW, bias).rgb * vReflectionInfos.x; reflectionColor = toLinearSpace(reflectionColor.rgb); ambientReflectionColor = textureCube(reflectionCubeSampler, normalW, 20.).rgb * vReflectionInfos.x; ambientReflectionColor = toLinearSpace(ambientReflectionColor.rgb); #else vec2 coords = vReflectionUVW.xy; #ifdef REFLECTIONMAP_PROJECTION coords /= vReflectionUVW.z; #endif coords.y = 1.0 - coords.y; reflectionColor = texture2D(reflection2DSampler, coords).rgb * vReflectionInfos.x; reflectionColor = toLinearSpace(reflectionColor.rgb); ambientReflectionColor = texture2D(reflection2DSampler, coords, 20.).rgb * vReflectionInfos.x; ambientReflectionColor = toLinearSpace(ambientReflectionColor.rgb); #endif #endif #ifdef OVERLOADEDVALUES ambientReflectionColor = mix(ambientReflectionColor, vOverloadedReflection, vOverloadedMicroSurface.z); reflectionColor = mix(reflectionColor, vOverloadedReflection, vOverloadedMicroSurface.z); #endif reflectionColor *= vLightingIntensity.z; ambientReflectionColor *= vLightingIntensity.z; // Compute reflection specular fresnel vec3 specularEnvironmentR0 = reflectivityColor.rgb; vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0); vec3 specularEnvironmentReflectanceViewer = FresnelSchlickEnvironmentGGX(clamp(NdotV, 0., 1.), specularEnvironmentR0, specularEnvironmentR90, sqrt(microSurface)); reflectionColor *= specularEnvironmentReflectanceViewer; #ifdef OPACITY vec4 opacityMap = texture2D(opacitySampler, vOpacityUV); #ifdef OPACITYRGB opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11); alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y; #else alpha *= opacityMap.a * vOpacityInfos.y; #endif #endif #ifdef VERTEXALPHA alpha *= vColor.a; #endif #ifdef OPACITYFRESNEL float opacityFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, opacityParts.z, opacityParts.w); alpha += opacityParts.x * (1.0 - opacityFresnelTerm) + opacityFresnelTerm * opacityParts.y; #endif // Emissive vec3 emissiveColor = vEmissiveColor; #ifdef EMISSIVE vec3 emissiveColorTex = texture2D(emissiveSampler, vEmissiveUV).rgb; emissiveColor = toLinearSpace(emissiveColorTex.rgb) * emissiveColor * vEmissiveInfos.y; #endif #ifdef OVERLOADEDVALUES emissiveColor = mix(emissiveColor, vOverloadedEmissive, vOverloadedIntensity.w); #endif #ifdef EMISSIVEFRESNEL float emissiveFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, emissiveRightColor.a, emissiveLeftColor.a); emissiveColor *= emissiveLeftColor.rgb * (1.0 - emissiveFresnelTerm) + emissiveFresnelTerm * emissiveRightColor.rgb; #endif // Composition #ifdef EMISSIVEASILLUMINATION vec3 finalDiffuse = max(diffuseBase * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase = max(shadowedOnlyDiffuseBase * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #endif #else #ifdef LINKEMISSIVEWITHALBEDO vec3 finalDiffuse = max((diffuseBase + emissiveColor) * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase = max((shadowedOnlyDiffuseBase + emissiveColor) * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #endif #else vec3 finalDiffuse = max(diffuseBase * albedoColor + emissiveColor + vAmbientColor, 0.0) * baseColor.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase = max(shadowedOnlyDiffuseBase * albedoColor + emissiveColor + vAmbientColor, 0.0) * baseColor.rgb; #endif #endif #endif #ifdef OVERLOADEDSHADOWVALUES finalDiffuse = mix(finalDiffuse, shadowedOnlyDiffuseBase, (1.0 - vOverloadedShadowIntensity.y)); #endif // diffuse lighting from environment 0.2 replaces Harmonic... // Ambient Reflection already includes the environment intensity. finalDiffuse += baseColor.rgb * ambientReflectionColor * 0.2; #ifdef SPECULARTERM vec3 finalSpecular = specularBase * reflectivityColor * vLightingIntensity.w; #else vec3 finalSpecular = vec3(0.0); #endif #ifdef OVERLOADEDSHADOWVALUES finalSpecular = mix(finalSpecular, vec3(0.0), (1.0 - vOverloadedShadowIntensity.y)); #endif #ifdef SPECULAROVERALPHA alpha = clamp(alpha + dot(finalSpecular, vec3(0.3, 0.59, 0.11)), 0., 1.); #endif // Composition // Reflection already includes the environment intensity. #ifdef EMISSIVEASILLUMINATION vec4 color = vec4(finalDiffuse * baseAmbientColor * vLightingIntensity.x + finalSpecular * vLightingIntensity.x + reflectionColor + emissiveColor * vLightingIntensity.y, alpha); #else vec4 color = vec4(finalDiffuse * baseAmbientColor * vLightingIntensity.x + finalSpecular * vLightingIntensity.x + reflectionColor, alpha); #endif #ifdef LIGHTMAP vec3 lightmapColor = texture2D(lightmapSampler, vLightmapUV).rgb * vLightmapInfos.y; #ifdef USELIGHTMAPASSHADOWMAP color.rgb *= lightmapColor; #else color.rgb += lightmapColor; #endif #endif #ifdef FOG float fog = CalcFogFactor(); color.rgb = fog * color.rgb + (1.0 - fog) * vFogColor; #endif color = max(color, 0.0); #ifdef CAMERATONEMAP color.rgb = toneMaps(color.rgb); #endif color.rgb = toGammaSpace(color.rgb); #ifdef CAMERACONTRAST color = contrasts(color); #endif // Normal Display. // gl_FragColor = vec4(normalW * 0.5 + 0.5, 1.0); // Ambient reflection color. // gl_FragColor = vec4(ambientReflectionColor, 1.0); // Reflection color. // gl_FragColor = vec4(reflectionColor, 1.0); // Base color. // gl_FragColor = vec4(baseColor.rgb, 1.0); // Specular color. // gl_FragColor = vec4(reflectivityColor.rgb, 1.0); // MicroSurface color. // gl_FragColor = vec4(microSurface, microSurface, microSurface, 1.0); // Specular Map // gl_FragColor = vec4(reflectivityMapColor.rgb, 1.0); //// Emissive Color //vec2 test = vEmissiveUV * 0.5 + 0.5; //gl_FragColor = vec4(test.x, test.y, 1.0, 1.0); gl_FragColor = color; }