///
module BABYLON.GLTF2 {
class GLTFLoaderTracker {
private _pendingCount = 0;
private _callback: () => void;
constructor(onComplete: () => void) {
this._callback = onComplete;
}
public _addPendingData(data: any): void {
this._pendingCount++;
}
public _removePendingData(data: any): void {
if (--this._pendingCount === 0) {
this._callback();
}
}
}
interface TypedArray extends ArrayBufferView {
[index: number]: number;
}
interface TypedArrayConstructor {
readonly prototype: T;
new(length: number): T;
new(array: ArrayLike): T;
new(buffer: ArrayBuffer, byteOffset?: number, length?: number): T;
readonly BYTES_PER_ELEMENT: number;
}
interface IGLTFLoaderFileRequest extends IFileRequest {
_lengthComputable?: boolean;
_loaded?: number;
_total?: number;
}
export class GLTFLoader implements IGLTFLoader {
public _gltf: _IGLTF;
public _babylonScene: Scene;
private _disposed = false;
private _rootUrl: string;
private _defaultMaterial: PBRMaterial;
private _defaultSampler = {} as IGLTFSampler;
private _rootNode: IGLTFNode;
private _successCallback?: () => void;
private _progressCallback?: (event: SceneLoaderProgressEvent) => void;
private _errorCallback?: (message: string, exception?: any) => void;
private _renderReady = false;
private _requests = new Array();
private _renderReadyObservable = new Observable();
// Count of pending work that needs to complete before the asset is rendered.
private _renderPendingCount = 0;
// Count of pending work that needs to complete before the loader is disposed.
private _loaderPendingCount = 0;
private _loaderTrackers = new Array();
public static Extensions: { [name: string]: GLTFLoaderExtension } = {};
public static RegisterExtension(extension: GLTFLoaderExtension): void {
if (GLTFLoader.Extensions[extension.name]) {
Tools.Error("Extension with the same name '" + extension.name + "' already exists");
return;
}
GLTFLoader.Extensions[extension.name] = extension;
// Keep the order of registration so that extensions registered first are called first.
GLTFLoaderExtension._Extensions.push(extension);
}
public coordinateSystemMode = GLTFLoaderCoordinateSystemMode.AUTO;
public animationStartMode = GLTFLoaderAnimationStartMode.FIRST;
public compileMaterials = false;
public useClipPlane = false;
public compileShadowGenerators = false;
public onDisposeObservable = new Observable();
public onMeshLoadedObservable = new Observable();
public onTextureLoadedObservable = new Observable();
public onMaterialLoadedObservable = new Observable();
public onCompleteObservable = new Observable();
public dispose(): void {
if (this._disposed) {
return;
}
this._disposed = true;
this._abortRequests();
this._releaseResources();
this.onDisposeObservable.notifyObservers(this);
}
public importMeshAsync(meshesNames: any, scene: Scene, data: IGLTFLoaderData, rootUrl: string, onSuccess?: (meshes: AbstractMesh[], particleSystems: ParticleSystem[], skeletons: Skeleton[]) => void, onProgress?: (event: SceneLoaderProgressEvent) => void, onError?: (message: string, exception?: any) => void): void {
this._loadAsync(meshesNames, scene, data, rootUrl, () => {
if (onSuccess) {
onSuccess(this._getMeshes(), [], this._getSkeletons());
}
}, onProgress, onError);
}
public loadAsync(scene: Scene, data: IGLTFLoaderData, rootUrl: string, onSuccess?: () => void, onProgress?: (event: SceneLoaderProgressEvent) => void, onError?: (message: string, exception?: any) => void): void {
this._loadAsync(null, scene, data, rootUrl, onSuccess, onProgress, onError);
}
private _loadAsync(nodeNames: any, scene: Scene, data: IGLTFLoaderData, rootUrl: string, onSuccess?: () => void, onProgress?: (event: SceneLoaderProgressEvent) => void, onError?: (message: string, exception?: any) => void): void {
this._babylonScene = scene;
this._rootUrl = rootUrl;
this._successCallback = onSuccess;
this._progressCallback = onProgress;
this._errorCallback = onError;
this._tryCatchOnError(() => {
this._loadData(data);
this._addPendingData(this);
this._loadDefaultScene(nodeNames);
this._loadAnimations();
this._removePendingData(this);
});
}
private _onProgress(): void {
if (!this._progressCallback) {
return;
}
let lengthComputable = true;
let loaded = 0;
let total = 0;
for (let request of this._requests) {
if (request._lengthComputable === undefined || request._loaded === undefined || request._total === undefined) {
return;
}
lengthComputable = lengthComputable && request._lengthComputable;
loaded += request._loaded;
total += request._total;
}
this._progressCallback(new SceneLoaderProgressEvent(lengthComputable, loaded, lengthComputable ? total : 0));
}
public _executeWhenRenderReady(func: () => void): void {
if (this._renderReady) {
func();
}
else {
this._renderReadyObservable.add(func);
}
}
private _onRenderReady(): void {
this._rootNode.babylonMesh.setEnabled(true);
this._startAnimations();
if (this._successCallback) {
this._successCallback();
}
this._renderReadyObservable.notifyObservers(this);
}
private _onComplete(): void {
this._abortRequests();
this._releaseResources();
this.onCompleteObservable.notifyObservers(this);
}
private _loadData(data: IGLTFLoaderData): void {
this._gltf = <_IGLTF>data.json;
// Assign the index of each object for convinience.
GLTFLoader._AssignIndices(this._gltf.accessors);
GLTFLoader._AssignIndices(this._gltf.animations);
GLTFLoader._AssignIndices(this._gltf.buffers);
GLTFLoader._AssignIndices(this._gltf.bufferViews);
GLTFLoader._AssignIndices(this._gltf.images);
GLTFLoader._AssignIndices(this._gltf.materials);
GLTFLoader._AssignIndices(this._gltf.meshes);
GLTFLoader._AssignIndices(this._gltf.nodes);
GLTFLoader._AssignIndices(this._gltf.samplers);
GLTFLoader._AssignIndices(this._gltf.scenes);
GLTFLoader._AssignIndices(this._gltf.skins);
GLTFLoader._AssignIndices(this._gltf.textures);
// Handle global extensions as they may add their own data types.
GLTFLoaderExtension.LoadRoot(this, "#/", this._gltf);
if (data.bin) {
const buffers = this._gltf.buffers;
if (buffers && buffers[0] && !buffers[0].uri) {
const binaryBuffer = buffers[0];
if (binaryBuffer.byteLength < data.bin.byteLength - 3 || binaryBuffer.byteLength > data.bin.byteLength) {
Tools.Warn("Binary buffer length (" + binaryBuffer.byteLength + ") from JSON does not match chunk length (" + data.bin.byteLength + ")");
}
binaryBuffer.loadedData = data.bin;
}
else {
Tools.Warn("Unexpected BIN chunk");
}
}
}
private _getMeshes(): AbstractMesh[] {
const meshes = new Array();
// Root mesh is always first.
meshes.push(this._rootNode.babylonMesh);
const nodes = this._gltf.nodes;
if (nodes) {
for (const node of nodes) {
if (node.babylonMesh) {
meshes.push(node.babylonMesh);
}
}
}
return meshes;
}
private _getSkeletons(): Skeleton[] {
const skeletons = new Array();
const skins = this._gltf.skins;
if (skins) {
for (const skin of skins) {
if (skin.babylonSkeleton) {
skeletons.push(skin.babylonSkeleton);
}
}
}
return skeletons;
}
private _startAnimations(): void {
const animations = this._gltf.animations;
if (!animations) {
return;
}
for (const animation of animations) {
animation.babylonAnimationGroup.normalize();
}
switch (this.animationStartMode) {
case GLTFLoaderAnimationStartMode.NONE: {
// do nothing
break;
}
case GLTFLoaderAnimationStartMode.FIRST: {
const animation = animations[0];
animation.babylonAnimationGroup.start(true);
break;
}
case GLTFLoaderAnimationStartMode.ALL: {
for (const animation of animations) {
animation.babylonAnimationGroup.start(true);
}
break;
}
default: {
Tools.Error("Invalid animation start mode " + this.animationStartMode);
return;
}
}
}
private _loadDefaultScene(nodeNames: any): void {
const scene = GLTFLoader._GetProperty(this._gltf.scenes, this._gltf.scene || 0);
if (!scene) {
throw new Error("Failed to find scene " + (this._gltf.scene || 0));
}
this._loadScene("#/scenes/" + scene.index, scene, nodeNames);
}
private _loadScene(context: string, scene: IGLTFScene, nodeNames: any): void {
GLTFLoaderExtension.LoadScene(this, context, scene);
this._rootNode = { babylonMesh: new Mesh("__root__", this._babylonScene) } as IGLTFNode;
switch (this.coordinateSystemMode) {
case GLTFLoaderCoordinateSystemMode.AUTO: {
if (!this._babylonScene.useRightHandedSystem) {
this._rootNode.rotation = [0, 1, 0, 0];
this._rootNode.scale = [1, 1, -1];
this._loadTransform(this._rootNode);
}
break;
}
case GLTFLoaderCoordinateSystemMode.FORCE_RIGHT_HANDED: {
this._babylonScene.useRightHandedSystem = true;
break;
}
default: {
Tools.Error("Invalid coordinate system mode " + this.coordinateSystemMode);
return;
}
}
this.onMeshLoadedObservable.notifyObservers(this._rootNode.babylonMesh);
let nodeIndices = scene.nodes;
this._traverseNodes(context, nodeIndices, (node, parentNode) => {
node.parent = parentNode;
return true;
}, this._rootNode);
if (nodeNames) {
if (!(nodeNames instanceof Array)) {
nodeNames = [nodeNames];
}
const filteredNodeIndices = new Array();
this._traverseNodes(context, nodeIndices, node => {
if (nodeNames.indexOf(node.name) !== -1) {
filteredNodeIndices.push(node.index);
node.parent = this._rootNode;
return false;
}
return true;
}, this._rootNode);
nodeIndices = filteredNodeIndices;
}
for (const index of nodeIndices) {
const node = GLTFLoader._GetProperty(this._gltf.nodes, index);
if (!node) {
throw new Error(context + ": Failed to find node " + index);
}
this._loadNode("#/nodes/" + index, node);
}
// Disable the root mesh until the asset is ready to render.
this._rootNode.babylonMesh.setEnabled(false);
}
public _loadNode(context: string, node: IGLTFNode): void {
if (GLTFLoaderExtension.LoadNode(this, context, node)) {
return;
}
node.babylonMesh = new Mesh(node.name || "mesh" + node.index, this._babylonScene);
this._loadTransform(node);
if (node.mesh != null) {
const mesh = GLTFLoader._GetProperty(this._gltf.meshes, node.mesh);
if (!mesh) {
throw new Error(context + ": Failed to find mesh " + node.mesh);
}
this._loadMesh("#/meshes/" + node.mesh, node, mesh);
}
node.babylonMesh.parent = node.parent.babylonMesh;
node.babylonAnimationTargets = node.babylonAnimationTargets || [];
node.babylonAnimationTargets.push(node.babylonMesh);
if (node.skin != null) {
const skin = GLTFLoader._GetProperty(this._gltf.skins, node.skin);
if (!skin) {
throw new Error(context + ": Failed to find skin " + node.skin);
}
this._loadSkinAsync("#/skins/" + node.skin, skin, () => {
node.babylonMesh.skeleton = skin.babylonSkeleton;
node.babylonMesh._refreshBoundingInfo(true);
});
node.babylonMesh.parent = this._rootNode.babylonMesh;
node.babylonMesh.position = Vector3.Zero();
node.babylonMesh.rotationQuaternion = Quaternion.Identity();
node.babylonMesh.scaling = Vector3.One();
}
if (node.camera != null) {
// TODO: handle cameras
}
if (node.children) {
for (const index of node.children) {
const childNode = GLTFLoader._GetProperty(this._gltf.nodes, index);
if (!childNode) {
throw new Error(context + ": Failed to find child node " + index);
}
this._loadNode("#/nodes/" + index, childNode);
}
}
this.onMeshLoadedObservable.notifyObservers(node.babylonMesh);
}
private _loadMesh(context: string, node: IGLTFNode, mesh: IGLTFMesh): void {
const primitives = mesh.primitives;
if (!primitives || primitives.length === 0) {
throw new Error(context + ": Primitives are missing");
}
this._createMorphTargets(context, node, mesh);
this._loadAllVertexDataAsync(context, mesh, () => {
this._loadMorphTargets(context, node, mesh);
const vertexData = new VertexData();
for (const primitive of primitives) {
vertexData.merge(primitive.vertexData);
}
node.babylonMesh.hasVertexAlpha = mesh.hasVertexAlpha;
new Geometry(node.babylonMesh.name, this._babylonScene, vertexData, false, node.babylonMesh);
// TODO: optimize this so that sub meshes can be created without being overwritten after setting vertex data.
// Sub meshes must be cleared and created after setting vertex data because of mesh._createGlobalSubMesh.
node.babylonMesh.subMeshes = [];
let verticesStart = 0;
let indicesStart = 0;
for (let index = 0; index < primitives.length; index++) {
const vertexData = primitives[index].vertexData;
const verticesCount = vertexData.positions!.length;
const indicesCount = vertexData.indices!.length;
SubMesh.AddToMesh(index, verticesStart, verticesCount, indicesStart, indicesCount, node.babylonMesh);
verticesStart += verticesCount;
indicesStart += indicesCount;
};
});
if (primitives.length === 1) {
const primitive = primitives[0];
if (primitive.material == null) {
node.babylonMesh.material = this._getDefaultMaterial();
}
else {
const material = GLTFLoader._GetProperty(this._gltf.materials, primitive.material);
if (!material) {
throw new Error(context + ": Failed to find material " + primitive.material);
}
this._loadMaterial("#/materials/" + material.index, material, (babylonMaterial, isNew) => {
if (isNew) {
this.onMaterialLoadedObservable.notifyObservers(babylonMaterial);
}
node.babylonMesh.material = babylonMaterial;
});
}
}
else {
const multiMaterial = new MultiMaterial(node.babylonMesh.name, this._babylonScene);
node.babylonMesh.material = multiMaterial;
const subMaterials = multiMaterial.subMaterials;
for (let index = 0; index < primitives.length; index++) {
const primitive = primitives[index];
if (primitive.material == null) {
subMaterials[index] = this._getDefaultMaterial();
}
else {
const material = GLTFLoader._GetProperty(this._gltf.materials, primitive.material);
if (!material) {
throw new Error(context + ": Failed to find material " + primitive.material);
}
this._loadMaterial("#/materials/" + material.index, material, (babylonMaterial, isNew) => {
if (isNew) {
this.onMaterialLoadedObservable.notifyObservers(babylonMaterial);
}
subMaterials[index] = babylonMaterial;
});
}
};
}
}
private _loadAllVertexDataAsync(context: string, mesh: IGLTFMesh, onSuccess: () => void): void {
const primitives = mesh.primitives;
let numRemainingPrimitives = primitives.length;
for (let index = 0; index < primitives.length; index++) {
let primitive = primitives[index];
this._loadVertexDataAsync(context + "/primitive/" + index, mesh, primitive, vertexData => {
primitive.vertexData = vertexData;
if (--numRemainingPrimitives === 0) {
onSuccess();
}
});
}
}
/**
* Converts a data bufferview into a Float4 Texture Coordinate Array, based on the accessor component type
* @param {ArrayBufferView} data
* @param {IGLTFAccessor} accessor
*/
private _convertToFloat4TextureCoordArray(context: string, data: ArrayBufferView, accessor: IGLTFAccessor): Float32Array {
if (accessor.componentType == EComponentType.FLOAT) {
return data as Float32Array;
}
const buffer = data as TypedArray;
let factor = 1;
switch (accessor.componentType) {
case EComponentType.UNSIGNED_BYTE: {
factor = 1 / 255;
break;
}
case EComponentType.UNSIGNED_SHORT: {
factor = 1 / 65535;
break;
}
default: {
throw new Error(context + ": Invalid component type (" + accessor.componentType + ")");
}
}
const result = new Float32Array(accessor.count * 2);
for (let i = 0; i < result.length; ++i) {
result[i] = buffer[i] * factor;
}
return result;
}
/**
* Converts a data bufferview into a Float4 Color Array, based on the accessor component type
* @param {ArrayBufferView} data
* @param {IGLTFAccessor} accessor
*/
private _convertToFloat4ColorArray(context: string, data: ArrayBufferView, accessor: IGLTFAccessor): Float32Array {
const colorComponentCount = GLTFLoader._GetNumComponents(context, accessor.type);
if (colorComponentCount === 4 && accessor.componentType === EComponentType.FLOAT) {
return data as Float32Array;
}
const buffer = data as TypedArray;
let factor = 1;
switch (accessor.componentType) {
case EComponentType.FLOAT: {
factor = 1;
break;
}
case EComponentType.UNSIGNED_BYTE: {
factor = 1 / 255;
break;
}
case EComponentType.UNSIGNED_SHORT: {
factor = 1 / 65535;
break;
}
default: {
throw new Error(context + ": Invalid component type (" + accessor.componentType + ")");
}
}
const result = new Float32Array(accessor.count * 4);
if (colorComponentCount === 4) {
for (let i = 0; i < result.length; ++i) {
result[i] = buffer[i] * factor;
}
}
else {
let offset = 0;
for (let i = 0; i < result.length; ++i) {
if ((i + 1) % 4 === 0) {
result[i] = 1;
}
else {
result[i] = buffer[offset++] * factor;
}
}
}
return result;
}
private _loadVertexDataAsync(context: string, mesh: IGLTFMesh, primitive: IGLTFMeshPrimitive, onSuccess: (vertexData: VertexData) => void): void {
const attributes = primitive.attributes;
if (!attributes) {
throw new Error(context + ": Attributes are missing");
}
if (primitive.mode && primitive.mode !== EMeshPrimitiveMode.TRIANGLES) {
// TODO: handle other primitive modes
throw new Error(context + ": Mode " + primitive.mode + " is not currently supported");
}
const vertexData = new VertexData();
let numRemainingAttributes = Object.keys(attributes).length;
for (const attribute in attributes) {
const accessor = GLTFLoader._GetProperty(this._gltf.accessors, attributes[attribute]);
if (!accessor) {
throw new Error(context + ": Failed to find attribute '" + attribute + "' accessor " + attributes[attribute]);
}
this._loadAccessorAsync("#/accessors/" + accessor.index, accessor, data => {
switch (attribute) {
case "POSITION": {
vertexData.positions = data;
break;
}
case "NORMAL": {
vertexData.normals = data;
break;
}
case "TANGENT": {
vertexData.tangents = data;
break;
}
case "TEXCOORD_0": {
vertexData.uvs = this._convertToFloat4TextureCoordArray(context, data, accessor);
break;
}
case "TEXCOORD_1": {
vertexData.uvs2 = this._convertToFloat4TextureCoordArray(context, data, accessor);
break;
}
case "JOINTS_0": {
vertexData.matricesIndices = new Float32Array(Array.prototype.slice.apply(data));
break;
}
case "WEIGHTS_0": {
//TODO: need to add support for normalized weights.
vertexData.matricesWeights = data;
break;
}
case "COLOR_0": {
vertexData.colors = this._convertToFloat4ColorArray(context, data, accessor);
const hasVertexAlpha = GLTFLoader._GetNumComponents(context, accessor.type) === 4;
if (!mesh.hasVertexAlpha && hasVertexAlpha) {
mesh.hasVertexAlpha = hasVertexAlpha;
}
break;
}
default: {
Tools.Warn(context + ": Ignoring unrecognized attribute '" + attribute + "'");
break;
}
}
if (--numRemainingAttributes === 0) {
if (primitive.indices == null) {
vertexData.indices = new Uint32Array(vertexData.positions!.length / 3);
for (let i = 0; i < vertexData.indices.length; i++) {
vertexData.indices[i] = i;
}
onSuccess(vertexData);
}
else {
const indicesAccessor = GLTFLoader._GetProperty(this._gltf.accessors, primitive.indices);
if (!indicesAccessor) {
throw new Error(context + ": Failed to find indices accessor " + primitive.indices);
}
this._loadAccessorAsync("#/accessors/" + indicesAccessor.index, indicesAccessor, data => {
vertexData.indices = data;
onSuccess(vertexData);
});
}
}
});
}
}
private _createMorphTargets(context: string, node: IGLTFNode, mesh: IGLTFMesh): void {
const primitives = mesh.primitives;
const targets = primitives[0].targets;
if (!targets) {
return;
}
for (const primitive of primitives) {
if (!primitive.targets || primitive.targets.length != targets.length) {
throw new Error(context + ": All primitives are required to list the same number of targets");
}
}
const morphTargetManager = new MorphTargetManager();
node.babylonMesh.morphTargetManager = morphTargetManager;
for (let index = 0; index < targets.length; index++) {
const weight = node.weights ? node.weights[index] : mesh.weights ? mesh.weights[index] : 0;
morphTargetManager.addTarget(new MorphTarget("morphTarget" + index, weight));
}
}
private _loadMorphTargets(context: string, node: IGLTFNode, mesh: IGLTFMesh): void {
const morphTargetManager = node.babylonMesh.morphTargetManager;
if (!morphTargetManager) {
return;
}
this._loadAllMorphTargetVertexDataAsync(context, node, mesh, () => {
const numTargets = morphTargetManager.numTargets;
for (let index = 0; index < numTargets; index++) {
const vertexData = new VertexData();
for (const primitive of mesh.primitives) {
vertexData.merge(primitive.targetsVertexData[index], { tangentLength: 3 });
}
if (!vertexData.positions) {
throw new Error(context + ": Positions are missing");
}
const target = morphTargetManager.getTarget(index);
target.setPositions(vertexData.positions);
target.setNormals(vertexData.normals);
target.setTangents(vertexData.tangents);
}
});
}
private _loadAllMorphTargetVertexDataAsync(context: string, node: IGLTFNode, mesh: IGLTFMesh, onSuccess: () => void): void {
let numRemainingTargets = mesh.primitives.length * node.babylonMesh.morphTargetManager!.numTargets;
for (const primitive of mesh.primitives) {
const targets = primitive.targets!;
primitive.targetsVertexData = new Array(targets.length);
for (let index = 0; index < targets.length; index++) {
this._loadMorphTargetVertexDataAsync(context + "/targets/" + index, primitive.vertexData, targets[index], vertexData => {
primitive.targetsVertexData[index] = vertexData;
if (--numRemainingTargets === 0) {
onSuccess();
}
});
}
}
}
private _loadMorphTargetVertexDataAsync(context: string, vertexData: VertexData, attributes: { [name: string]: number }, onSuccess: (vertexData: VertexData) => void): void {
const targetVertexData = new VertexData();
let numRemainingAttributes = Object.keys(attributes).length;
for (let attribute in attributes) {
const accessor = GLTFLoader._GetProperty(this._gltf.accessors, attributes[attribute]);
if (!accessor) {
throw new Error(context + ": Failed to find attribute '" + attribute + "' accessor " + attributes[attribute]);
}
this._loadAccessorAsync("#/accessors/" + accessor.index, accessor, data => {
// glTF stores morph target information as deltas while babylon.js expects the final data.
// As a result we have to add the original data to the delta to calculate the final data.
const values = data;
switch (attribute) {
case "POSITION": {
for (let i = 0; i < values.length; i++) {
values[i] += vertexData.positions![i];
}
targetVertexData.positions = values;
break;
}
case "NORMAL": {
for (let i = 0; i < values.length; i++) {
values[i] += vertexData.normals![i];
}
targetVertexData.normals = values;
break;
}
case "TANGENT": {
// Tangent data for morph targets is stored as xyz delta.
// The vertexData.tangent is stored as xyzw.
// So we need to skip every fourth vertexData.tangent.
for (let i = 0, j = 0; i < values.length; i++ , j++) {
values[i] += vertexData.tangents![j];
if ((i + 1) % 3 == 0) {
j++;
}
}
targetVertexData.tangents = values;
break;
}
default: {
Tools.Warn(context + ": Ignoring unrecognized attribute '" + attribute + "'");
break;
}
}
if (--numRemainingAttributes === 0) {
onSuccess(targetVertexData);
}
});
}
}
private _loadTransform(node: IGLTFNode): void {
let position: Vector3 = Vector3.Zero();
let rotation: Quaternion = Quaternion.Identity();
let scaling: Vector3 = Vector3.One();
if (node.matrix) {
const matrix = Matrix.FromArray(node.matrix);
matrix.decompose(scaling, rotation, position);
}
else {
if (node.translation) position = Vector3.FromArray(node.translation);
if (node.rotation) rotation = Quaternion.FromArray(node.rotation);
if (node.scale) scaling = Vector3.FromArray(node.scale);
}
node.babylonMesh.position = position;
node.babylonMesh.rotationQuaternion = rotation;
node.babylonMesh.scaling = scaling;
}
private _loadSkinAsync(context: string, skin: IGLTFSkin, onSuccess: () => void): void {
if (skin.babylonSkeleton) {
onSuccess();
return;
}
const skeletonId = "skeleton" + skin.index;
skin.babylonSkeleton = new Skeleton(skin.name || skeletonId, skeletonId, this._babylonScene);
if (skin.inverseBindMatrices == null) {
this._loadBones(context, skin, null);
onSuccess();
}
else {
const accessor = GLTFLoader._GetProperty(this._gltf.accessors, skin.inverseBindMatrices);
if (!accessor) {
throw new Error(context + ": Failed to find inverse bind matrices attribute " + skin.inverseBindMatrices);
}
this._loadAccessorAsync("#/accessors/" + accessor.index, accessor, data => {
this._loadBones(context, skin, data);
onSuccess();
});
}
}
private _createBone(node: IGLTFNode, skin: IGLTFSkin, parent: Nullable, localMatrix: Matrix, baseMatrix: Matrix, index: number): Bone {
const babylonBone = new Bone(node.name || "bone" + node.index, skin.babylonSkeleton, parent, localMatrix, null, baseMatrix, index);
node.babylonAnimationTargets = node.babylonAnimationTargets || [];
node.babylonAnimationTargets.push(babylonBone);
return babylonBone;
}
private _loadBones(context: string, skin: IGLTFSkin, inverseBindMatrixData: Nullable): void {
const babylonBones: { [index: number]: Bone } = {};
for (const index of skin.joints) {
const node = GLTFLoader._GetProperty(this._gltf.nodes, index);
if (!node) {
throw new Error(context + ": Failed to find joint " + index);
}
this._loadBone(node, skin, inverseBindMatrixData, babylonBones);
}
}
private _loadBone(node: IGLTFNode, skin: IGLTFSkin, inverseBindMatrixData: Nullable, babylonBones: { [index: number]: Bone }): Bone {
let babylonBone = babylonBones[node.index];
if (babylonBone) {
return babylonBone;
}
const boneIndex = skin.joints.indexOf(node.index);
let baseMatrix = Matrix.Identity();
if (inverseBindMatrixData && boneIndex !== -1) {
baseMatrix = Matrix.FromArray(inverseBindMatrixData, boneIndex * 16);
baseMatrix.invertToRef(baseMatrix);
}
let babylonParentBone: Nullable = null;
if (node.parent !== this._rootNode) {
babylonParentBone = this._loadBone(node.parent, skin, inverseBindMatrixData, babylonBones);
baseMatrix.multiplyToRef(babylonParentBone.getInvertedAbsoluteTransform(), baseMatrix);
}
babylonBone = this._createBone(node, skin, babylonParentBone, this._getNodeMatrix(node), baseMatrix, boneIndex);
babylonBones[node.index] = babylonBone;
return babylonBone;
}
private _getNodeMatrix(node: IGLTFNode): Matrix {
return node.matrix ?
Matrix.FromArray(node.matrix) :
Matrix.Compose(
node.scale ? Vector3.FromArray(node.scale) : Vector3.One(),
node.rotation ? Quaternion.FromArray(node.rotation) : Quaternion.Identity(),
node.translation ? Vector3.FromArray(node.translation) : Vector3.Zero());
}
private _traverseNodes(context: string, indices: number[], action: (node: IGLTFNode, parentNode: IGLTFNode) => boolean, parentNode: IGLTFNode): void {
for (const index of indices) {
const node = GLTFLoader._GetProperty(this._gltf.nodes, index);
if (!node) {
throw new Error(context + ": Failed to find node " + index);
}
this._traverseNode(context, node, action, parentNode);
}
}
public _traverseNode(context: string, node: IGLTFNode, action: (node: IGLTFNode, parentNode: IGLTFNode) => boolean, parentNode: IGLTFNode): void {
if (GLTFLoaderExtension.TraverseNode(this, context, node, action, parentNode)) {
return;
}
if (!action(node, parentNode)) {
return;
}
if (node.children) {
this._traverseNodes(context, node.children, action, node);
}
}
private _loadAnimations(): void {
const animations = this._gltf.animations;
if (!animations) {
return;
}
for (let index = 0; index < animations.length; index++) {
const animation = animations[index];
this._loadAnimation("#/animations/" + index, animation);
}
}
private _loadAnimation(context: string, animation: IGLTFAnimation): void {
animation.babylonAnimationGroup = new AnimationGroup(animation.name || "animation" + animation.index, this._babylonScene);
for (let index = 0; index < animation.channels.length; index++) {
const channel = GLTFLoader._GetProperty(animation.channels, index);
if (!channel) {
throw new Error(context + ": Failed to find channel " + index);
}
const sampler = GLTFLoader._GetProperty(animation.samplers, channel.sampler);
if (!sampler) {
throw new Error(context + ": Failed to find sampler " + channel.sampler);
}
this._loadAnimationChannel(animation,
context + "/channels/" + index, channel,
context + "/samplers/" + channel.sampler, sampler);
}
}
private _loadAnimationChannel(animation: IGLTFAnimation, channelContext: string, channel: IGLTFAnimationChannel, samplerContext: string, sampler: IGLTFAnimationSampler): void {
const targetNode = GLTFLoader._GetProperty(this._gltf.nodes, channel.target.node);
if (!targetNode) {
throw new Error(channelContext + ": Failed to find target node " + channel.target.node);
}
let targetPath: string;
let animationType: number;
switch (channel.target.path) {
case "translation": {
targetPath = "position";
animationType = Animation.ANIMATIONTYPE_VECTOR3;
break;
}
case "rotation": {
targetPath = "rotationQuaternion";
animationType = Animation.ANIMATIONTYPE_QUATERNION;
break;
}
case "scale": {
targetPath = "scaling";
animationType = Animation.ANIMATIONTYPE_VECTOR3;
break;
}
case "weights": {
targetPath = "influence";
animationType = Animation.ANIMATIONTYPE_FLOAT;
break;
}
default: {
throw new Error(channelContext + ": Invalid target path " + channel.target.path);
}
}
let inputData: Float32Array;
let outputData: Float32Array;
const checkSuccess = () => {
if (!inputData || !outputData) {
return;
}
let outputBufferOffset = 0;
let getNextOutputValue: () => any;
switch (targetPath) {
case "position": {
getNextOutputValue = () => {
const value = Vector3.FromArray(outputData, outputBufferOffset);
outputBufferOffset += 3;
return value;
};
break;
}
case "rotationQuaternion": {
getNextOutputValue = () => {
const value = Quaternion.FromArray(outputData, outputBufferOffset);
outputBufferOffset += 4;
return value;
};
break;
}
case "scaling": {
getNextOutputValue = () => {
const value = Vector3.FromArray(outputData, outputBufferOffset);
outputBufferOffset += 3;
return value;
};
break;
}
case "influence": {
getNextOutputValue = () => {
const numTargets = targetNode.babylonMesh.morphTargetManager!.numTargets;
const value = new Array(numTargets);
for (let i = 0; i < numTargets; i++) {
value[i] = outputData[outputBufferOffset++];
}
return value;
};
break;
}
}
sampler.interpolation = sampler.interpolation || "LINEAR";
let getNextKey: (frameIndex: number) => IAnimationKey;
switch (sampler.interpolation) {
case "STEP": {
getNextKey = frameIndex => ({
frame: inputData[frameIndex],
value: getNextOutputValue(),
interpolation: AnimationKeyInterpolation.STEP
});
break;
}
case "LINEAR": {
getNextKey = frameIndex => ({
frame: inputData[frameIndex],
value: getNextOutputValue()
});
break;
}
case "CUBICSPLINE": {
getNextKey = frameIndex => ({
frame: inputData[frameIndex],
inTangent: getNextOutputValue(),
value: getNextOutputValue(),
outTangent: getNextOutputValue()
});
break;
}
default: {
throw new Error(samplerContext + ": Invalid interpolation " + sampler.interpolation);
}
};
let keys: Array;
if (inputData.length === 1) {
let key = getNextKey(0);
keys = [
{ frame: key.frame, value: key.value },
{ frame: key.frame + 1, value: key.value }
];
}
else {
keys = new Array(inputData.length);
for (let frameIndex = 0; frameIndex < inputData.length; frameIndex++) {
keys[frameIndex] = getNextKey(frameIndex);
}
}
if (targetPath === "influence") {
const morphTargetManager = targetNode.babylonMesh.morphTargetManager!;
for (let targetIndex = 0; targetIndex < morphTargetManager.numTargets; targetIndex++) {
const morphTarget = morphTargetManager.getTarget(targetIndex);
const animationName = animation.babylonAnimationGroup.name + "_channel" + animation.babylonAnimationGroup.targetedAnimations.length;
const babylonAnimation = new Animation(animationName, targetPath, 1, animationType);
babylonAnimation.setKeys(keys.map(key => ({
frame: key.frame,
inTangent: key.inTangent ? key.inTangent[targetIndex] : undefined,
value: key.value[targetIndex],
outTangent: key.outTangent ? key.outTangent[targetIndex] : undefined
})));
animation.babylonAnimationGroup.addTargetedAnimation(babylonAnimation, morphTarget);
}
}
else {
const animationName = animation.babylonAnimationGroup.name + "_channel" + animation.babylonAnimationGroup.targetedAnimations.length;
const babylonAnimation = new Animation(animationName, targetPath, 1, animationType);
babylonAnimation.setKeys(keys);
if (targetNode.babylonAnimationTargets) {
for (const target of targetNode.babylonAnimationTargets) {
animation.babylonAnimationGroup.addTargetedAnimation(babylonAnimation, target);
}
}
}
};
const inputAccessor = GLTFLoader._GetProperty(this._gltf.accessors, sampler.input);
if (!inputAccessor) {
throw new Error(samplerContext + ": Failed to find input accessor " + sampler.input);
}
this._loadAccessorAsync("#/accessors/" + inputAccessor.index, inputAccessor, data => {
inputData = data;
checkSuccess();
});
const outputAccessor = GLTFLoader._GetProperty(this._gltf.accessors, sampler.output);
if (!outputAccessor) {
throw new Error(samplerContext + ": Failed to find output accessor " + sampler.output);
}
this._loadAccessorAsync("#/accessors/" + outputAccessor.index, outputAccessor, data => {
outputData = data;
checkSuccess();
});
}
private _loadBufferAsync(context: string, buffer: IGLTFBuffer, onSuccess: (data: ArrayBufferView) => void): void {
this._addPendingData(buffer);
if (buffer.loadedData) {
onSuccess(buffer.loadedData);
this._removePendingData(buffer);
}
else if (buffer.loadedObservable) {
buffer.loadedObservable.add(buffer => {
onSuccess(buffer.loadedData!);
this._removePendingData(buffer);
});
}
else {
if (!buffer.uri) {
throw new Error(context + ": Uri is missing");
}
buffer.loadedObservable = new Observable();
buffer.loadedObservable.add(buffer => {
onSuccess(buffer.loadedData!);
this._removePendingData(buffer);
});
this._loadUriAsync(context, buffer.uri, data => {
buffer.loadedData = data;
buffer.loadedObservable!.notifyObservers(buffer);
buffer.loadedObservable = undefined;
});
}
}
private _loadBufferViewAsync(context: string, bufferView: IGLTFBufferView, onSuccess: (data: ArrayBufferView) => void): void {
const buffer = GLTFLoader._GetProperty(this._gltf.buffers, bufferView.buffer);
if (!buffer) {
throw new Error(context + ": Failed to find buffer " + bufferView.buffer);
}
this._loadBufferAsync("#/buffers/" + buffer.index, buffer, bufferData => {
let data: ArrayBufferView;
try {
data = new Uint8Array(bufferData.buffer, bufferData.byteOffset + (bufferView.byteOffset || 0), bufferView.byteLength);
}
catch (e) {
throw new Error(context + ": " + e.message);
}
onSuccess(data);
});
}
private _loadAccessorAsync(context: string, accessor: IGLTFAccessor, onSuccess: (data: ArrayBufferView) => void): void {
if (accessor.sparse) {
throw new Error(context + ": Sparse accessors are not currently supported");
}
const bufferView = GLTFLoader._GetProperty(this._gltf.bufferViews, accessor.bufferView);
if (!bufferView) {
throw new Error(context + ": Failed to find buffer view " + accessor.bufferView);
}
this._loadBufferViewAsync("#/bufferViews/" + bufferView.index, bufferView, bufferViewData => {
const numComponents = GLTFLoader._GetNumComponents(context, accessor.type);
let data: ArrayBufferView;
const byteOffset = accessor.byteOffset || 0;
const byteStride = bufferView.byteStride;
if (byteStride === 0) {
Tools.Warn(context + ": Byte stride of 0 is not valid");
}
try {
switch (accessor.componentType) {
case EComponentType.BYTE: {
data = this._buildArrayBuffer(Float32Array, bufferViewData, byteOffset, accessor.count, numComponents, byteStride);
break;
}
case EComponentType.UNSIGNED_BYTE: {
data = this._buildArrayBuffer(Uint8Array, bufferViewData, byteOffset, accessor.count, numComponents, byteStride);
break;
}
case EComponentType.SHORT: {
data = this._buildArrayBuffer(Int16Array, bufferViewData, byteOffset, accessor.count, numComponents, byteStride);
break;
}
case EComponentType.UNSIGNED_SHORT: {
data = this._buildArrayBuffer(Uint16Array, bufferViewData, byteOffset, accessor.count, numComponents, byteStride);
break;
}
case EComponentType.UNSIGNED_INT: {
data = this._buildArrayBuffer(Uint32Array, bufferViewData, byteOffset, accessor.count, numComponents, byteStride);
break;
}
case EComponentType.FLOAT: {
data = this._buildArrayBuffer(Float32Array, bufferViewData, byteOffset, accessor.count, numComponents, byteStride);
break;
}
default: {
throw new Error(context + ": Invalid component type " + accessor.componentType);
}
}
}
catch (e) {
throw new Error(context + ": " + e);
}
onSuccess(data);
});
}
private _buildArrayBuffer(typedArray: TypedArrayConstructor, data: ArrayBufferView, byteOffset: number, count: number, numComponents: number, byteStride?: number): T {
byteOffset += data.byteOffset;
const targetLength = count * numComponents;
if (!byteStride || byteStride === numComponents * typedArray.BYTES_PER_ELEMENT) {
return new typedArray(data.buffer, byteOffset, targetLength);
}
const elementStride = byteStride / typedArray.BYTES_PER_ELEMENT;
const sourceBuffer = new typedArray(data.buffer, byteOffset, elementStride * count);
const targetBuffer = new typedArray(targetLength);
let sourceIndex = 0;
let targetIndex = 0;
while (targetIndex < targetLength) {
for (let componentIndex = 0; componentIndex < numComponents; componentIndex++) {
targetBuffer[targetIndex] = sourceBuffer[sourceIndex + componentIndex];
targetIndex++;
}
sourceIndex += elementStride;
}
return targetBuffer;
}
public _addPendingData(data: any): void {
if (!this._renderReady) {
this._renderPendingCount++;
}
this._addLoaderPendingData(data);
}
public _removePendingData(data: any): void {
if (!this._renderReady) {
if (--this._renderPendingCount === 0) {
this._addLoaderPendingData(this);
this._compileMaterialsAsync(() => {
this._compileShadowGeneratorsAsync(() => {
this._removeLoaderPendingData(this);
this._renderReady = true;
this._onRenderReady();
});
});
}
}
this._removeLoaderPendingData(data);
}
public _addLoaderPendingData(data: any): void {
this._loaderPendingCount++;
for (const tracker of this._loaderTrackers) {
tracker._addPendingData(data);
}
}
public _removeLoaderPendingData(data: any): void {
for (const tracker of this._loaderTrackers) {
tracker._removePendingData(data);
}
if (--this._loaderPendingCount === 0) {
this._onComplete();
}
}
public _whenAction(action: () => void, onComplete: () => void): void {
const tracker = new GLTFLoaderTracker(() => {
this._loaderTrackers.splice(this._loaderTrackers.indexOf(tracker), 1);
onComplete();
});
this._loaderTrackers.push(tracker);
this._addLoaderPendingData(tracker);
action();
this._removeLoaderPendingData(tracker);
}
private _getDefaultMaterial(): Material {
if (!this._defaultMaterial) {
const id = "__gltf_default";
let material = this._babylonScene.getMaterialByName(id);
if (!material) {
material = new PBRMaterial(id, this._babylonScene);
material.transparencyMode = PBRMaterial.PBRMATERIAL_OPAQUE;
material.sideOrientation = Material.ClockWiseSideOrientation;
material.metallic = 1;
material.roughness = 1;
}
this._defaultMaterial = material;
}
return this._defaultMaterial;
}
private _loadMaterialMetallicRoughnessProperties(context: string, material: IGLTFMaterial): void {
const babylonMaterial = material.babylonMaterial as PBRMaterial;
// Ensure metallic workflow
babylonMaterial.metallic = 1;
babylonMaterial.roughness = 1;
const properties = material.pbrMetallicRoughness;
if (!properties) {
return;
}
babylonMaterial.albedoColor = properties.baseColorFactor ? Color3.FromArray(properties.baseColorFactor) : new Color3(1, 1, 1);
babylonMaterial.metallic = properties.metallicFactor == null ? 1 : properties.metallicFactor;
babylonMaterial.roughness = properties.roughnessFactor == null ? 1 : properties.roughnessFactor;
if (properties.baseColorTexture) {
const texture = GLTFLoader._GetProperty(this._gltf.textures, properties.baseColorTexture.index);
if (!texture) {
throw new Error(context + ": Failed to find base color texture " + properties.baseColorTexture.index);
}
babylonMaterial.albedoTexture = this._loadTexture("#/textures/" + texture.index, texture, properties.baseColorTexture.texCoord);
}
if (properties.metallicRoughnessTexture) {
const texture = GLTFLoader._GetProperty(this._gltf.textures, properties.metallicRoughnessTexture.index);
if (!texture) {
throw new Error(context + ": Failed to find metallic roughness texture " + properties.metallicRoughnessTexture.index);
}
babylonMaterial.metallicTexture = this._loadTexture("#/textures/" + texture.index, texture, properties.metallicRoughnessTexture.texCoord);
babylonMaterial.useMetallnessFromMetallicTextureBlue = true;
babylonMaterial.useRoughnessFromMetallicTextureGreen = true;
babylonMaterial.useRoughnessFromMetallicTextureAlpha = false;
}
this._loadMaterialAlphaProperties(context, material, properties.baseColorFactor);
}
public _loadMaterial(context: string, material: IGLTFMaterial, assign: (babylonMaterial: Material, isNew: boolean) => void): void {
if (material.babylonMaterial) {
assign(material.babylonMaterial, false);
return;
}
if (GLTFLoaderExtension.LoadMaterial(this, context, material, assign)) {
return;
}
this._createPbrMaterial(material);
this._loadMaterialBaseProperties(context, material);
this._loadMaterialMetallicRoughnessProperties(context, material);
assign(material.babylonMaterial, true);
}
public _createPbrMaterial(material: IGLTFMaterial): void {
const babylonMaterial = new PBRMaterial(material.name || "mat" + material.index, this._babylonScene);
babylonMaterial.sideOrientation = Material.ClockWiseSideOrientation;
material.babylonMaterial = babylonMaterial;
}
public _loadMaterialBaseProperties(context: string, material: IGLTFMaterial): void {
const babylonMaterial = material.babylonMaterial as PBRMaterial;
babylonMaterial.emissiveColor = material.emissiveFactor ? Color3.FromArray(material.emissiveFactor) : new Color3(0, 0, 0);
if (material.doubleSided) {
babylonMaterial.backFaceCulling = false;
babylonMaterial.twoSidedLighting = true;
}
if (material.normalTexture) {
const texture = GLTFLoader._GetProperty(this._gltf.textures, material.normalTexture.index);
if (!texture) {
throw new Error(context + ": Failed to find normal texture " + material.normalTexture.index);
}
babylonMaterial.bumpTexture = this._loadTexture("#/textures/" + texture.index, texture, material.normalTexture.texCoord);
babylonMaterial.invertNormalMapX = !this._babylonScene.useRightHandedSystem;
babylonMaterial.invertNormalMapY = this._babylonScene.useRightHandedSystem;
if (material.normalTexture.scale != null) {
babylonMaterial.bumpTexture.level = material.normalTexture.scale;
}
}
if (material.occlusionTexture) {
const texture = GLTFLoader._GetProperty(this._gltf.textures, material.occlusionTexture.index);
if (!texture) {
throw new Error(context + ": Failed to find occlusion texture " + material.occlusionTexture.index);
}
babylonMaterial.ambientTexture = this._loadTexture("#/textures/" + texture.index, texture, material.occlusionTexture.texCoord);
babylonMaterial.useAmbientInGrayScale = true;
if (material.occlusionTexture.strength != null) {
babylonMaterial.ambientTextureStrength = material.occlusionTexture.strength;
}
}
if (material.emissiveTexture) {
const texture = GLTFLoader._GetProperty(this._gltf.textures, material.emissiveTexture.index);
if (!texture) {
throw new Error(context + ": Failed to find emissive texture " + material.emissiveTexture.index);
}
babylonMaterial.emissiveTexture = this._loadTexture("#/textures/" + texture.index, texture, material.emissiveTexture.texCoord);
}
}
public _loadMaterialAlphaProperties(context: string, material: IGLTFMaterial, colorFactor: number[]): void {
const babylonMaterial = material.babylonMaterial as PBRMaterial;
const alphaMode = material.alphaMode || "OPAQUE";
switch (alphaMode) {
case "OPAQUE": {
babylonMaterial.transparencyMode = PBRMaterial.PBRMATERIAL_OPAQUE;
break;
}
case "MASK": {
babylonMaterial.transparencyMode = PBRMaterial.PBRMATERIAL_ALPHATEST;
babylonMaterial.alphaCutOff = (material.alphaCutoff == null ? 0.5 : material.alphaCutoff);
if (colorFactor) {
if (colorFactor[3] == 0) {
babylonMaterial.alphaCutOff = 1;
}
else {
babylonMaterial.alphaCutOff /= colorFactor[3];
}
}
if (babylonMaterial.albedoTexture) {
babylonMaterial.albedoTexture.hasAlpha = true;
}
break;
}
case "BLEND": {
babylonMaterial.transparencyMode = PBRMaterial.PBRMATERIAL_ALPHABLEND;
if (colorFactor) {
babylonMaterial.alpha = colorFactor[3];
}
if (babylonMaterial.albedoTexture) {
babylonMaterial.albedoTexture.hasAlpha = true;
babylonMaterial.useAlphaFromAlbedoTexture = true;
}
break;
}
default: {
throw new Error(context + ": Invalid alpha mode " + material.alphaMode);
}
}
}
public _loadTexture(context: string, texture: IGLTFTexture, coordinatesIndex?: number): Texture {
const sampler = (texture.sampler == undefined ? this._defaultSampler : GLTFLoader._GetProperty(this._gltf.samplers, texture.sampler));
if (!sampler) {
throw new Error(context + ": Failed to find sampler " + texture.sampler);
}
this._loadSampler("#/samplers/" + sampler.index, sampler);
this._addPendingData(texture);
const babylonTexture = new Texture(null, this._babylonScene, sampler.noMipMaps, false, sampler.samplingMode, () => {
this._tryCatchOnError(() => {
this._removePendingData(texture);
});
}, message => {
this._tryCatchOnError(() => {
throw new Error(context + ": " + message);
});
});
if (texture.url) {
babylonTexture.updateURL(texture.url);
}
else if (texture.dataReadyObservable) {
texture.dataReadyObservable.add(texture => {
babylonTexture.updateURL(texture.url!);
});
}
else {
texture.dataReadyObservable = new Observable();
texture.dataReadyObservable.add(texture => {
babylonTexture.updateURL(texture.url!);
});
const image = GLTFLoader._GetProperty(this._gltf.images, texture.source);
if (!image) {
throw new Error(context + ": Failed to find source " + texture.source);
}
this._loadImageAsync("#/images/" + image.index, image, data => {
texture.url = URL.createObjectURL(new Blob([data], { type: image.mimeType }));
texture.dataReadyObservable!.notifyObservers(texture);
texture.dataReadyObservable = undefined;
});
}
babylonTexture.coordinatesIndex = coordinatesIndex || 0;
babylonTexture.wrapU = sampler.wrapU;
babylonTexture.wrapV = sampler.wrapV;
babylonTexture.name = texture.name || "texture" + texture.index;
this.onTextureLoadedObservable.notifyObservers(babylonTexture);
return babylonTexture;
}
private _loadSampler(context: string, sampler: IGLTFSampler): void {
if (sampler.noMipMaps != undefined) {
return;
}
sampler.noMipMaps = (sampler.minFilter === ETextureMinFilter.NEAREST || sampler.minFilter === ETextureMinFilter.LINEAR);
sampler.samplingMode = GLTFLoader._GetTextureSamplingMode(context, sampler.magFilter, sampler.minFilter);
sampler.wrapU = GLTFLoader._GetTextureWrapMode(context, sampler.wrapS);
sampler.wrapV = GLTFLoader._GetTextureWrapMode(context, sampler.wrapT);
}
private _loadImageAsync(context: string, image: IGLTFImage, onSuccess: (data: ArrayBufferView) => void): void {
if (image.uri) {
this._loadUriAsync(context, image.uri, onSuccess);
}
else {
const bufferView = GLTFLoader._GetProperty(this._gltf.bufferViews, image.bufferView);
if (!bufferView) {
throw new Error(context + ": Failed to find buffer view " + image.bufferView);
}
this._loadBufferViewAsync("#/bufferViews/" + bufferView.index, bufferView, onSuccess);
}
}
public _loadUriAsync(context: string, uri: string, onSuccess: (data: ArrayBufferView) => void): void {
if (GLTFUtils.IsBase64(uri)) {
onSuccess(new Uint8Array(GLTFUtils.DecodeBase64(uri)));
return;
}
if (!GLTFUtils.ValidateUri(uri)) {
throw new Error(context + ": Uri '" + uri + "' is invalid");
}
let request = Tools.LoadFile(this._rootUrl + uri, data => {
this._tryCatchOnError(() => {
onSuccess(new Uint8Array(data as ArrayBuffer));
});
}, event => {
this._tryCatchOnError(() => {
if (request && !this._renderReady) {
request._lengthComputable = event.lengthComputable;
request._loaded = event.loaded;
request._total = event.total;
this._onProgress();
}
});
}, this._babylonScene.database, true, (request, exception) => {
this._tryCatchOnError(() => {
throw new LoadFileError(context + ": Failed to load '" + uri + "'" + (request ? ": " + request.status + " " + request.statusText : ""), request);
});
}) as IGLTFLoaderFileRequest;
this._requests.push(request);
}
public _tryCatchOnError(handler: () => void): void {
if (this._disposed) {
return;
}
try {
handler();
}
catch (e) {
Tools.Error("glTF Loader: " + e.message);
if (this._errorCallback) {
this._errorCallback(e.message, e);
}
this.dispose();
}
}
private static _AssignIndices(array?: Array<{ index: number }>): void {
if (array) {
for (let index = 0; index < array.length; index++) {
array[index].index = index;
}
}
}
public static _GetProperty(array?: ArrayLike, index?: number): Nullable {
if (!array || index == undefined || !array[index]) {
return null;
}
return array[index];
}
private static _GetTextureWrapMode(context: string, mode?: ETextureWrapMode): number {
// Set defaults if undefined
mode = mode == undefined ? ETextureWrapMode.REPEAT : mode;
switch (mode) {
case ETextureWrapMode.CLAMP_TO_EDGE: return Texture.CLAMP_ADDRESSMODE;
case ETextureWrapMode.MIRRORED_REPEAT: return Texture.MIRROR_ADDRESSMODE;
case ETextureWrapMode.REPEAT: return Texture.WRAP_ADDRESSMODE;
default:
Tools.Warn(context + ": Invalid texture wrap mode " + mode);
return Texture.WRAP_ADDRESSMODE;
}
}
private static _GetTextureSamplingMode(context: string, magFilter?: ETextureMagFilter, minFilter?: ETextureMinFilter): number {
// Set defaults if undefined
magFilter = magFilter == undefined ? ETextureMagFilter.LINEAR : magFilter;
minFilter = minFilter == undefined ? ETextureMinFilter.LINEAR_MIPMAP_LINEAR : minFilter;
if (magFilter === ETextureMagFilter.LINEAR) {
switch (minFilter) {
case ETextureMinFilter.NEAREST: return Texture.LINEAR_NEAREST;
case ETextureMinFilter.LINEAR: return Texture.LINEAR_LINEAR;
case ETextureMinFilter.NEAREST_MIPMAP_NEAREST: return Texture.LINEAR_NEAREST_MIPNEAREST;
case ETextureMinFilter.LINEAR_MIPMAP_NEAREST: return Texture.LINEAR_LINEAR_MIPNEAREST;
case ETextureMinFilter.NEAREST_MIPMAP_LINEAR: return Texture.LINEAR_NEAREST_MIPLINEAR;
case ETextureMinFilter.LINEAR_MIPMAP_LINEAR: return Texture.LINEAR_LINEAR_MIPLINEAR;
default:
Tools.Warn(context + ": Invalid texture minification filter " + minFilter);
return Texture.LINEAR_LINEAR_MIPLINEAR;
}
}
else {
if (magFilter !== ETextureMagFilter.NEAREST) {
Tools.Warn(context + ": Invalid texture magnification filter " + magFilter);
}
switch (minFilter) {
case ETextureMinFilter.NEAREST: return Texture.NEAREST_NEAREST;
case ETextureMinFilter.LINEAR: return Texture.NEAREST_LINEAR;
case ETextureMinFilter.NEAREST_MIPMAP_NEAREST: return Texture.NEAREST_NEAREST_MIPNEAREST;
case ETextureMinFilter.LINEAR_MIPMAP_NEAREST: return Texture.NEAREST_LINEAR_MIPNEAREST;
case ETextureMinFilter.NEAREST_MIPMAP_LINEAR: return Texture.NEAREST_NEAREST_MIPLINEAR;
case ETextureMinFilter.LINEAR_MIPMAP_LINEAR: return Texture.NEAREST_LINEAR_MIPLINEAR;
default:
Tools.Warn(context + ": Invalid texture minification filter " + minFilter);
return Texture.NEAREST_NEAREST_MIPNEAREST;
}
}
}
private static _GetNumComponents(context: string, type: string): number {
switch (type) {
case "SCALAR": return 1;
case "VEC2": return 2;
case "VEC3": return 3;
case "VEC4": return 4;
case "MAT2": return 4;
case "MAT3": return 9;
case "MAT4": return 16;
}
throw new Error(context + ": Invalid type " + type);
}
private _compileMaterialAsync(babylonMaterial: Material, babylonMesh: AbstractMesh, onSuccess: () => void): void {
if (this.useClipPlane) {
babylonMaterial.forceCompilation(babylonMesh, () => {
babylonMaterial.forceCompilation(babylonMesh, () => {
this._tryCatchOnError(onSuccess);
}, { clipPlane: true });
});
}
else {
babylonMaterial.forceCompilation(babylonMesh, () => {
this._tryCatchOnError(onSuccess);
});
}
}
private _compileMaterialsAsync(onSuccess: () => void): void {
if (!this.compileMaterials || !this._gltf.materials) {
onSuccess();
return;
}
let meshes = this._getMeshes();
let remaining = 0;
for (let mesh of meshes) {
if (mesh.material instanceof MultiMaterial) {
for (let subMaterial of mesh.material.subMaterials) {
if (subMaterial) {
remaining++;
}
}
}
else if (mesh.material) {
remaining++;
}
}
if (remaining === 0) {
onSuccess();
return;
}
for (let mesh of meshes) {
if (mesh.material instanceof MultiMaterial) {
for (let subMaterial of mesh.material.subMaterials) {
if (subMaterial) {
this._compileMaterialAsync(subMaterial, mesh, () => {
if (--remaining === 0) {
onSuccess();
}
});
}
}
}
else if (mesh.material) {
this._compileMaterialAsync(mesh.material, mesh, () => {
if (--remaining === 0) {
onSuccess();
}
})
}
}
}
private _compileShadowGeneratorsAsync(onSuccess: () => void): void {
if (!this.compileShadowGenerators) {
onSuccess();
return;
}
let lights = this._babylonScene.lights;
let remaining = 0;
for (let light of lights) {
let generator = light.getShadowGenerator();
if (generator) {
remaining++;
}
}
if (remaining === 0) {
onSuccess();
return;
}
for (let light of lights) {
let generator = light.getShadowGenerator();
if (generator) {
generator.forceCompilation(() => {
if (--remaining === 0) {
this._tryCatchOnError(onSuccess);
}
});
}
}
}
private _abortRequests(): void {
for (const request of this._requests) {
request.abort();
}
this._requests.length = 0;
}
private _releaseResources(): void {
if (this._gltf.textures) {
for (const texture of this._gltf.textures) {
if (texture.url) {
URL.revokeObjectURL(texture.url);
texture.url = undefined;
}
}
}
}
}
GLTFFileLoader.CreateGLTFLoaderV2 = () => new GLTFLoader();
}