module BABYLON { export class _InstancesBatch { public mustReturn = false; public visibleInstances = new Array>>(); public renderSelf = new Array(); } export class Mesh extends AbstractMesh implements IGetSetVerticesData { // Consts public static _FRONTSIDE: number = 0; public static _BACKSIDE: number = 1; public static _DOUBLESIDE: number = 2; public static _DEFAULTSIDE: number = 0; public static _NO_CAP = 0; public static _CAP_START = 1; public static _CAP_END = 2; public static _CAP_ALL = 3; /** * Mesh side orientation : usually the external or front surface */ public static get FRONTSIDE(): number { return Mesh._FRONTSIDE; } /** * Mesh side orientation : usually the internal or back surface */ public static get BACKSIDE(): number { return Mesh._BACKSIDE; } /** * Mesh side orientation : both internal and external or front and back surfaces */ public static get DOUBLESIDE(): number { return Mesh._DOUBLESIDE; } /** * Mesh side orientation : by default, `FRONTSIDE` */ public static get DEFAULTSIDE(): number { return Mesh._DEFAULTSIDE; } /** * Mesh cap setting : no cap */ public static get NO_CAP(): number { return Mesh._NO_CAP; } /** * Mesh cap setting : one cap at the beginning of the mesh */ public static get CAP_START(): number { return Mesh._CAP_START; } /** * Mesh cap setting : one cap at the end of the mesh */ public static get CAP_END(): number { return Mesh._CAP_END; } /** * Mesh cap setting : two caps, one at the beginning and one at the end of the mesh */ public static get CAP_ALL(): number { return Mesh._CAP_ALL; } // Events /** * An event triggered before rendering the mesh * @type {BABYLON.Observable} */ public onBeforeRenderObservable = new Observable(); /** * An event triggered after rendering the mesh * @type {BABYLON.Observable} */ public onAfterRenderObservable = new Observable(); /** * An event triggered before drawing the mesh * @type {BABYLON.Observable} */ public onBeforeDrawObservable = new Observable(); private _onBeforeDrawObserver: Nullable>; public set onBeforeDraw(callback: () => void) { if (this._onBeforeDrawObserver) { this.onBeforeDrawObservable.remove(this._onBeforeDrawObserver); } this._onBeforeDrawObserver = this.onBeforeDrawObservable.add(callback); } // Members public delayLoadState = Engine.DELAYLOADSTATE_NONE; public instances = new Array(); public delayLoadingFile: string; public _binaryInfo: any; private _LODLevels = new Array(); public onLODLevelSelection: (distance: number, mesh: Mesh, selectedLevel: Mesh) => void; // Morph private _morphTargetManager: Nullable; public get morphTargetManager(): Nullable { return this._morphTargetManager; } public set morphTargetManager(value: Nullable) { if (this._morphTargetManager === value) { return; } this._morphTargetManager = value; this._syncGeometryWithMorphTargetManager(); } // Private public _geometry: Nullable; public _delayInfo: Array; public _delayLoadingFunction: (any: any, mesh: Mesh) => void; public _visibleInstances: any = {}; private _renderIdForInstances = new Array(); private _batchCache = new _InstancesBatch(); private _instancesBufferSize = 32 * 16 * 4; // let's start with a maximum of 32 instances private _instancesBuffer: Nullable; private _instancesData: Float32Array; private _overridenInstanceCount: number; private _effectiveMaterial: Material; public _shouldGenerateFlatShading: boolean; private _preActivateId: number; // Use by builder only to know what orientation were the mesh build in. public _originalBuilderSideOrientation: number = Mesh._DEFAULTSIDE; public overrideMaterialSideOrientation: Nullable = null; private _areNormalsFrozen: boolean = false; // Will be used by ribbons mainly private _sourcePositions: Float32Array; // Will be used to save original positions when using software skinning private _sourceNormals: Float32Array; // Will be used to save original normals when using software skinning // Will be used to save a source mesh reference, If any private _source: Nullable = null; public get source(): Nullable { return this._source; } public get isUnIndexed(): boolean { return this._unIndexed; } public set isUnIndexed(value: boolean) { if (this._unIndexed !== value) { this._unIndexed = value; this._markSubMeshesAsAttributesDirty(); } } /** * @constructor * @param {string} name The value used by scene.getMeshByName() to do a lookup. * @param {Scene} scene The scene to add this mesh to. * @param {Node} parent The parent of this mesh, if it has one * @param {Mesh} source An optional Mesh from which geometry is shared, cloned. * @param {boolean} doNotCloneChildren When cloning, skip cloning child meshes of source, default False. * When false, achieved by calling a clone(), also passing False. * This will make creation of children, recursive. * @param {boolean} clonePhysicsImpostor When cloning, include cloning mesh physics impostor, default True. */ constructor(name: string, scene: Nullable = null, parent: Nullable = null, source: Nullable = null, doNotCloneChildren?: boolean, clonePhysicsImpostor: boolean = true) { super(name, scene); scene = this.getScene(); if (source) { // Source mesh this._source = source; // Geometry if (source._geometry) { source._geometry.applyToMesh(this); } // Deep copy Tools.DeepCopy(source, this, ["name", "material", "skeleton", "instances", "parent", "uniqueId", "source", "metadata"], ["_poseMatrix", "_source"]); // Metadata if (source.metadata.clone) { this.metadata = source.metadata.clone(); } else { this.metadata = source.metadata; } // Tags if (Tags && Tags.HasTags(source)) { Tags.AddTagsTo(this, Tags.GetTags(source, true)); } // Parent this.parent = source.parent; // Pivot this.setPivotMatrix(source.getPivotMatrix()); this.id = name + "." + source.id; // Material this.material = source.material; var index: number; if (!doNotCloneChildren) { // Children let directDescendants = source.getDescendants(true); for (let index = 0; index < directDescendants.length; index++) { var child = directDescendants[index]; if ((child).clone) { (child).clone(name + "." + child.name, this); } } } // Physics clone var physicsEngine = this.getScene().getPhysicsEngine(); if (clonePhysicsImpostor && physicsEngine) { var impostor = physicsEngine.getImpostorForPhysicsObject(source); if (impostor) { this.physicsImpostor = impostor.clone(this); } } // Particles for (index = 0; index < scene.particleSystems.length; index++) { var system = scene.particleSystems[index]; if (system.emitter === source) { system.clone(system.name, this); } } this.computeWorldMatrix(true); } // Parent if (parent !== null) { this.parent = parent; } } // Methods /** * Returns the string "Mesh". */ public getClassName(): string { return "Mesh"; } /** * Returns a string. * @param {boolean} fullDetails - support for multiple levels of logging within scene loading */ public toString(fullDetails?: boolean): string { var ret = super.toString(fullDetails); ret += ", n vertices: " + this.getTotalVertices(); ret += ", parent: " + (this._waitingParentId ? this._waitingParentId : (this.parent ? this.parent.name : "NONE")); if (this.animations) { for (var i = 0; i < this.animations.length; i++) { ret += ", animation[0]: " + this.animations[i].toString(fullDetails); } } if (fullDetails) { if (this._geometry) { let ib = this.getIndices(); let vb = this.getVerticesData(VertexBuffer.PositionKind); if (vb && ib) { ret += ", flat shading: " + (vb.length / 3 === ib.length ? "YES" : "NO"); } } else { ret += ", flat shading: UNKNOWN"; } } return ret; } /** * True if the mesh has some Levels Of Details (LOD). * Returns a boolean. */ public get hasLODLevels(): boolean { return this._LODLevels.length > 0; } private _sortLODLevels(): void { this._LODLevels.sort((a, b) => { if (a.distance < b.distance) { return 1; } if (a.distance > b.distance) { return -1; } return 0; }); } /** * Add a mesh as LOD level triggered at the given distance. * tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD * @param {number} distance The distance from the center of the object to show this level * @param {Mesh} mesh The mesh to be added as LOD level * @return {Mesh} This mesh (for chaining) */ public addLODLevel(distance: number, mesh: Mesh): Mesh { if (mesh && mesh._masterMesh) { Tools.Warn("You cannot use a mesh as LOD level twice"); return this; } var level = new Internals.MeshLODLevel(distance, mesh); this._LODLevels.push(level); if (mesh) { mesh._masterMesh = this; } this._sortLODLevels(); return this; } /** * Returns the LOD level mesh at the passed distance or null if not found. * It is related to the method `addLODLevel(distance, mesh)`. * tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD * Returns an object Mesh or `null`. */ public getLODLevelAtDistance(distance: number): Nullable { for (var index = 0; index < this._LODLevels.length; index++) { var level = this._LODLevels[index]; if (level.distance === distance) { return level.mesh; } } return null; } /** * Remove a mesh from the LOD array * tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD * @param {Mesh} mesh The mesh to be removed. * @return {Mesh} This mesh (for chaining) */ public removeLODLevel(mesh: Mesh): Mesh { for (var index = 0; index < this._LODLevels.length; index++) { if (this._LODLevels[index].mesh === mesh) { this._LODLevels.splice(index, 1); if (mesh) { mesh._masterMesh = null; } } } this._sortLODLevels(); return this; } /** * Returns the registered LOD mesh distant from the parameter `camera` position if any, else returns the current mesh. * tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD */ public getLOD(camera: Camera, boundingSphere?: BoundingSphere): AbstractMesh { if (!this._LODLevels || this._LODLevels.length === 0) { return this; } let bSphere: BoundingSphere; if (boundingSphere) { bSphere = boundingSphere; } else { let boundingInfo = this.getBoundingInfo(); bSphere = boundingInfo.boundingSphere; } var distanceToCamera = bSphere.centerWorld.subtract(camera.globalPosition).length(); if (this._LODLevels[this._LODLevels.length - 1].distance > distanceToCamera) { if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, this._LODLevels[this._LODLevels.length - 1].mesh); } return this; } for (var index = 0; index < this._LODLevels.length; index++) { var level = this._LODLevels[index]; if (level.distance < distanceToCamera) { if (level.mesh) { level.mesh._preActivate(); level.mesh._updateSubMeshesBoundingInfo(this.worldMatrixFromCache); } if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, level.mesh); } return level.mesh; } } if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, this); } return this; } /** * Returns the mesh internal Geometry object. */ public get geometry(): Nullable { return this._geometry; } /** * Returns a positive integer : the total number of vertices within the mesh geometry or zero if the mesh has no geometry. */ public getTotalVertices(): number { if (this._geometry === null || this._geometry === undefined) { return 0; } return this._geometry.getTotalVertices(); } /** * Returns an array of integers or floats, or a Float32Array, depending on the requested `kind` (positions, indices, normals, etc). * If `copywhenShared` is true (default false) and if the mesh geometry is shared among some other meshes, the returned array is a copy of the internal one. * You can force the copy with forceCopy === true * Returns null if the mesh has no geometry or no vertex buffer. * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind */ public getVerticesData(kind: string, copyWhenShared?: boolean, forceCopy?: boolean): Nullable { if (!this._geometry) { return null; } return this._geometry.getVerticesData(kind, copyWhenShared, forceCopy); } /** * Returns the mesh VertexBuffer object from the requested `kind` : positions, indices, normals, etc. * Returns `null` if the mesh has no geometry. * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind */ public getVertexBuffer(kind: string): Nullable { if (!this._geometry) { return null; } return this._geometry.getVertexBuffer(kind); } /** * Returns a boolean depending on the existence of the Vertex Data for the requested `kind`. * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind */ public isVerticesDataPresent(kind: string): boolean { if (!this._geometry) { if (this._delayInfo) { return this._delayInfo.indexOf(kind) !== -1; } return false; } return this._geometry.isVerticesDataPresent(kind); } /** * Returns a boolean defining if the vertex data for the requested `kind` is updatable. * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind */ public isVertexBufferUpdatable(kind: string): boolean { if (!this._geometry) { if (this._delayInfo) { return this._delayInfo.indexOf(kind) !== -1; } return false; } return this._geometry.isVertexBufferUpdatable(kind); } /** * Returns a string : the list of existing `kinds` of Vertex Data for this mesh. * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind */ public getVerticesDataKinds(): string[] { if (!this._geometry) { var result = new Array(); if (this._delayInfo) { this._delayInfo.forEach(function (kind, index, array) { result.push(kind); }); } return result; } return this._geometry.getVerticesDataKinds(); } /** * Returns a positive integer : the total number of indices in this mesh geometry. * Returns zero if the mesh has no geometry. */ public getTotalIndices(): number { if (!this._geometry) { return 0; } return this._geometry.getTotalIndices(); } /** * Returns an array of integers or a typed array (Int32Array, Uint32Array, Uint16Array) populated with the mesh indices. * If the parameter `copyWhenShared` is true (default false) and and if the mesh geometry is shared among some other meshes, the returned array is a copy of the internal one. * Returns an empty array if the mesh has no geometry. */ public getIndices(copyWhenShared?: boolean): Nullable { if (!this._geometry) { return []; } return this._geometry.getIndices(copyWhenShared); } public get isBlocked(): boolean { return this._masterMesh !== null && this._masterMesh !== undefined; } /** * Boolean : true once the mesh is ready after all the delayed process (loading, etc) are complete. */ public isReady(): boolean { if (this.delayLoadState === Engine.DELAYLOADSTATE_LOADING) { return false; } return super.isReady(); } /** * Boolean : true if the normals aren't to be recomputed on next mesh `positions` array update. * This property is pertinent only for updatable parametric shapes. */ public get areNormalsFrozen(): boolean { return this._areNormalsFrozen; } /** * This function affects parametric shapes on vertex position update only : ribbons, tubes, etc. * It has no effect at all on other shapes. * It prevents the mesh normals from being recomputed on next `positions` array update. * Returns the Mesh. */ public freezeNormals(): Mesh { this._areNormalsFrozen = true; return this; } /** * This function affects parametric shapes on vertex position update only : ribbons, tubes, etc. * It has no effect at all on other shapes. * It reactivates the mesh normals computation if it was previously frozen. * Returns the Mesh. */ public unfreezeNormals(): Mesh { this._areNormalsFrozen = false; return this; } /** * Overrides instance count. Only applicable when custom instanced InterleavedVertexBuffer are used rather than InstancedMeshs */ public set overridenInstanceCount(count: number) { this._overridenInstanceCount = count; } // Methods public _preActivate(): Mesh { var sceneRenderId = this.getScene().getRenderId(); if (this._preActivateId === sceneRenderId) { return this; } this._preActivateId = sceneRenderId; this._visibleInstances = null; return this; } public _preActivateForIntermediateRendering(renderId: number): Mesh { if (this._visibleInstances) { this._visibleInstances.intermediateDefaultRenderId = renderId; } return this; } public _registerInstanceForRenderId(instance: InstancedMesh, renderId: number): Mesh { if (!this._visibleInstances) { this._visibleInstances = {}; this._visibleInstances.defaultRenderId = renderId; this._visibleInstances.selfDefaultRenderId = this._renderId; } if (!this._visibleInstances[renderId]) { this._visibleInstances[renderId] = new Array(); } this._visibleInstances[renderId].push(instance); return this; } /** * This method recomputes and sets a new BoundingInfo to the mesh unless it is locked. * This means the mesh underlying bounding box and sphere are recomputed. * Returns the Mesh. */ public refreshBoundingInfo(): Mesh { return this._refreshBoundingInfo(false); } public _refreshBoundingInfo(applySkeleton: boolean): Mesh { if (this._boundingInfo && this._boundingInfo.isLocked) { return this; } var data = this._getPositionData(applySkeleton); if (data) { var extend = Tools.ExtractMinAndMax(data, 0, this.getTotalVertices()); this._boundingInfo = new BoundingInfo(extend.minimum, extend.maximum); } if (this.subMeshes) { for (var index = 0; index < this.subMeshes.length; index++) { this.subMeshes[index].refreshBoundingInfo(); } } this._updateBoundingInfo(); return this; } private _getPositionData(applySkeleton: boolean): Nullable { var data = this.getVerticesData(VertexBuffer.PositionKind); if (data && applySkeleton && this.skeleton) { data = data.slice(); var matricesIndicesData = this.getVerticesData(VertexBuffer.MatricesIndicesKind); var matricesWeightsData = this.getVerticesData(VertexBuffer.MatricesWeightsKind); if (matricesWeightsData && matricesIndicesData) { var needExtras = this.numBoneInfluencers > 4; var matricesIndicesExtraData = needExtras ? this.getVerticesData(VertexBuffer.MatricesIndicesExtraKind) : null; var matricesWeightsExtraData = needExtras ? this.getVerticesData(VertexBuffer.MatricesWeightsExtraKind) : null; var skeletonMatrices = this.skeleton.getTransformMatrices(this); var tempVector = Tmp.Vector3[0]; var finalMatrix = Tmp.Matrix[0]; var tempMatrix = Tmp.Matrix[1]; var matWeightIdx = 0; for (var index = 0; index < data.length; index += 3, matWeightIdx += 4) { finalMatrix.reset(); var inf: number; var weight: number; for (inf = 0; inf < 4; inf++) { weight = matricesWeightsData[matWeightIdx + inf]; if (weight <= 0) break; Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesData[matWeightIdx + inf] * 16, weight, tempMatrix); finalMatrix.addToSelf(tempMatrix); } if (needExtras) { for (inf = 0; inf < 4; inf++) { weight = matricesWeightsExtraData![matWeightIdx + inf]; if (weight <= 0) break; Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesExtraData![matWeightIdx + inf] * 16, weight, tempMatrix); finalMatrix.addToSelf(tempMatrix); } } Vector3.TransformCoordinatesFromFloatsToRef(data[index], data[index + 1], data[index + 2], finalMatrix, tempVector); tempVector.toArray(data, index); } } } return data; } public _createGlobalSubMesh(force: boolean): Nullable { var totalVertices = this.getTotalVertices(); if (!totalVertices || !this.getIndices()) { return null; } // Check if we need to recreate the submeshes if (this.subMeshes && this.subMeshes.length > 0) { let ib = this.getIndices(); if (!ib) { return null; } var totalIndices = ib.length; let needToRecreate = false; if (force) { needToRecreate = true; } else { for (var submesh of this.subMeshes) { if (submesh.indexStart + submesh.indexCount >= totalIndices) { needToRecreate = true; break; } if (submesh.verticesStart + submesh.verticesCount >= totalVertices) { needToRecreate = true; break; } } } if (!needToRecreate) { return this.subMeshes[0]; } } this.releaseSubMeshes(); return new SubMesh(0, 0, totalVertices, 0, this.getTotalIndices(), this); } public subdivide(count: number): void { if (count < 1) { return; } var totalIndices = this.getTotalIndices(); var subdivisionSize = (totalIndices / count) | 0; var offset = 0; // Ensure that subdivisionSize is a multiple of 3 while (subdivisionSize % 3 !== 0) { subdivisionSize++; } this.releaseSubMeshes(); for (var index = 0; index < count; index++) { if (offset >= totalIndices) { break; } SubMesh.CreateFromIndices(0, offset, Math.min(subdivisionSize, totalIndices - offset), this); offset += subdivisionSize; } this.synchronizeInstances(); } /** * Sets the vertex data of the mesh geometry for the requested `kind`. * If the mesh has no geometry, a new Geometry object is set to the mesh and then passed this vertex data. * The `data` are either a numeric array either a Float32Array. * The parameter `updatable` is passed as is to the underlying Geometry object constructor (if initianilly none) or updater. * The parameter `stride` is an optional positive integer, it is usually automatically deducted from the `kind` (3 for positions or normals, 2 for UV, etc). * Note that a new underlying VertexBuffer object is created each call. * If the `kind` is the `PositionKind`, the mesh BoundingInfo is renewed, so the bounding box and sphere, and the mesh World Matrix is recomputed. * * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind * * Returns the Mesh. */ public setVerticesData(kind: string, data: FloatArray, updatable: boolean = false, stride?: number): Mesh { if (!this._geometry) { var vertexData = new VertexData(); vertexData.set(data, kind); var scene = this.getScene(); new Geometry(Geometry.RandomId(), scene, vertexData, updatable, this); } else { this._geometry.setVerticesData(kind, data, updatable, stride); } return this; } public markVerticesDataAsUpdatable(kind: string, updatable = true) { let vb = this.getVertexBuffer(kind); if (!vb || vb.isUpdatable() === updatable) { return; } this.setVerticesData(kind, (this.getVerticesData(kind)), updatable); } /** * Sets the mesh VertexBuffer. * Returns the Mesh. */ public setVerticesBuffer(buffer: VertexBuffer): Mesh { if (!this._geometry) { this._geometry = Geometry.CreateGeometryForMesh(this); } this._geometry.setVerticesBuffer(buffer); return this; } /** * Updates the existing vertex data of the mesh geometry for the requested `kind`. * If the mesh has no geometry, it is simply returned as it is. * The `data` are either a numeric array either a Float32Array. * No new underlying VertexBuffer object is created. * If the `kind` is the `PositionKind` and if `updateExtends` is true, the mesh BoundingInfo is renewed, so the bounding box and sphere, and the mesh World Matrix is recomputed. * If the parameter `makeItUnique` is true, a new global geometry is created from this positions and is set to the mesh. * * Possible `kind` values : * - BABYLON.VertexBuffer.PositionKind * - BABYLON.VertexBuffer.UVKind * - BABYLON.VertexBuffer.UV2Kind * - BABYLON.VertexBuffer.UV3Kind * - BABYLON.VertexBuffer.UV4Kind * - BABYLON.VertexBuffer.UV5Kind * - BABYLON.VertexBuffer.UV6Kind * - BABYLON.VertexBuffer.ColorKind * - BABYLON.VertexBuffer.MatricesIndicesKind * - BABYLON.VertexBuffer.MatricesIndicesExtraKind * - BABYLON.VertexBuffer.MatricesWeightsKind * - BABYLON.VertexBuffer.MatricesWeightsExtraKind * * Returns the Mesh. */ public updateVerticesData(kind: string, data: FloatArray, updateExtends?: boolean, makeItUnique?: boolean): Mesh { if (!this._geometry) { return this; } if (!makeItUnique) { this._geometry.updateVerticesData(kind, data, updateExtends); } else { this.makeGeometryUnique(); this.updateVerticesData(kind, data, updateExtends, false); } return this; } /** * This method updates the vertex positions of an updatable mesh according to the `positionFunction` returned values. * tuto : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#other-shapes-updatemeshpositions * The parameter `positionFunction` is a simple JS function what is passed the mesh `positions` array. It doesn't need to return anything. * The parameter `computeNormals` is a boolean (default true) to enable/disable the mesh normal recomputation after the vertex position update. * Returns the Mesh. */ public updateMeshPositions(positionFunction: (data: FloatArray) => void, computeNormals: boolean = true): Mesh { var positions = this.getVerticesData(VertexBuffer.PositionKind); if (!positions) { return this; } positionFunction(positions); this.updateVerticesData(VertexBuffer.PositionKind, positions, false, false); if (computeNormals) { var indices = this.getIndices(); var normals = this.getVerticesData(VertexBuffer.NormalKind); if (!normals) { return this; } VertexData.ComputeNormals(positions, indices, normals); this.updateVerticesData(VertexBuffer.NormalKind, normals, false, false); } return this; } /** * Creates a un-shared specific occurence of the geometry for the mesh. * Returns the Mesh. */ public makeGeometryUnique(): Mesh { if (!this._geometry) { return this; } var oldGeometry = this._geometry; var geometry = this._geometry.copy(Geometry.RandomId()); oldGeometry.releaseForMesh(this, true); geometry.applyToMesh(this); return this; } /** * Sets the mesh indices. * Expects an array populated with integers or a typed array (Int32Array, Uint32Array, Uint16Array). * Type is Uint16Array by default unless the mesh has more than 65536 vertices. * If the mesh has no geometry, a new Geometry object is created and set to the mesh. * This method creates a new index buffer each call. * Returns the Mesh. */ public setIndices(indices: IndicesArray, totalVertices: Nullable = null, updatable: boolean = false): Mesh { if (!this._geometry) { var vertexData = new VertexData(); vertexData.indices = indices; var scene = this.getScene(); new Geometry(Geometry.RandomId(), scene, vertexData, updatable, this); } else { this._geometry.setIndices(indices, totalVertices, updatable); } return this; } /** * Update the current index buffer * Expects an array populated with integers or a typed array (Int32Array, Uint32Array, Uint16Array) * Returns the Mesh. */ public updateIndices(indices: IndicesArray, offset?: number): Mesh { if (!this._geometry) { return this; } this._geometry.updateIndices(indices, offset); return this; } /** * Invert the geometry to move from a right handed system to a left handed one. * Returns the Mesh. */ public toLeftHanded(): Mesh { if (!this._geometry) { return this; } this._geometry.toLeftHanded(); return this; } public _bind(subMesh: SubMesh, effect: Effect, fillMode: number): Mesh { if (!this._geometry) { return this; } var engine = this.getScene().getEngine(); // Wireframe var indexToBind; if (this._unIndexed) { indexToBind = null; } else { switch (fillMode) { case Material.PointFillMode: indexToBind = null; break; case Material.WireFrameFillMode: indexToBind = subMesh.getLinesIndexBuffer(this.getIndices(), engine); break; default: case Material.TriangleFillMode: indexToBind = this._unIndexed ? null : this._geometry.getIndexBuffer(); break; } } // VBOs this._geometry._bind(effect, indexToBind); return this; } public _draw(subMesh: SubMesh, fillMode: number, instancesCount?: number, alternate = false): Mesh { if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) { return this; } this.onBeforeDrawObservable.notifyObservers(this); let scene = this.getScene(); let engine = scene.getEngine(); if (this._unIndexed || fillMode == Material.PointFillMode) { // or triangles as points engine.drawArraysType(fillMode, subMesh.verticesStart, subMesh.verticesCount, instancesCount); } else if (fillMode == Material.WireFrameFillMode) { // Triangles as wireframe engine.drawElementsType(fillMode, 0, subMesh.linesIndexCount, instancesCount); } else { engine.drawElementsType(fillMode, subMesh.indexStart, subMesh.indexCount, instancesCount); } if (scene._isAlternateRenderingEnabled && !alternate) { let effect = subMesh.effect || this._effectiveMaterial.getEffect(); if (!effect || !scene.activeCamera) { return this; } scene._switchToAlternateCameraConfiguration(true); this._effectiveMaterial.bindView(effect); this._effectiveMaterial.bindViewProjection(effect); engine.setViewport(scene.activeCamera._alternateCamera.viewport); this._draw(subMesh, fillMode, instancesCount, true); engine.setViewport(scene.activeCamera.viewport); scene._switchToAlternateCameraConfiguration(false); this._effectiveMaterial.bindView(effect); this._effectiveMaterial.bindViewProjection(effect); } return this; } /** * Registers for this mesh a javascript function called just before the rendering process. * This function is passed the current mesh. * Return the Mesh. */ public registerBeforeRender(func: (mesh: AbstractMesh) => void): Mesh { this.onBeforeRenderObservable.add(func); return this; } /** * Disposes a previously registered javascript function called before the rendering. * This function is passed the current mesh. * Returns the Mesh. */ public unregisterBeforeRender(func: (mesh: AbstractMesh) => void): Mesh { this.onBeforeRenderObservable.removeCallback(func); return this; } /** * Registers for this mesh a javascript function called just after the rendering is complete. * This function is passed the current mesh. * Returns the Mesh. */ public registerAfterRender(func: (mesh: AbstractMesh) => void): Mesh { this.onAfterRenderObservable.add(func); return this; } /** * Disposes a previously registered javascript function called after the rendering. * This function is passed the current mesh. * Return the Mesh. */ public unregisterAfterRender(func: (mesh: AbstractMesh) => void): Mesh { this.onAfterRenderObservable.removeCallback(func); return this; } public _getInstancesRenderList(subMeshId: number): _InstancesBatch { var scene = this.getScene(); this._batchCache.mustReturn = false; this._batchCache.renderSelf[subMeshId] = this.isEnabled() && this.isVisible; this._batchCache.visibleInstances[subMeshId] = null; if (this._visibleInstances) { var currentRenderId = scene.getRenderId(); var defaultRenderId = (scene._isInIntermediateRendering() ? this._visibleInstances.intermediateDefaultRenderId : this._visibleInstances.defaultRenderId); this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[currentRenderId]; var selfRenderId = this._renderId; if (!this._batchCache.visibleInstances[subMeshId] && defaultRenderId) { this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[defaultRenderId]; currentRenderId = Math.max(defaultRenderId, currentRenderId); selfRenderId = Math.max(this._visibleInstances.selfDefaultRenderId, currentRenderId); } let visibleInstancesForSubMesh = this._batchCache.visibleInstances[subMeshId]; if (visibleInstancesForSubMesh && visibleInstancesForSubMesh.length) { if (this._renderIdForInstances[subMeshId] === currentRenderId) { this._batchCache.mustReturn = true; return this._batchCache; } if (currentRenderId !== selfRenderId) { this._batchCache.renderSelf[subMeshId] = false; } } this._renderIdForInstances[subMeshId] = currentRenderId; } return this._batchCache; } public _renderWithInstances(subMesh: SubMesh, fillMode: number, batch: _InstancesBatch, effect: Effect, engine: Engine): Mesh { var visibleInstances = batch.visibleInstances[subMesh._id]; if (!visibleInstances) { return this; } var matricesCount = visibleInstances.length + 1; var bufferSize = matricesCount * 16 * 4; var currentInstancesBufferSize = this._instancesBufferSize; var instancesBuffer = this._instancesBuffer; while (this._instancesBufferSize < bufferSize) { this._instancesBufferSize *= 2; } if (!this._instancesData || currentInstancesBufferSize != this._instancesBufferSize) { this._instancesData = new Float32Array(this._instancesBufferSize / 4); } var offset = 0; var instancesCount = 0; var world = this.getWorldMatrix(); if (batch.renderSelf[subMesh._id]) { world.copyToArray(this._instancesData, offset); offset += 16; instancesCount++; } if (visibleInstances) { for (var instanceIndex = 0; instanceIndex < visibleInstances.length; instanceIndex++) { var instance = visibleInstances[instanceIndex]; instance.getWorldMatrix().copyToArray(this._instancesData, offset); offset += 16; instancesCount++; } } if (!instancesBuffer || currentInstancesBufferSize != this._instancesBufferSize) { if (instancesBuffer) { instancesBuffer.dispose(); } instancesBuffer = new Buffer(engine, this._instancesData, true, 16, false, true); this._instancesBuffer = instancesBuffer; this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world0", 0, 4)); this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world1", 4, 4)); this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world2", 8, 4)); this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world3", 12, 4)); } else { instancesBuffer.updateDirectly(this._instancesData, 0, instancesCount); } this._bind(subMesh, effect, fillMode); this._draw(subMesh, fillMode, instancesCount); engine.unbindInstanceAttributes(); return this; } public _processRendering(subMesh: SubMesh, effect: Effect, fillMode: number, batch: _InstancesBatch, hardwareInstancedRendering: boolean, onBeforeDraw: (isInstance: boolean, world: Matrix, effectiveMaterial?: Material) => void, effectiveMaterial?: Material): Mesh { var scene = this.getScene(); var engine = scene.getEngine(); if (hardwareInstancedRendering) { this._renderWithInstances(subMesh, fillMode, batch, effect, engine); } else { if (batch.renderSelf[subMesh._id]) { // Draw if (onBeforeDraw) { onBeforeDraw(false, this.getWorldMatrix(), effectiveMaterial); } this._draw(subMesh, fillMode, this._overridenInstanceCount); } let visibleInstancesForSubMesh = batch.visibleInstances[subMesh._id]; if (visibleInstancesForSubMesh) { for (var instanceIndex = 0; instanceIndex < visibleInstancesForSubMesh.length; instanceIndex++) { var instance = visibleInstancesForSubMesh[instanceIndex]; // World var world = instance.getWorldMatrix(); if (onBeforeDraw) { onBeforeDraw(true, world, effectiveMaterial); } // Draw this._draw(subMesh, fillMode); } } } return this; } /** * Triggers the draw call for the mesh. * Usually, you don't need to call this method by your own because the mesh rendering is handled by the scene rendering manager. * Returns the Mesh. */ public render(subMesh: SubMesh, enableAlphaMode: boolean): Mesh { this.checkOcclusionQuery(); if (this._isOccluded) { return this; } var scene = this.getScene(); // Managing instances var batch = this._getInstancesRenderList(subMesh._id); if (batch.mustReturn) { return this; } // Checking geometry state if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) { return this; } this.onBeforeRenderObservable.notifyObservers(this); var engine = scene.getEngine(); var hardwareInstancedRendering = (engine.getCaps().instancedArrays) && (batch.visibleInstances[subMesh._id] !== null) && (batch.visibleInstances[subMesh._id] !== undefined); // Material let material = subMesh.getMaterial(); if (!material) { return this; } this._effectiveMaterial = material; if (this._effectiveMaterial.storeEffectOnSubMeshes) { if (!this._effectiveMaterial.isReadyForSubMesh(this, subMesh, hardwareInstancedRendering)) { return this; } } else if (!this._effectiveMaterial.isReady(this, hardwareInstancedRendering)) { return this; } // Alpha mode if (enableAlphaMode) { engine.setAlphaMode(this._effectiveMaterial.alphaMode); } // Outline - step 1 var savedDepthWrite = engine.getDepthWrite(); if (this.renderOutline) { engine.setDepthWrite(false); scene.getOutlineRenderer().render(subMesh, batch); engine.setDepthWrite(savedDepthWrite); } var effect: Nullable; if (this._effectiveMaterial.storeEffectOnSubMeshes) { effect = subMesh.effect; } else { effect = this._effectiveMaterial.getEffect(); } if (!effect) { return this; } var sideOrientation = this.overrideMaterialSideOrientation; if (sideOrientation == null) { sideOrientation = this._effectiveMaterial.sideOrientation; if (this._getWorldMatrixDeterminant() < 0) { sideOrientation = (sideOrientation === Material.ClockWiseSideOrientation ? Material.CounterClockWiseSideOrientation : Material.ClockWiseSideOrientation); } } var reverse = this._effectiveMaterial._preBind(effect, sideOrientation); if (this._effectiveMaterial.forceDepthWrite) { engine.setDepthWrite(true); } // Bind var fillMode = scene.forcePointsCloud ? Material.PointFillMode : (scene.forceWireframe ? Material.WireFrameFillMode : this._effectiveMaterial.fillMode); if (!hardwareInstancedRendering) { // Binding will be done later because we need to add more info to the VB this._bind(subMesh, effect, fillMode); } var world = this.getWorldMatrix(); if (this._effectiveMaterial.storeEffectOnSubMeshes) { this._effectiveMaterial.bindForSubMesh(world, this, subMesh); } else { this._effectiveMaterial.bind(world, this); } if (!this._effectiveMaterial.backFaceCulling && this._effectiveMaterial.separateCullingPass) { engine.setState(true, this._effectiveMaterial.zOffset, false, !reverse); this._processRendering(subMesh, effect, fillMode, batch, hardwareInstancedRendering, this._onBeforeDraw, this._effectiveMaterial); engine.setState(true, this._effectiveMaterial.zOffset, false, reverse); } // Draw this._processRendering(subMesh, effect, fillMode, batch, hardwareInstancedRendering, this._onBeforeDraw, this._effectiveMaterial); // Unbind this._effectiveMaterial.unbind(); // Outline - step 2 if (this.renderOutline && savedDepthWrite) { engine.setDepthWrite(true); engine.setColorWrite(false); scene.getOutlineRenderer().render(subMesh, batch); engine.setColorWrite(true); } // Overlay if (this.renderOverlay) { var currentMode = engine.getAlphaMode(); engine.setAlphaMode(Engine.ALPHA_COMBINE); scene.getOutlineRenderer().render(subMesh, batch, true); engine.setAlphaMode(currentMode); } this.onAfterRenderObservable.notifyObservers(this); return this; } private _onBeforeDraw(isInstance: boolean, world: Matrix, effectiveMaterial?: Material): void { if (isInstance && effectiveMaterial) { effectiveMaterial.bindOnlyWorldMatrix(world); } } /** * Returns an array populated with ParticleSystem objects whose the mesh is the emitter. */ public getEmittedParticleSystems(): IParticleSystem[] { var results = new Array(); for (var index = 0; index < this.getScene().particleSystems.length; index++) { var particleSystem = this.getScene().particleSystems[index]; if (particleSystem.emitter === this) { results.push(particleSystem); } } return results; } /** * Returns an array populated with ParticleSystem objects whose the mesh or its children are the emitter. */ public getHierarchyEmittedParticleSystems(): IParticleSystem[] { var results = new Array(); var descendants = this.getDescendants(); descendants.push(this); for (var index = 0; index < this.getScene().particleSystems.length; index++) { var particleSystem = this.getScene().particleSystems[index]; let emitter: any = particleSystem.emitter; if (emitter.position && descendants.indexOf(emitter) !== -1) { results.push(particleSystem); } } return results; } public _checkDelayState(): Mesh { var scene = this.getScene(); if (this._geometry) { this._geometry.load(scene); } else if (this.delayLoadState === Engine.DELAYLOADSTATE_NOTLOADED) { this.delayLoadState = Engine.DELAYLOADSTATE_LOADING; this._queueLoad(scene); } return this; } private _queueLoad(scene: Scene): Mesh { scene._addPendingData(this); var getBinaryData = (this.delayLoadingFile.indexOf(".babylonbinarymeshdata") !== -1); Tools.LoadFile(this.delayLoadingFile, data => { if (data instanceof ArrayBuffer) { this._delayLoadingFunction(data, this); } else { this._delayLoadingFunction(JSON.parse(data), this); } this.instances.forEach(instance => { instance._syncSubMeshes(); }); this.delayLoadState = Engine.DELAYLOADSTATE_LOADED; scene._removePendingData(this); }, () => { }, scene.database, getBinaryData); return this; } /** * Boolean, true is the mesh in the frustum defined by the Plane objects from the `frustumPlanes` array parameter. */ public isInFrustum(frustumPlanes: Plane[]): boolean { if (this.delayLoadState === Engine.DELAYLOADSTATE_LOADING) { return false; } if (!super.isInFrustum(frustumPlanes)) { return false; } this._checkDelayState(); return true; } /** * Sets the mesh material by the material or multiMaterial `id` property. * The material `id` is a string identifying the material or the multiMaterial. * This method returns the Mesh. */ public setMaterialByID(id: string): Mesh { var materials = this.getScene().materials; var index: number; for (index = materials.length - 1; index > -1; index--) { if (materials[index].id === id) { this.material = materials[index]; return this; } } // Multi var multiMaterials = this.getScene().multiMaterials; for (index = multiMaterials.length - 1; index > -1; index--) { if (multiMaterials[index].id === id) { this.material = multiMaterials[index]; return this; } } return this; } /** * Returns as a new array populated with the mesh material and/or skeleton, if any. */ public getAnimatables(): IAnimatable[] { var results = new Array(); if (this.material) { results.push(this.material); } if (this.skeleton) { results.push(this.skeleton); } return results; } /** * Modifies the mesh geometry according to the passed transformation matrix. * This method returns nothing but it really modifies the mesh even if it's originally not set as updatable. * The mesh normals are modified accordingly the same transformation. * tuto : http://doc.babylonjs.com/tutorials/How_Rotations_and_Translations_Work#baking-transform * Note that, under the hood, this method sets a new VertexBuffer each call. * Returns the Mesh. */ public bakeTransformIntoVertices(transform: Matrix): Mesh { // Position if (!this.isVerticesDataPresent(VertexBuffer.PositionKind)) { return this; } var submeshes = this.subMeshes.splice(0); this._resetPointsArrayCache(); var data = this.getVerticesData(VertexBuffer.PositionKind); var temp = new Array(); var index: number; for (index = 0; index < data.length; index += 3) { Vector3.TransformCoordinates(Vector3.FromArray(data, index), transform).toArray(temp, index); } this.setVerticesData(VertexBuffer.PositionKind, temp, (this.getVertexBuffer(VertexBuffer.PositionKind)).isUpdatable()); // Normals if (!this.isVerticesDataPresent(VertexBuffer.NormalKind)) { return this; } data = this.getVerticesData(VertexBuffer.NormalKind); temp = []; for (index = 0; index < data.length; index += 3) { Vector3.TransformNormal(Vector3.FromArray(data, index), transform).normalize().toArray(temp, index); } this.setVerticesData(VertexBuffer.NormalKind, temp, (this.getVertexBuffer(VertexBuffer.NormalKind)).isUpdatable()); // flip faces? if (transform.m[0] * transform.m[5] * transform.m[10] < 0) { this.flipFaces(); } // Restore submeshes this.releaseSubMeshes(); this.subMeshes = submeshes; return this; } /** * Modifies the mesh geometry according to its own current World Matrix. * The mesh World Matrix is then reset. * This method returns nothing but really modifies the mesh even if it's originally not set as updatable. * tuto : tuto : http://doc.babylonjs.com/resources/baking_transformations * Note that, under the hood, this method sets a new VertexBuffer each call. * Returns the Mesh. */ public bakeCurrentTransformIntoVertices(): Mesh { this.bakeTransformIntoVertices(this.computeWorldMatrix(true)); this.scaling.copyFromFloats(1, 1, 1); this.position.copyFromFloats(0, 0, 0); this.rotation.copyFromFloats(0, 0, 0); //only if quaternion is already set if (this.rotationQuaternion) { this.rotationQuaternion = Quaternion.Identity(); } this._worldMatrix = Matrix.Identity(); return this; } // Cache public get _positions(): Nullable { if (this._geometry) { return this._geometry._positions; } return null; } public _resetPointsArrayCache(): Mesh { if (this._geometry) { this._geometry._resetPointsArrayCache(); } return this; } public _generatePointsArray(): boolean { if (this._geometry) { return this._geometry._generatePointsArray(); } return false; } /** * Returns a new Mesh object generated from the current mesh properties. * This method must not get confused with createInstance(). * The parameter `name` is a string, the name given to the new mesh. * The optional parameter `newParent` can be any Node object (default `null`). * The optional parameter `doNotCloneChildren` (default `false`) allows/denies the recursive cloning of the original mesh children if any. * The parameter `clonePhysicsImpostor` (default `true`) allows/denies the cloning in the same time of the original mesh `body` used by the physics engine, if any. */ public clone(name: string, newParent?: Node, doNotCloneChildren?: boolean, clonePhysicsImpostor: boolean = true): Mesh { return new Mesh(name, this.getScene(), newParent, this, doNotCloneChildren, clonePhysicsImpostor); } /** * Disposes the Mesh. * By default, all the mesh children are also disposed unless the parameter `doNotRecurse` is set to `true`. * Returns nothing. */ public dispose(doNotRecurse?: boolean, disposeMaterialAndTextures: boolean = false): void { this.morphTargetManager = null; if (this._geometry) { this._geometry.releaseForMesh(this, true); } // Sources var meshes = this.getScene().meshes; meshes.forEach((abstractMesh: AbstractMesh) => { let mesh = abstractMesh as Mesh; if (mesh._source && mesh._source === this) { mesh._source = null; } }); this._source = null; // Instances if (this._instancesBuffer) { this._instancesBuffer.dispose(); this._instancesBuffer = null; } while (this.instances.length) { this.instances[0].dispose(); } // Highlight layers. let highlightLayers = this.getScene().highlightLayers; for (let i = 0; i < highlightLayers.length; i++) { let highlightLayer = highlightLayers[i]; if (highlightLayer) { highlightLayer.removeMesh(this); highlightLayer.removeExcludedMesh(this); } } super.dispose(doNotRecurse, disposeMaterialAndTextures); } /** * Modifies the mesh geometry according to a displacement map. * A displacement map is a colored image. Each pixel color value (actually a gradient computed from red, green, blue values) will give the displacement to apply to each mesh vertex. * The mesh must be set as updatable. Its internal geometry is directly modified, no new buffer are allocated. * This method returns nothing. * The parameter `url` is a string, the URL from the image file is to be downloaded. * The parameters `minHeight` and `maxHeight` are the lower and upper limits of the displacement. * The parameter `onSuccess` is an optional Javascript function to be called just after the mesh is modified. It is passed the modified mesh and must return nothing. * The parameter `uvOffset` is an optional vector2 used to offset UV. * The parameter `uvScale` is an optional vector2 used to scale UV. * * Returns the Mesh. */ public applyDisplacementMap(url: string, minHeight: number, maxHeight: number, onSuccess?: (mesh: Mesh) => void, uvOffset?: Vector2, uvScale?: Vector2): Mesh { var scene = this.getScene(); var onload = (img: HTMLImageElement) => { // Getting height map data var canvas = document.createElement("canvas"); var context = canvas.getContext("2d"); var heightMapWidth = img.width; var heightMapHeight = img.height; canvas.width = heightMapWidth; canvas.height = heightMapHeight; context.drawImage(img, 0, 0); // Create VertexData from map data //Cast is due to wrong definition in lib.d.ts from ts 1.3 - https://github.com/Microsoft/TypeScript/issues/949 var buffer = (context.getImageData(0, 0, heightMapWidth, heightMapHeight).data); this.applyDisplacementMapFromBuffer(buffer, heightMapWidth, heightMapHeight, minHeight, maxHeight, uvOffset, uvScale); //execute success callback, if set if (onSuccess) { onSuccess(this); } }; Tools.LoadImage(url, onload, () => { }, scene.database); return this; } /** * Modifies the mesh geometry according to a displacementMap buffer. * A displacement map is a colored image. Each pixel color value (actually a gradient computed from red, green, blue values) will give the displacement to apply to each mesh vertex. * The mesh must be set as updatable. Its internal geometry is directly modified, no new buffer are allocated. * This method returns nothing. * The parameter `buffer` is a `Uint8Array` buffer containing series of `Uint8` lower than 255, the red, green, blue and alpha values of each successive pixel. * The parameters `heightMapWidth` and `heightMapHeight` are positive integers to set the width and height of the buffer image. * The parameters `minHeight` and `maxHeight` are the lower and upper limits of the displacement. * The parameter `uvOffset` is an optional vector2 used to offset UV. * The parameter `uvScale` is an optional vector2 used to scale UV. * * Returns the Mesh. */ public applyDisplacementMapFromBuffer(buffer: Uint8Array, heightMapWidth: number, heightMapHeight: number, minHeight: number, maxHeight: number, uvOffset?: Vector2, uvScale?: Vector2): Mesh { if (!this.isVerticesDataPresent(VertexBuffer.PositionKind) || !this.isVerticesDataPresent(VertexBuffer.NormalKind) || !this.isVerticesDataPresent(VertexBuffer.UVKind)) { Tools.Warn("Cannot call applyDisplacementMap: Given mesh is not complete. Position, Normal or UV are missing"); return this; } var positions = this.getVerticesData(VertexBuffer.PositionKind); var normals = this.getVerticesData(VertexBuffer.NormalKind); var uvs = this.getVerticesData(VertexBuffer.UVKind); var position = Vector3.Zero(); var normal = Vector3.Zero(); var uv = Vector2.Zero(); uvOffset = uvOffset || Vector2.Zero(); uvScale = uvScale || new Vector2(1, 1); for (var index = 0; index < positions.length; index += 3) { Vector3.FromArrayToRef(positions, index, position); Vector3.FromArrayToRef(normals, index, normal); Vector2.FromArrayToRef(uvs, (index / 3) * 2, uv); // Compute height var u = ((Math.abs(uv.x * uvScale.x + uvOffset.x) * heightMapWidth) % heightMapWidth) | 0; var v = ((Math.abs(uv.y * uvScale.y + uvOffset.y) * heightMapHeight) % heightMapHeight) | 0; var pos = (u + v * heightMapWidth) * 4; var r = buffer[pos] / 255.0; var g = buffer[pos + 1] / 255.0; var b = buffer[pos + 2] / 255.0; var gradient = r * 0.3 + g * 0.59 + b * 0.11; normal.normalize(); normal.scaleInPlace(minHeight + (maxHeight - minHeight) * gradient); position = position.add(normal); position.toArray(positions, index); } VertexData.ComputeNormals(positions, this.getIndices(), normals); this.updateVerticesData(VertexBuffer.PositionKind, positions); this.updateVerticesData(VertexBuffer.NormalKind, normals); return this; } /** * Modify the mesh to get a flat shading rendering. * This means each mesh facet will then have its own normals. Usually new vertices are added in the mesh geometry to get this result. * This method returns the Mesh. * Warning : the mesh is really modified even if not set originally as updatable and, under the hood, a new VertexBuffer is allocated. */ public convertToFlatShadedMesh(): Mesh { /// Update normals and vertices to get a flat shading rendering. /// Warning: This may imply adding vertices to the mesh in order to get exactly 3 vertices per face var kinds = this.getVerticesDataKinds(); var vbs: { [key: string]: VertexBuffer } = {}; var data: { [key: string]: FloatArray } = {}; var newdata: { [key: string]: Array } = {}; var updatableNormals = false; var kindIndex: number; var kind: string; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var vertexBuffer = this.getVertexBuffer(kind); if (kind === VertexBuffer.NormalKind) { updatableNormals = vertexBuffer.isUpdatable(); kinds.splice(kindIndex, 1); kindIndex--; continue; } vbs[kind] = vertexBuffer; data[kind] = vbs[kind].getData(); newdata[kind] = []; } // Save previous submeshes var previousSubmeshes = this.subMeshes.slice(0); var indices = this.getIndices(); var totalIndices = this.getTotalIndices(); // Generating unique vertices per face var index: number; for (index = 0; index < totalIndices; index++) { var vertexIndex = indices[index]; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var stride = vbs[kind].getStrideSize(); for (var offset = 0; offset < stride; offset++) { newdata[kind].push(data[kind][vertexIndex * stride + offset]); } } } // Updating faces & normal var normals = []; var positions = newdata[VertexBuffer.PositionKind]; for (index = 0; index < totalIndices; index += 3) { indices[index] = index; indices[index + 1] = index + 1; indices[index + 2] = index + 2; var p1 = Vector3.FromArray(positions, index * 3); var p2 = Vector3.FromArray(positions, (index + 1) * 3); var p3 = Vector3.FromArray(positions, (index + 2) * 3); var p1p2 = p1.subtract(p2); var p3p2 = p3.subtract(p2); var normal = Vector3.Normalize(Vector3.Cross(p1p2, p3p2)); // Store same normals for every vertex for (var localIndex = 0; localIndex < 3; localIndex++) { normals.push(normal.x); normals.push(normal.y); normals.push(normal.z); } } this.setIndices(indices); this.setVerticesData(VertexBuffer.NormalKind, normals, updatableNormals); // Updating vertex buffers for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable()); } // Updating submeshes this.releaseSubMeshes(); for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) { var previousOne = previousSubmeshes[submeshIndex]; SubMesh.AddToMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this); } this.synchronizeInstances(); return this; } /** * This method removes all the mesh indices and add new vertices (duplication) in order to unfold facets into buffers. * In other words, more vertices, no more indices and a single bigger VBO. * The mesh is really modified even if not set originally as updatable. Under the hood, a new VertexBuffer is allocated. * Returns the Mesh. */ public convertToUnIndexedMesh(): Mesh { /// Remove indices by unfolding faces into buffers /// Warning: This implies adding vertices to the mesh in order to get exactly 3 vertices per face var kinds = this.getVerticesDataKinds(); var vbs: { [key: string]: VertexBuffer } = {}; var data: { [key: string]: FloatArray } = {}; var newdata: { [key: string]: Array } = {}; var kindIndex: number; var kind: string; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var vertexBuffer = this.getVertexBuffer(kind); vbs[kind] = vertexBuffer; data[kind] = vbs[kind].getData(); newdata[kind] = []; } // Save previous submeshes var previousSubmeshes = this.subMeshes.slice(0); var indices = this.getIndices(); var totalIndices = this.getTotalIndices(); // Generating unique vertices per face var index: number; for (index = 0; index < totalIndices; index++) { var vertexIndex = indices[index]; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var stride = vbs[kind].getStrideSize(); for (var offset = 0; offset < stride; offset++) { newdata[kind].push(data[kind][vertexIndex * stride + offset]); } } } // Updating indices for (index = 0; index < totalIndices; index += 3) { indices[index] = index; indices[index + 1] = index + 1; indices[index + 2] = index + 2; } this.setIndices(indices); // Updating vertex buffers for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable()); } // Updating submeshes this.releaseSubMeshes(); for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) { var previousOne = previousSubmeshes[submeshIndex]; SubMesh.AddToMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this); } this._unIndexed = true; this.synchronizeInstances(); return this; } /** * Inverses facet orientations and inverts also the normals with `flipNormals` (default `false`) if true. * This method returns the Mesh. * Warning : the mesh is really modified even if not set originally as updatable. A new VertexBuffer is created under the hood each call. */ public flipFaces(flipNormals: boolean = false): Mesh { var vertex_data = VertexData.ExtractFromMesh(this); var i: number; if (flipNormals && this.isVerticesDataPresent(VertexBuffer.NormalKind) && vertex_data.normals) { for (i = 0; i < vertex_data.normals.length; i++) { vertex_data.normals[i] *= -1; } } if (vertex_data.indices) { var temp; for (i = 0; i < vertex_data.indices.length; i += 3) { // reassign indices temp = vertex_data.indices[i + 1]; vertex_data.indices[i + 1] = vertex_data.indices[i + 2]; vertex_data.indices[i + 2] = temp; } } vertex_data.applyToMesh(this); return this; } // Instances /** * Creates a new InstancedMesh object from the mesh model. * An instance shares the same properties and the same material than its model. * Only these properties of each instance can then be set individually : * - position * - rotation * - rotationQuaternion * - setPivotMatrix * - scaling * tuto : http://doc.babylonjs.com/tutorials/How_to_use_Instances * Warning : this method is not supported for Line mesh and LineSystem */ public createInstance(name: string): InstancedMesh { return new InstancedMesh(name, this); } /** * Synchronises all the mesh instance submeshes to the current mesh submeshes, if any. * After this call, all the mesh instances have the same submeshes than the current mesh. * This method returns the Mesh. */ public synchronizeInstances(): Mesh { for (var instanceIndex = 0; instanceIndex < this.instances.length; instanceIndex++) { var instance = this.instances[instanceIndex]; instance._syncSubMeshes(); } return this; } /** * Simplify the mesh according to the given array of settings. * Function will return immediately and will simplify async. It returns the Mesh. * @param settings a collection of simplification settings. * @param parallelProcessing should all levels calculate parallel or one after the other. * @param type the type of simplification to run. * @param successCallback optional success callback to be called after the simplification finished processing all settings. */ public simplify(settings: Array, parallelProcessing: boolean = true, simplificationType: SimplificationType = SimplificationType.QUADRATIC, successCallback?: (mesh?: Mesh, submeshIndex?: number) => void): Mesh { this.getScene().simplificationQueue.addTask({ settings: settings, parallelProcessing: parallelProcessing, mesh: this, simplificationType: simplificationType, successCallback: successCallback }); return this; } /** * Optimization of the mesh's indices, in case a mesh has duplicated vertices. * The function will only reorder the indices and will not remove unused vertices to avoid problems with submeshes. * This should be used together with the simplification to avoid disappearing triangles. * Returns the Mesh. * @param successCallback an optional success callback to be called after the optimization finished. */ public optimizeIndices(successCallback?: (mesh?: Mesh) => void): Mesh { var indices = this.getIndices(); var positions = this.getVerticesData(VertexBuffer.PositionKind); if (!positions || !indices) { return this; } var vectorPositions = new Array(); for (var pos = 0; pos < positions.length; pos = pos + 3) { vectorPositions.push(Vector3.FromArray(positions, pos)); } var dupes = new Array(); AsyncLoop.SyncAsyncForLoop(vectorPositions.length, 40, (iteration) => { var realPos = vectorPositions.length - 1 - iteration; var testedPosition = vectorPositions[realPos]; for (var j = 0; j < realPos; ++j) { var againstPosition = vectorPositions[j]; if (testedPosition.equals(againstPosition)) { dupes[realPos] = j; break; } } }, () => { for (var i = 0; i < indices.length; ++i) { indices[i] = dupes[indices[i]] || indices[i]; } //indices are now reordered var originalSubMeshes = this.subMeshes.slice(0); this.setIndices(indices); this.subMeshes = originalSubMeshes; if (successCallback) { successCallback(this); } }); return this; } public serialize(serializationObject: any): void { serializationObject.name = this.name; serializationObject.id = this.id; serializationObject.type = this.getClassName(); if (Tags && Tags.HasTags(this)) { serializationObject.tags = Tags.GetTags(this); } serializationObject.position = this.position.asArray(); if (this.rotationQuaternion) { serializationObject.rotationQuaternion = this.rotationQuaternion.asArray(); } else if (this.rotation) { serializationObject.rotation = this.rotation.asArray(); } serializationObject.scaling = this.scaling.asArray(); serializationObject.localMatrix = this.getPivotMatrix().asArray(); serializationObject.isEnabled = this.isEnabled(false); serializationObject.isVisible = this.isVisible; serializationObject.infiniteDistance = this.infiniteDistance; serializationObject.pickable = this.isPickable; serializationObject.receiveShadows = this.receiveShadows; serializationObject.billboardMode = this.billboardMode; serializationObject.visibility = this.visibility; serializationObject.checkCollisions = this.checkCollisions; serializationObject.isBlocker = this.isBlocker; // Parent if (this.parent) { serializationObject.parentId = this.parent.id; } // Geometry serializationObject.isUnIndexed = this.isUnIndexed; var geometry = this._geometry; if (geometry) { var geometryId = geometry.id; serializationObject.geometryId = geometryId; // SubMeshes serializationObject.subMeshes = []; for (var subIndex = 0; subIndex < this.subMeshes.length; subIndex++) { var subMesh = this.subMeshes[subIndex]; serializationObject.subMeshes.push({ materialIndex: subMesh.materialIndex, verticesStart: subMesh.verticesStart, verticesCount: subMesh.verticesCount, indexStart: subMesh.indexStart, indexCount: subMesh.indexCount }); } } // Material if (this.material) { serializationObject.materialId = this.material.id; } else { this.material = null; } // Morph targets if (this.morphTargetManager) { serializationObject.morphTargetManagerId = this.morphTargetManager.uniqueId; } // Skeleton if (this.skeleton) { serializationObject.skeletonId = this.skeleton.id; } // Physics //TODO implement correct serialization for physics impostors. let impostor = this.getPhysicsImpostor(); if (impostor) { serializationObject.physicsMass = impostor.getParam("mass"); serializationObject.physicsFriction = impostor.getParam("friction"); serializationObject.physicsRestitution = impostor.getParam("mass"); serializationObject.physicsImpostor = impostor.type; } // Metadata if (this.metadata) { serializationObject.metadata = this.metadata; } // Instances serializationObject.instances = []; for (var index = 0; index < this.instances.length; index++) { var instance = this.instances[index]; var serializationInstance: any = { name: instance.name, id: instance.id, position: instance.position.asArray(), scaling: instance.scaling.asArray() }; if (instance.rotationQuaternion) { serializationInstance.rotationQuaternion = instance.rotationQuaternion.asArray(); } else if (instance.rotation) { serializationInstance.rotation = instance.rotation.asArray(); } serializationObject.instances.push(serializationInstance); // Animations Animation.AppendSerializedAnimations(instance, serializationInstance); serializationInstance.ranges = instance.serializeAnimationRanges(); } // // Animations Animation.AppendSerializedAnimations(this, serializationObject); serializationObject.ranges = this.serializeAnimationRanges(); // Layer mask serializationObject.layerMask = this.layerMask; // Alpha serializationObject.alphaIndex = this.alphaIndex; serializationObject.hasVertexAlpha = this.hasVertexAlpha; // Overlay serializationObject.overlayAlpha = this.overlayAlpha; serializationObject.overlayColor = this.overlayColor.asArray(); serializationObject.renderOverlay = this.renderOverlay; // Fog serializationObject.applyFog = this.applyFog; // Action Manager if (this.actionManager) { serializationObject.actions = this.actionManager.serialize(this.name); } } public _syncGeometryWithMorphTargetManager() { if (!this.geometry) { return; } this._markSubMeshesAsAttributesDirty(); let morphTargetManager = this._morphTargetManager; if (morphTargetManager && morphTargetManager.vertexCount) { if (morphTargetManager.vertexCount !== this.getTotalVertices()) { Tools.Error("Mesh is incompatible with morph targets. Targets and mesh must all have the same vertices count."); this.morphTargetManager = null; return; } for (var index = 0; index < morphTargetManager.numInfluencers; index++) { var morphTarget = morphTargetManager.getActiveTarget(index); const positions = morphTarget.getPositions(); if (!positions) { Tools.Error("Invalid morph target. Target must have positions."); return; } this.geometry.setVerticesData(VertexBuffer.PositionKind + index, positions, false, 3); const normals = morphTarget.getNormals(); if (normals) { this.geometry.setVerticesData(VertexBuffer.NormalKind + index, normals, false, 3); } const tangents = morphTarget.getTangents(); if (tangents) { this.geometry.setVerticesData(VertexBuffer.TangentKind + index, tangents, false, 3); } } } else { var index = 0; // Positions while (this.geometry.isVerticesDataPresent(VertexBuffer.PositionKind + index)) { this.geometry.removeVerticesData(VertexBuffer.PositionKind + index); if (this.geometry.isVerticesDataPresent(VertexBuffer.NormalKind + index)) { this.geometry.removeVerticesData(VertexBuffer.NormalKind + index); } if (this.geometry.isVerticesDataPresent(VertexBuffer.TangentKind + index)) { this.geometry.removeVerticesData(VertexBuffer.TangentKind + index); } index++; } } } // Statics /** * Returns a new Mesh object parsed from the source provided. * The parameter `parsedMesh` is the source. * The parameter `rootUrl` is a string, it's the root URL to prefix the `delayLoadingFile` property with */ public static Parse(parsedMesh: any, scene: Scene, rootUrl: string): Mesh { var mesh: Mesh; if (parsedMesh.type && parsedMesh.type === "GroundMesh") { mesh = GroundMesh.Parse(parsedMesh, scene); } else { mesh = new Mesh(parsedMesh.name, scene); } mesh.id = parsedMesh.id; if (Tags) { Tags.AddTagsTo(mesh, parsedMesh.tags); } mesh.position = Vector3.FromArray(parsedMesh.position); if (parsedMesh.metadata !== undefined) { mesh.metadata = parsedMesh.metadata; } if (parsedMesh.rotationQuaternion) { mesh.rotationQuaternion = Quaternion.FromArray(parsedMesh.rotationQuaternion); } else if (parsedMesh.rotation) { mesh.rotation = Vector3.FromArray(parsedMesh.rotation); } mesh.scaling = Vector3.FromArray(parsedMesh.scaling); if (parsedMesh.localMatrix) { mesh.setPivotMatrix(Matrix.FromArray(parsedMesh.localMatrix)); } else if (parsedMesh.pivotMatrix) { mesh.setPivotMatrix(Matrix.FromArray(parsedMesh.pivotMatrix)); } mesh.setEnabled(parsedMesh.isEnabled); mesh.isVisible = parsedMesh.isVisible; mesh.infiniteDistance = parsedMesh.infiniteDistance; mesh.showBoundingBox = parsedMesh.showBoundingBox; mesh.showSubMeshesBoundingBox = parsedMesh.showSubMeshesBoundingBox; if (parsedMesh.applyFog !== undefined) { mesh.applyFog = parsedMesh.applyFog; } if (parsedMesh.pickable !== undefined) { mesh.isPickable = parsedMesh.pickable; } if (parsedMesh.alphaIndex !== undefined) { mesh.alphaIndex = parsedMesh.alphaIndex; } mesh.receiveShadows = parsedMesh.receiveShadows; mesh.billboardMode = parsedMesh.billboardMode; if (parsedMesh.visibility !== undefined) { mesh.visibility = parsedMesh.visibility; } mesh.checkCollisions = parsedMesh.checkCollisions; if (parsedMesh.isBlocker !== undefined) { mesh.isBlocker = parsedMesh.isBlocker; } mesh._shouldGenerateFlatShading = parsedMesh.useFlatShading; // freezeWorldMatrix if (parsedMesh.freezeWorldMatrix) { mesh._waitingFreezeWorldMatrix = parsedMesh.freezeWorldMatrix; } // Parent if (parsedMesh.parentId) { mesh._waitingParentId = parsedMesh.parentId; } // Actions if (parsedMesh.actions !== undefined) { mesh._waitingActions = parsedMesh.actions; } // Overlay if (parsedMesh.overlayAlpha !== undefined) { mesh.overlayAlpha = parsedMesh.overlayAlpha; } if (parsedMesh.overlayColor !== undefined) { mesh.overlayColor = Color3.FromArray(parsedMesh.overlayColor); } if (parsedMesh.renderOverlay !== undefined) { mesh.renderOverlay = parsedMesh.renderOverlay; } // Geometry mesh.isUnIndexed = !!parsedMesh.isUnIndexed; mesh.hasVertexAlpha = parsedMesh.hasVertexAlpha; if (parsedMesh.delayLoadingFile) { mesh.delayLoadState = Engine.DELAYLOADSTATE_NOTLOADED; mesh.delayLoadingFile = rootUrl + parsedMesh.delayLoadingFile; mesh._boundingInfo = new BoundingInfo(Vector3.FromArray(parsedMesh.boundingBoxMinimum), Vector3.FromArray(parsedMesh.boundingBoxMaximum)); if (parsedMesh._binaryInfo) { mesh._binaryInfo = parsedMesh._binaryInfo; } mesh._delayInfo = []; if (parsedMesh.hasUVs) { mesh._delayInfo.push(VertexBuffer.UVKind); } if (parsedMesh.hasUVs2) { mesh._delayInfo.push(VertexBuffer.UV2Kind); } if (parsedMesh.hasUVs3) { mesh._delayInfo.push(VertexBuffer.UV3Kind); } if (parsedMesh.hasUVs4) { mesh._delayInfo.push(VertexBuffer.UV4Kind); } if (parsedMesh.hasUVs5) { mesh._delayInfo.push(VertexBuffer.UV5Kind); } if (parsedMesh.hasUVs6) { mesh._delayInfo.push(VertexBuffer.UV6Kind); } if (parsedMesh.hasColors) { mesh._delayInfo.push(VertexBuffer.ColorKind); } if (parsedMesh.hasMatricesIndices) { mesh._delayInfo.push(VertexBuffer.MatricesIndicesKind); } if (parsedMesh.hasMatricesWeights) { mesh._delayInfo.push(VertexBuffer.MatricesWeightsKind); } mesh._delayLoadingFunction = Geometry.ImportGeometry; if (SceneLoader.ForceFullSceneLoadingForIncremental) { mesh._checkDelayState(); } } else { Geometry.ImportGeometry(parsedMesh, mesh); } // Material if (parsedMesh.materialId) { mesh.setMaterialByID(parsedMesh.materialId); } else { mesh.material = null; } // Morph targets if (parsedMesh.morphTargetManagerId > -1) { mesh.morphTargetManager = scene.getMorphTargetManagerById(parsedMesh.morphTargetManagerId); } // Skeleton if (parsedMesh.skeletonId > -1) { mesh.skeleton = scene.getLastSkeletonByID(parsedMesh.skeletonId); if (parsedMesh.numBoneInfluencers) { mesh.numBoneInfluencers = parsedMesh.numBoneInfluencers; } } // Animations if (parsedMesh.animations) { for (var animationIndex = 0; animationIndex < parsedMesh.animations.length; animationIndex++) { var parsedAnimation = parsedMesh.animations[animationIndex]; mesh.animations.push(Animation.Parse(parsedAnimation)); } Node.ParseAnimationRanges(mesh, parsedMesh, scene); } if (parsedMesh.autoAnimate) { scene.beginAnimation(mesh, parsedMesh.autoAnimateFrom, parsedMesh.autoAnimateTo, parsedMesh.autoAnimateLoop, parsedMesh.autoAnimateSpeed || 1.0); } // Layer Mask if (parsedMesh.layerMask && (!isNaN(parsedMesh.layerMask))) { mesh.layerMask = Math.abs(parseInt(parsedMesh.layerMask)); } else { mesh.layerMask = 0x0FFFFFFF; } // Physics if (parsedMesh.physicsImpostor) { mesh.physicsImpostor = new PhysicsImpostor(mesh, parsedMesh.physicsImpostor, { mass: parsedMesh.physicsMass, friction: parsedMesh.physicsFriction, restitution: parsedMesh.physicsRestitution }, scene); } // Instances if (parsedMesh.instances) { for (var index = 0; index < parsedMesh.instances.length; index++) { var parsedInstance = parsedMesh.instances[index]; var instance = mesh.createInstance(parsedInstance.name); if (parsedInstance.id) { instance.id = parsedInstance.id; } if (Tags) { Tags.AddTagsTo(instance, parsedInstance.tags); } instance.position = Vector3.FromArray(parsedInstance.position); if (parsedInstance.parentId) { instance._waitingParentId = parsedInstance.parentId; } if (parsedInstance.rotationQuaternion) { instance.rotationQuaternion = Quaternion.FromArray(parsedInstance.rotationQuaternion); } else if (parsedInstance.rotation) { instance.rotation = Vector3.FromArray(parsedInstance.rotation); } instance.scaling = Vector3.FromArray(parsedInstance.scaling); instance.checkCollisions = mesh.checkCollisions; if (parsedMesh.animations) { for (animationIndex = 0; animationIndex < parsedMesh.animations.length; animationIndex++) { parsedAnimation = parsedMesh.animations[animationIndex]; instance.animations.push(Animation.Parse(parsedAnimation)); } Node.ParseAnimationRanges(instance, parsedMesh, scene); } } } return mesh; } /** * Creates a ribbon mesh. * Please consider using the same method from the MeshBuilder class instead. * The ribbon is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters. * * Please read this full tutorial to understand how to design a ribbon : http://doc.babylonjs.com/tutorials/Ribbon_Tutorial * The parameter `pathArray` is a required array of paths, what are each an array of successive Vector3. The pathArray parameter depicts the ribbon geometry. * The parameter `closeArray` (boolean, default false) creates a seam between the first and the last paths of the path array. * The parameter `closePath` (boolean, default false) creates a seam between the first and the last points of each path of the path array. * The parameter `offset` (positive integer, default : rounded half size of the pathArray length), is taken in account only if the `pathArray` is containing a single path. * It's the offset to join together the points from the same path. Ex : offset = 10 means the point 1 is joined to the point 11. * The optional parameter `instance` is an instance of an existing Ribbon object to be updated with the passed `pathArray` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#ribbon * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateRibbon(name: string, pathArray: Vector3[][], closeArray: boolean = false, closePath: boolean, offset: number, scene?: Scene, updatable: boolean = false, sideOrientation?: number, instance?: Mesh): Mesh { return MeshBuilder.CreateRibbon(name, { pathArray: pathArray, closeArray: closeArray, closePath: closePath, offset: offset, updatable: updatable, sideOrientation: sideOrientation, instance: instance }, scene); } /** * Creates a plane polygonal mesh. By default, this is a disc. * Please consider using the same method from the MeshBuilder class instead. * The parameter `radius` sets the radius size (float) of the polygon (default 0.5). * The parameter `tessellation` sets the number of polygon sides (positive integer, default 64). So a tessellation valued to 3 will build a triangle, to 4 a square, etc. * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateDisc(name: string, radius: number, tessellation: number, scene: Nullable = null, updatable?: boolean, sideOrientation?: number): Mesh { var options = { radius: radius, tessellation: tessellation, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateDisc(name, options, scene); } /** * Creates a box mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `size` sets the size (float) of each box side (default 1). * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateBox(name: string, size: number, scene: Nullable = null, updatable?: boolean, sideOrientation?: number): Mesh { var options = { size: size, sideOrientation: sideOrientation, updatable: updatable }; return MeshBuilder.CreateBox(name, options, scene); } /** * Creates a sphere mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `diameter` sets the diameter size (float) of the sphere (default 1). * The parameter `segments` sets the sphere number of horizontal stripes (positive integer, default 32). * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateSphere(name: string, segments: number, diameter: number, scene?: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { segments: segments, diameterX: diameter, diameterY: diameter, diameterZ: diameter, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateSphere(name, options, scene); } /** * Creates a cylinder or a cone mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `height` sets the height size (float) of the cylinder/cone (float, default 2). * The parameter `diameter` sets the diameter of the top and bottom cap at once (float, default 1). * The parameters `diameterTop` and `diameterBottom` overwrite the parameter `diameter` and set respectively the top cap and bottom cap diameter (floats, default 1). The parameter "diameterBottom" can't be zero. * The parameter `tessellation` sets the number of cylinder sides (positive integer, default 24). Set it to 3 to get a prism for instance. * The parameter `subdivisions` sets the number of rings along the cylinder height (positive integer, default 1). * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateCylinder(name: string, height: number, diameterTop: number, diameterBottom: number, tessellation: number, subdivisions: any, scene?: Scene, updatable?: any, sideOrientation?: number): Mesh { if (scene === undefined || !(scene instanceof Scene)) { if (scene !== undefined) { sideOrientation = updatable || Mesh.DEFAULTSIDE; updatable = scene; } scene = subdivisions; subdivisions = 1; } var options = { height: height, diameterTop: diameterTop, diameterBottom: diameterBottom, tessellation: tessellation, subdivisions: subdivisions, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateCylinder(name, options, scene); } // Torus (Code from SharpDX.org) /** * Creates a torus mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `diameter` sets the diameter size (float) of the torus (default 1). * The parameter `thickness` sets the diameter size of the tube of the torus (float, default 0.5). * The parameter `tessellation` sets the number of torus sides (postive integer, default 16). * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateTorus(name: string, diameter: number, thickness: number, tessellation: number, scene?: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { diameter: diameter, thickness: thickness, tessellation: tessellation, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateTorus(name, options, scene); } /** * Creates a torus knot mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `radius` sets the global radius size (float) of the torus knot (default 2). * The parameter `radialSegments` sets the number of sides on each tube segments (positive integer, default 32). * The parameter `tubularSegments` sets the number of tubes to decompose the knot into (positive integer, default 32). * The parameters `p` and `q` are the number of windings on each axis (positive integers, default 2 and 3). * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateTorusKnot(name: string, radius: number, tube: number, radialSegments: number, tubularSegments: number, p: number, q: number, scene?: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, p: p, q: q, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateTorusKnot(name, options, scene); } /** * Creates a line mesh. * Please consider using the same method from the MeshBuilder class instead. * A line mesh is considered as a parametric shape since it has no predefined original shape. Its shape is determined by the passed array of points as an input parameter. * Like every other parametric shape, it is dynamically updatable by passing an existing instance of LineMesh to this static function. * The parameter `points` is an array successive Vector3. * The optional parameter `instance` is an instance of an existing LineMesh object to be updated with the passed `points` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#lines-and-dashedlines * When updating an instance, remember that only point positions can change, not the number of points. * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateLines(name: string, points: Vector3[], scene: Nullable = null, updatable: boolean = false, instance: Nullable = null): LinesMesh { var options = { points: points, updatable: updatable, instance: instance } return MeshBuilder.CreateLines(name, options, scene); } /** * Creates a dashed line mesh. * Please consider using the same method from the MeshBuilder class instead. * A dashed line mesh is considered as a parametric shape since it has no predefined original shape. Its shape is determined by the passed array of points as an input parameter. * Like every other parametric shape, it is dynamically updatable by passing an existing instance of LineMesh to this static function. * The parameter `points` is an array successive Vector3. * The parameter `dashNb` is the intended total number of dashes (positive integer, default 200). * The parameter `dashSize` is the size of the dashes relatively the dash number (positive float, default 3). * The parameter `gapSize` is the size of the gap between two successive dashes relatively the dash number (positive float, default 1). * The optional parameter `instance` is an instance of an existing LineMesh object to be updated with the passed `points` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#lines-and-dashedlines * When updating an instance, remember that only point positions can change, not the number of points. * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateDashedLines(name: string, points: Vector3[], dashSize: number, gapSize: number, dashNb: number, scene: Nullable = null, updatable?: boolean, instance?: LinesMesh): LinesMesh { var options = { points: points, dashSize: dashSize, gapSize: gapSize, dashNb: dashNb, updatable: updatable, instance: instance } return MeshBuilder.CreateDashedLines(name, options, scene); } /** * Creates a polygon mesh. * Please consider using the same method from the MeshBuilder class instead. * The polygon's shape will depend on the input parameters and is constructed parallel to a ground mesh. * The parameter `shape` is a required array of successive Vector3 representing the corners of the polygon in th XoZ plane, that is y = 0 for all vectors. * You can set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. * Remember you can only change the shape positions, not their number when updating a polygon. */ public static CreatePolygon(name: string, shape: Vector3[], scene: Scene, holes?: Vector3[][], updatable?: boolean, sideOrientation?: number): Mesh { var options = { shape: shape, holes: holes, updatable: updatable, sideOrientation: sideOrientation } return MeshBuilder.CreatePolygon(name, options, scene); } /** * Creates an extruded polygon mesh, with depth in the Y direction. * Please consider using the same method from the MeshBuilder class instead. */ public static ExtrudePolygon(name: string, shape: Vector3[], depth: number, scene: Scene, holes?: Vector3[][], updatable?: boolean, sideOrientation?: number): Mesh { var options = { shape: shape, holes: holes, depth: depth, updatable: updatable, sideOrientation: sideOrientation } return MeshBuilder.ExtrudePolygon(name, options, scene); } /** * Creates an extruded shape mesh. * The extrusion is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters. * Please consider using the same method from the MeshBuilder class instead. * * Please read this full tutorial to understand how to design an extruded shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes#extrusion * The parameter `shape` is a required array of successive Vector3. This array depicts the shape to be extruded in its local space : the shape must be designed in the xOy plane and will be * extruded along the Z axis. * The parameter `path` is a required array of successive Vector3. This is the axis curve the shape is extruded along. * The parameter `rotation` (float, default 0 radians) is the angle value to rotate the shape each step (each path point), from the former step (so rotation added each step) along the curve. * The parameter `scale` (float, default 1) is the value to scale the shape. * The parameter `cap` sets the way the extruded shape is capped. Possible values : BABYLON.Mesh.NO_CAP (default), BABYLON.Mesh.CAP_START, BABYLON.Mesh.CAP_END, BABYLON.Mesh.CAP_ALL * The optional parameter `instance` is an instance of an existing ExtrudedShape object to be updated with the passed `shape`, `path`, `scale` or `rotation` parameters : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#extruded-shape * Remember you can only change the shape or path point positions, not their number when updating an extruded shape. * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static ExtrudeShape(name: string, shape: Vector3[], path: Vector3[], scale: number, rotation: number, cap: number, scene: Nullable = null, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { var options = { shape: shape, path: path, scale: scale, rotation: rotation, cap: (cap === 0) ? 0 : cap || Mesh.NO_CAP, sideOrientation: sideOrientation, instance: instance, updatable: updatable } return MeshBuilder.ExtrudeShape(name, options, scene); } /** * Creates an custom extruded shape mesh. * The custom extrusion is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters. * Please consider using the same method from the MeshBuilder class instead. * * Please read this full tutorial to understand how to design a custom extruded shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes#extrusion * The parameter `shape` is a required array of successive Vector3. This array depicts the shape to be extruded in its local space : the shape must be designed in the xOy plane and will be * extruded along the Z axis. * The parameter `path` is a required array of successive Vector3. This is the axis curve the shape is extruded along. * The parameter `rotationFunction` (JS function) is a custom Javascript function called on each path point. This function is passed the position i of the point in the path * and the distance of this point from the begining of the path : * ```javascript * var rotationFunction = function(i, distance) { * // do things * return rotationValue; } * ``` * It must returns a float value that will be the rotation in radians applied to the shape on each path point. * The parameter `scaleFunction` (JS function) is a custom Javascript function called on each path point. This function is passed the position i of the point in the path * and the distance of this point from the begining of the path : * ```javascript * var scaleFunction = function(i, distance) { * // do things * return scaleValue;} * ``` * It must returns a float value that will be the scale value applied to the shape on each path point. * The parameter `ribbonClosePath` (boolean, default false) forces the extrusion underlying ribbon to close all the paths in its `pathArray`. * The parameter `ribbonCloseArray` (boolean, default false) forces the extrusion underlying ribbon to close its `pathArray`. * The parameter `cap` sets the way the extruded shape is capped. Possible values : BABYLON.Mesh.NO_CAP (default), BABYLON.Mesh.CAP_START, BABYLON.Mesh.CAP_END, BABYLON.Mesh.CAP_ALL * The optional parameter `instance` is an instance of an existing ExtrudedShape object to be updated with the passed `shape`, `path`, `scale` or `rotation` parameters : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#extruded-shape * Remember you can only change the shape or path point positions, not their number when updating an extruded shape. * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static ExtrudeShapeCustom(name: string, shape: Vector3[], path: Vector3[], scaleFunction: Function, rotationFunction: Function, ribbonCloseArray: boolean, ribbonClosePath: boolean, cap: number, scene: Scene, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { var options = { shape: shape, path: path, scaleFunction: scaleFunction, rotationFunction: rotationFunction, ribbonCloseArray: ribbonCloseArray, ribbonClosePath: ribbonClosePath, cap: (cap === 0) ? 0 : cap || Mesh.NO_CAP, sideOrientation: sideOrientation, instance: instance, updatable: updatable } return MeshBuilder.ExtrudeShapeCustom(name, options, scene); } /** * Creates lathe mesh. * The lathe is a shape with a symetry axis : a 2D model shape is rotated around this axis to design the lathe. * Please consider using the same method from the MeshBuilder class instead. * The parameter `shape` is a required array of successive Vector3. This array depicts the shape to be rotated in its local space : the shape must be designed in the xOy plane and will be * rotated around the Y axis. It's usually a 2D shape, so the Vector3 z coordinates are often set to zero. * The parameter `radius` (positive float, default 1) is the radius value of the lathe. * The parameter `tessellation` (positive integer, default 64) is the side number of the lathe. * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateLathe(name: string, shape: Vector3[], radius: number, tessellation: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { shape: shape, radius: radius, tessellation: tessellation, sideOrientation: sideOrientation, updatable: updatable }; return MeshBuilder.CreateLathe(name, options, scene); } /** * Creates a plane mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `size` sets the size (float) of both sides of the plane at once (default 1). * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreatePlane(name: string, size: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { size: size, width: size, height: size, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreatePlane(name, options, scene); } /** * Creates a ground mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameters `width` and `height` (floats, default 1) set the width and height sizes of the ground. * The parameter `subdivisions` (positive integer) sets the number of subdivisions per side. * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateGround(name: string, width: number, height: number, subdivisions: number, scene?: Scene, updatable?: boolean): Mesh { var options = { width: width, height: height, subdivisions: subdivisions, updatable: updatable } return MeshBuilder.CreateGround(name, options, scene); } /** * Creates a tiled ground mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameters `xmin` and `xmax` (floats, default -1 and 1) set the ground minimum and maximum X coordinates. * The parameters `zmin` and `zmax` (floats, default -1 and 1) set the ground minimum and maximum Z coordinates. * The parameter `subdivisions` is a javascript object `{w: positive integer, h: positive integer}` (default `{w: 6, h: 6}`). `w` and `h` are the * numbers of subdivisions on the ground width and height. Each subdivision is called a tile. * The parameter `precision` is a javascript object `{w: positive integer, h: positive integer}` (default `{w: 2, h: 2}`). `w` and `h` are the * numbers of subdivisions on the ground width and height of each tile. * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateTiledGround(name: string, xmin: number, zmin: number, xmax: number, zmax: number, subdivisions: { w: number; h: number; }, precision: { w: number; h: number; }, scene: Scene, updatable?: boolean): Mesh { var options = { xmin: xmin, zmin: zmin, xmax: xmax, zmax: zmax, subdivisions: subdivisions, precision: precision, updatable: updatable } return MeshBuilder.CreateTiledGround(name, options, scene); } /** * Creates a ground mesh from a height map. * tuto : http://doc.babylonjs.com/tutorials/14._Height_Map * Please consider using the same method from the MeshBuilder class instead. * The parameter `url` sets the URL of the height map image resource. * The parameters `width` and `height` (positive floats, default 10) set the ground width and height sizes. * The parameter `subdivisions` (positive integer, default 1) sets the number of subdivision per side. * The parameter `minHeight` (float, default 0) is the minimum altitude on the ground. * The parameter `maxHeight` (float, default 1) is the maximum altitude on the ground. * The parameter `onReady` is a javascript callback function that will be called once the mesh is just built (the height map download can last some time). * This function is passed the newly built mesh : * ```javascript * function(mesh) { // do things * return; } * ``` * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateGroundFromHeightMap(name: string, url: string, width: number, height: number, subdivisions: number, minHeight: number, maxHeight: number, scene: Scene, updatable?: boolean, onReady?: (mesh: GroundMesh) => void): GroundMesh { var options = { width: width, height: height, subdivisions: subdivisions, minHeight: minHeight, maxHeight: maxHeight, updatable: updatable, onReady: onReady }; return MeshBuilder.CreateGroundFromHeightMap(name, url, options, scene); } /** * Creates a tube mesh. * The tube is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters. * Please consider using the same method from the MeshBuilder class instead. * The parameter `path` is a required array of successive Vector3. It is the curve used as the axis of the tube. * The parameter `radius` (positive float, default 1) sets the tube radius size. * The parameter `tessellation` (positive float, default 64) is the number of sides on the tubular surface. * The parameter `radiusFunction` (javascript function, default null) is a vanilla javascript function. If it is not null, it overwrittes the parameter `radius`. * This function is called on each point of the tube path and is passed the index `i` of the i-th point and the distance of this point from the first point of the path. * It must return a radius value (positive float) : * ```javascript * var radiusFunction = function(i, distance) { * // do things * return radius; } * ``` * The parameter `cap` sets the way the extruded shape is capped. Possible values : BABYLON.Mesh.NO_CAP (default), BABYLON.Mesh.CAP_START, BABYLON.Mesh.CAP_END, BABYLON.Mesh.CAP_ALL * The optional parameter `instance` is an instance of an existing Tube object to be updated with the passed `pathArray` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#tube * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateTube(name: string, path: Vector3[], radius: number, tessellation: number, radiusFunction: { (i: number, distance: number): number; }, cap: number, scene: Scene, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { var options = { path: path, radius: radius, tessellation: tessellation, radiusFunction: radiusFunction, arc: 1, cap: cap, updatable: updatable, sideOrientation: sideOrientation, instance: instance } return MeshBuilder.CreateTube(name, options, scene); } /** * Creates a polyhedron mesh. * Please consider using the same method from the MeshBuilder class instead. * The parameter `type` (positive integer, max 14, default 0) sets the polyhedron type to build among the 15 embbeded types. Please refer to the type sheet in the tutorial * to choose the wanted type. * The parameter `size` (positive float, default 1) sets the polygon size. * You can overwrite the `size` on each dimension bu using the parameters `sizeX`, `sizeY` or `sizeZ` (positive floats, default to `size` value). * You can build other polyhedron types than the 15 embbeded ones by setting the parameter `custom` (`polyhedronObject`, default null). If you set the parameter `custom`, this overwrittes the parameter `type`. * A `polyhedronObject` is a formatted javascript object. You'll find a full file with pre-set polyhedra here : https://github.com/BabylonJS/Extensions/tree/master/Polyhedron * You can set the color and the UV of each side of the polyhedron with the parameters `faceColors` (Color4, default `(1, 1, 1, 1)`) and faceUV (Vector4, default `(0, 0, 1, 1)`). * To understand how to set `faceUV` or `faceColors`, please read this by considering the right number of faces of your polyhedron, instead of only 6 for the box : http://doc.babylonjs.com/tutorials/CreateBox_Per_Face_Textures_And_Colors * The parameter `flat` (boolean, default true). If set to false, it gives the polyhedron a single global face, so less vertices and shared normals. In this case, `faceColors` and `faceUV` are ignored. * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreatePolyhedron(name: string, options: { type?: number, size?: number, sizeX?: number, sizeY?: number, sizeZ?: number, custom?: any, faceUV?: Vector4[], faceColors?: Color4[], updatable?: boolean, sideOrientation?: number }, scene: Scene): Mesh { return MeshBuilder.CreatePolyhedron(name, options, scene); } /** * Creates a sphere based upon an icosahedron with 20 triangular faces which can be subdivided. * Please consider using the same method from the MeshBuilder class instead. * The parameter `radius` sets the radius size (float) of the icosphere (default 1). * You can set some different icosphere dimensions, for instance to build an ellipsoid, by using the parameters `radiusX`, `radiusY` and `radiusZ` (all by default have the same value than `radius`). * The parameter `subdivisions` sets the number of subdivisions (postive integer, default 4). The more subdivisions, the more faces on the icosphere whatever its size. * The parameter `flat` (boolean, default true) gives each side its own normals. Set it to false to get a smooth continuous light reflection on the surface. * You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE * Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation * The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created. */ public static CreateIcoSphere(name: string, options: { radius?: number, flat?: boolean, subdivisions?: number, sideOrientation?: number, updatable?: boolean }, scene: Scene): Mesh { return MeshBuilder.CreateIcoSphere(name, options, scene); } /** * Creates a decal mesh. * Please consider using the same method from the MeshBuilder class instead. * A decal is a mesh usually applied as a model onto the surface of another mesh. So don't forget the parameter `sourceMesh` depicting the decal. * The parameter `position` (Vector3, default `(0, 0, 0)`) sets the position of the decal in World coordinates. * The parameter `normal` (Vector3, default Vector3.Up) sets the normal of the mesh where the decal is applied onto in World coordinates. * The parameter `size` (Vector3, default `(1, 1, 1)`) sets the decal scaling. * The parameter `angle` (float in radian, default 0) sets the angle to rotate the decal. */ public static CreateDecal(name: string, sourceMesh: AbstractMesh, position: Vector3, normal: Vector3, size: Vector3, angle: number): Mesh { var options = { position: position, normal: normal, size: size, angle: angle } return MeshBuilder.CreateDecal(name, sourceMesh, options); } // Skeletons /** * @returns original positions used for CPU skinning. Useful for integrating Morphing with skeletons in same mesh. */ public setPositionsForCPUSkinning(): Float32Array { if (!this._sourcePositions) { let source = this.getVerticesData(VertexBuffer.PositionKind); if (!source) { return this._sourcePositions; } this._sourcePositions = new Float32Array(source); if (!this.isVertexBufferUpdatable(VertexBuffer.PositionKind)) { this.setVerticesData(VertexBuffer.PositionKind, source, true); } } return this._sourcePositions; } /** * @returns original normals used for CPU skinning. Useful for integrating Morphing with skeletons in same mesh. */ public setNormalsForCPUSkinning(): Float32Array { if (!this._sourceNormals) { let source = this.getVerticesData(VertexBuffer.NormalKind); if (!source) { return this._sourceNormals; } this._sourceNormals = new Float32Array(source); if (!this.isVertexBufferUpdatable(VertexBuffer.NormalKind)) { this.setVerticesData(VertexBuffer.NormalKind, source, true); } } return this._sourceNormals; } /** * Updates the vertex buffer by applying transformation from the bones. * Returns the Mesh. * * @param {skeleton} skeleton to apply */ public applySkeleton(skeleton: Skeleton): Mesh { if (!this.geometry) { return this; } if (this.geometry._softwareSkinningRenderId == this.getScene().getRenderId()) { return this; } this.geometry._softwareSkinningRenderId = this.getScene().getRenderId(); if (!this.isVerticesDataPresent(VertexBuffer.PositionKind)) { return this; } if (!this.isVerticesDataPresent(VertexBuffer.NormalKind)) { return this; } if (!this.isVerticesDataPresent(VertexBuffer.MatricesIndicesKind)) { return this; } if (!this.isVerticesDataPresent(VertexBuffer.MatricesWeightsKind)) { return this; } if (!this._sourcePositions) { var submeshes = this.subMeshes.slice(); this.setPositionsForCPUSkinning(); this.subMeshes = submeshes; } if (!this._sourceNormals) { this.setNormalsForCPUSkinning(); } // positionsData checks for not being Float32Array will only pass at most once var positionsData = this.getVerticesData(VertexBuffer.PositionKind); if (!positionsData) { return this; } if (!(positionsData instanceof Float32Array)) { positionsData = new Float32Array(positionsData); } // normalsData checks for not being Float32Array will only pass at most once var normalsData = this.getVerticesData(VertexBuffer.NormalKind); if (!normalsData) { return this; } if (!(normalsData instanceof Float32Array)) { normalsData = new Float32Array(normalsData); } var matricesIndicesData = this.getVerticesData(VertexBuffer.MatricesIndicesKind); var matricesWeightsData = this.getVerticesData(VertexBuffer.MatricesWeightsKind); if (!matricesWeightsData || !matricesIndicesData) { return this; } var needExtras = this.numBoneInfluencers > 4; var matricesIndicesExtraData = needExtras ? this.getVerticesData(VertexBuffer.MatricesIndicesExtraKind) : null; var matricesWeightsExtraData = needExtras ? this.getVerticesData(VertexBuffer.MatricesWeightsExtraKind) : null; var skeletonMatrices = skeleton.getTransformMatrices(this); var tempVector3 = Vector3.Zero(); var finalMatrix = new Matrix(); var tempMatrix = new Matrix(); var matWeightIdx = 0; var inf: number; for (var index = 0; index < positionsData.length; index += 3, matWeightIdx += 4) { var weight: number; for (inf = 0; inf < 4; inf++) { weight = matricesWeightsData[matWeightIdx + inf]; if (weight > 0) { Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesData[matWeightIdx + inf] * 16, weight, tempMatrix); finalMatrix.addToSelf(tempMatrix); } else break; } if (needExtras) { for (inf = 0; inf < 4; inf++) { weight = matricesWeightsExtraData![matWeightIdx + inf]; if (weight > 0) { Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesExtraData![matWeightIdx + inf] * 16, weight, tempMatrix); finalMatrix.addToSelf(tempMatrix); } else break; } } Vector3.TransformCoordinatesFromFloatsToRef(this._sourcePositions[index], this._sourcePositions[index + 1], this._sourcePositions[index + 2], finalMatrix, tempVector3); tempVector3.toArray(positionsData, index); Vector3.TransformNormalFromFloatsToRef(this._sourceNormals[index], this._sourceNormals[index + 1], this._sourceNormals[index + 2], finalMatrix, tempVector3); tempVector3.toArray(normalsData, index); finalMatrix.reset(); } this.updateVerticesData(VertexBuffer.PositionKind, positionsData); this.updateVerticesData(VertexBuffer.NormalKind, normalsData); return this; } // Tools /** * Returns an object `{min:` Vector3`, max:` Vector3`}` * This min and max Vector3 are the minimum and maximum vectors of each mesh bounding box from the passed array, in the World system */ public static MinMax(meshes: AbstractMesh[]): { min: Vector3; max: Vector3 } { var minVector: Nullable = null; var maxVector: Nullable = null; meshes.forEach(function (mesh, index, array) { let boundingInfo = mesh.getBoundingInfo(); let boundingBox = boundingInfo.boundingBox; if (!minVector || !maxVector) { minVector = boundingBox.minimumWorld; maxVector = boundingBox.maximumWorld; } else { minVector.MinimizeInPlace(boundingBox.minimumWorld); maxVector.MaximizeInPlace(boundingBox.maximumWorld); } }); if (!minVector || !maxVector) { return { min: Vector3.Zero(), max: Vector3.Zero() } } return { min: minVector, max: maxVector }; } /** * Returns a Vector3, the center of the `{min:` Vector3`, max:` Vector3`}` or the center of MinMax vector3 computed from a mesh array. */ public static Center(meshesOrMinMaxVector: { min: Vector3; max: Vector3 } | AbstractMesh[]): Vector3 { var minMaxVector = (meshesOrMinMaxVector instanceof Array) ? Mesh.MinMax(meshesOrMinMaxVector) : meshesOrMinMaxVector; return Vector3.Center(minMaxVector.min, minMaxVector.max); } /** * Merge the array of meshes into a single mesh for performance reasons. * @param {Array} meshes - The vertices source. They should all be of the same material. Entries can empty * @param {boolean} disposeSource - When true (default), dispose of the vertices from the source meshes * @param {boolean} allow32BitsIndices - When the sum of the vertices > 64k, this must be set to true. * @param {Mesh} meshSubclass - When set, vertices inserted into this Mesh. Meshes can then be merged into a Mesh sub-class. * @param {boolean} subdivideWithSubMeshes - When true (false default), subdivide mesh to his subMesh array with meshes source. */ public static MergeMeshes(meshes: Array, disposeSource = true, allow32BitsIndices?: boolean, meshSubclass?: Mesh, subdivideWithSubMeshes?: boolean): Nullable { var index: number; if (!allow32BitsIndices) { var totalVertices = 0; // Counting vertices for (index = 0; index < meshes.length; index++) { if (meshes[index]) { totalVertices += meshes[index].getTotalVertices(); if (totalVertices > 65536) { Tools.Warn("Cannot merge meshes because resulting mesh will have more than 65536 vertices. Please use allow32BitsIndices = true to use 32 bits indices"); return null; } } } } // Merge var vertexData: Nullable = null; var otherVertexData: VertexData; var indiceArray: Array = new Array(); var source: Nullable = null; for (index = 0; index < meshes.length; index++) { if (meshes[index]) { meshes[index].computeWorldMatrix(true); otherVertexData = VertexData.ExtractFromMesh(meshes[index], true); otherVertexData.transform(meshes[index].getWorldMatrix()); if (vertexData) { vertexData.merge(otherVertexData); } else { vertexData = otherVertexData; source = meshes[index]; } if (subdivideWithSubMeshes) { indiceArray.push(meshes[index].getTotalIndices()); } } } source = source; if (!meshSubclass) { meshSubclass = new Mesh(source.name + "_merged", source.getScene()); } (vertexData).applyToMesh(meshSubclass); // Setting properties meshSubclass.material = source.material; meshSubclass.checkCollisions = source.checkCollisions; // Cleaning if (disposeSource) { for (index = 0; index < meshes.length; index++) { if (meshes[index]) { meshes[index].dispose(); } } } // Subdivide if (subdivideWithSubMeshes) { //-- Suppresions du submesh global meshSubclass.releaseSubMeshes(); index = 0; var offset = 0; //-- aplique la subdivision en fonction du tableau d'indices while (index < indiceArray.length) { SubMesh.CreateFromIndices(0, offset, indiceArray[index], meshSubclass); offset += indiceArray[index]; index++; } } return meshSubclass; } } }