/// var BABYLON; (function (BABYLON) { ; /** * Class for generating glTF data from a Babylon scene. */ var GLTF2Export = /** @class */ (function () { function GLTF2Export() { } /** * Exports the geometry of the scene to .gltf file format. * @param scene - Babylon scene with scene hierarchy information. * @param filePrefix - File prefix to use when generating the glTF file. * @param options - Exporter options. * @returns - Returns an object with a .gltf file and associates texture names * as keys and their data and paths as values. */ GLTF2Export.GLTF = function (scene, filePrefix, options) { var glTFPrefix = filePrefix.replace(/\.[^/.]+$/, ""); var gltfGenerator = new BABYLON.GLTF2._Exporter(scene, options); if (scene.isReady) { return gltfGenerator._generateGLTF(glTFPrefix); } else { throw new Error("glTF Serializer: Scene is not ready!"); } }; /** * Exports the geometry of the scene to .glb file format. * @param scene - Babylon scene with scene hierarchy information. * @param filePrefix - File prefix to use when generating glb file. * @param options - Exporter options. * @returns - Returns an object with a .glb filename as key and data as value */ GLTF2Export.GLB = function (scene, filePrefix, options) { var glTFPrefix = filePrefix.replace(/\.[^/.]+$/, ""); var gltfGenerator = new BABYLON.GLTF2._Exporter(scene, options); if (scene.isReady) { return gltfGenerator._generateGLB(glTFPrefix); } else { throw new Error("glTF Serializer: Scene is not ready!"); } }; return GLTF2Export; }()); BABYLON.GLTF2Export = GLTF2Export; })(BABYLON || (BABYLON = {})); //# sourceMappingURL=babylon.glTFSerializer.js.map /// /** * Module for the Babylon glTF 2.0 exporter. Should ONLY be used internally. * @ignore - capitalization of GLTF2 module. */ var BABYLON; (function (BABYLON) { var GLTF2; (function (GLTF2) { /** * Converts Babylon Scene into glTF 2.0. */ var _Exporter = /** @class */ (function () { /** * Creates a glTF Exporter instance, which can accept optional exporter options. * @param babylonScene - Babylon scene object * @param options - Options to modify the behavior of the exporter. */ function _Exporter(babylonScene, options) { this.asset = { generator: "BabylonJS", version: "2.0" }; this.babylonScene = babylonScene; this.bufferViews = new Array(); this.accessors = new Array(); this.meshes = new Array(); this.scenes = new Array(); this.nodes = new Array(); this.images = new Array(); this.materials = new Array(); this.textures = new Array(); this.imageData = {}; if (options !== undefined) { this.options = options; } var totalByteLength = 0; totalByteLength = this.createScene(this.babylonScene, totalByteLength, null); this.totalByteLength = totalByteLength; } /** * Creates a buffer view based on teh supplied arguments * @param bufferIndex - index value of the specified buffer * @param byteOffset - byte offset value * @param byteLength - byte length of the bufferView * @param byteStride - byte distance between conequential elements. * @param name - name of the buffer view * @returns - bufferView for glTF */ _Exporter.prototype.createBufferView = function (bufferIndex, byteOffset, byteLength, byteStride, name) { var bufferview = { buffer: bufferIndex, byteLength: byteLength }; if (byteOffset > 0) { bufferview.byteOffset = byteOffset; } if (name) { bufferview.name = name; } if (byteStride) { bufferview.byteStride = byteStride; } return bufferview; }; /** * Creates an accessor based on the supplied arguments * @param bufferviewIndex * @param name * @param type * @param componentType * @param count * @param min * @param max * @returns - accessor for glTF */ _Exporter.prototype.createAccessor = function (bufferviewIndex, name, type, componentType, count, byteOffset, min, max) { var accessor = { name: name, bufferView: bufferviewIndex, componentType: componentType, count: count, type: type }; if (min) { accessor.min = min; } if (max) { accessor.max = max; } if (byteOffset) { accessor.byteOffset = byteOffset; } return accessor; }; /** * Calculates the minimum and maximum values of an array of floats, based on stride * @param buff - Data to check for min and max values. * @param vertexStart - Start offset to calculate min and max values. * @param vertexCount - Number of vertices to check for min and max values. * @param stride - Offset between consecutive attributes. * @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system. * @returns - min number array and max number array. */ _Exporter.prototype.calculateMinMax = function (buff, vertexStart, vertexCount, stride, useRightHandedSystem) { var min = [Infinity, Infinity, Infinity]; var max = [-Infinity, -Infinity, -Infinity]; var end = vertexStart + vertexCount; if (vertexCount > 0) { for (var i = vertexStart; i < end; ++i) { var index = stride * i; var scale = 1; for (var j = 0; j < stride; ++j) { if (j === (stride - 1) && !useRightHandedSystem) { scale = -1; } var num = scale * buff[index]; if (num < min[j]) { min[j] = num; } if (num > max[j]) { max[j] = num; } ++index; } } } return { min: min, max: max }; }; /** * Writes mesh attribute data to a data buffer. * Returns the bytelength of the data. * @param vertexBufferKind - Indicates what kind of vertex data is being passed in. * @param meshAttributeArray - Array containing the attribute data. * @param strideSize - Represents the offset between consecutive attributes * @param byteOffset - The offset to start counting bytes from. * @param dataBuffer - The buffer to write the binary data to. * @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system. * @returns - Byte length of the attribute data. */ _Exporter.prototype.writeAttributeData = function (vertexBufferKind, meshAttributeArray, strideSize, vertexBufferOffset, byteOffset, dataBuffer, useRightHandedSystem) { var byteOff = byteOffset; var start = 0; var end = meshAttributeArray.length / strideSize; var byteLength = 0; switch (vertexBufferKind) { case BABYLON.VertexBuffer.PositionKind: { for (var k = start; k < end; ++k) { var index = k * strideSize; dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true); byteOff += 4; if (useRightHandedSystem) { dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true); } else { dataBuffer.setFloat32(byteOff, -meshAttributeArray[index + 2], true); } byteOff += 4; } byteLength = meshAttributeArray.length * 4; break; } case BABYLON.VertexBuffer.NormalKind: { for (var k = start; k < end; ++k) { var index = k * strideSize; dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true); byteOff += 4; if (useRightHandedSystem) { dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true); } else { dataBuffer.setFloat32(byteOff, -meshAttributeArray[index + 2], true); } byteOff += 4; } byteLength = meshAttributeArray.length * 4; break; } case BABYLON.VertexBuffer.TangentKind: { for (var k = start; k < end; ++k) { var index = k * strideSize; dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true); byteOff += 4; if (useRightHandedSystem) { dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true); } else { dataBuffer.setFloat32(byteOff, -meshAttributeArray[index + 2], true); } byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 3], true); byteOff += 4; } byteLength = meshAttributeArray.length * 4; break; } case BABYLON.VertexBuffer.ColorKind: { for (var k = start; k < end; ++k) { var index = k * strideSize; dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 2], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 3], true); byteOff += 4; } byteLength = meshAttributeArray.length * 4; break; } case BABYLON.VertexBuffer.UVKind: { for (var k = start; k < end; ++k) { var index = k * strideSize; dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true); byteOff += 4; } byteLength = meshAttributeArray.length * 4; break; } case BABYLON.VertexBuffer.UV2Kind: { for (var k = start; k < end; ++k) { var index = k * strideSize; dataBuffer.setFloat32(byteOff, meshAttributeArray[index], true); byteOff += 4; dataBuffer.setFloat32(byteOff, meshAttributeArray[index + 1], true); byteOff += 4; } byteLength = meshAttributeArray.length * 4; break; } default: { throw new Error("Unsupported vertex buffer type: " + vertexBufferKind); } } return byteLength; }; /** * Generates glTF json data * @param shouldUseGlb - Indicates whether the json should be written for a glb file. * @param glTFPrefix - Text to use when prefixing a glTF file. * @param prettyPrint - Indicates whether the json file should be pretty printed (true) or not (false). * @returns - json data as string */ _Exporter.prototype.generateJSON = function (shouldUseGlb, glTFPrefix, prettyPrint) { var buffer = { byteLength: this.totalByteLength }; var glTF = { asset: this.asset }; if (buffer.byteLength > 0) { glTF.buffers = [buffer]; } if (this.nodes && this.nodes.length !== 0) { glTF.nodes = this.nodes; } if (this.meshes && this.meshes.length !== 0) { glTF.meshes = this.meshes; } if (this.scenes && this.scenes.length !== 0) { glTF.scenes = this.scenes; glTF.scene = 0; } if (this.bufferViews && this.bufferViews.length !== 0) { glTF.bufferViews = this.bufferViews; } if (this.accessors && this.accessors.length !== 0) { glTF.accessors = this.accessors; } if (this.materials && this.materials.length !== 0) { glTF.materials = this.materials; } if (this.textures && this.textures.length !== 0) { glTF.textures = this.textures; } if (this.images && this.images.length !== 0) { if (!shouldUseGlb) { glTF.images = this.images; } else { glTF.images = []; // Replace uri with bufferview and mime type for glb var imageLength = this.images.length; var byteOffset = this.totalByteLength; for (var i = 0; i < imageLength; ++i) { var image = this.images[i]; if (image.uri !== undefined) { var imageData = this.imageData[image.uri]; var imageName = image.uri.split('.')[0] + " image"; var bufferView = this.createBufferView(0, byteOffset, imageData.data.length, undefined, imageName); byteOffset += imageData.data.buffer.byteLength; this.bufferViews.push(bufferView); image.bufferView = this.bufferViews.length - 1; image.name = imageName; image.mimeType = imageData.mimeType; image.uri = undefined; glTF.images.push(image); } } buffer.byteLength = byteOffset; } } if (!shouldUseGlb) { buffer.uri = glTFPrefix + ".bin"; } var jsonText = prettyPrint ? JSON.stringify(glTF, null, 2) : JSON.stringify(glTF); return jsonText; }; /** * Generates data for .gltf and .bin files based on the glTF prefix string * @param glTFPrefix - Text to use when prefixing a glTF file. * @returns - GLTFData with glTF file data. */ _Exporter.prototype._generateGLTF = function (glTFPrefix) { var jsonText = this.generateJSON(false, glTFPrefix, true); var binaryBuffer = this.generateBinary(); var bin = new Blob([binaryBuffer], { type: 'application/octet-stream' }); var glTFFileName = glTFPrefix + '.gltf'; var glTFBinFile = glTFPrefix + '.bin'; var container = new BABYLON._GLTFData(); container.glTFFiles[glTFFileName] = jsonText; container.glTFFiles[glTFBinFile] = bin; if (this.imageData !== null) { for (var image in this.imageData) { container.glTFFiles[image] = new Blob([this.imageData[image].data], { type: this.imageData[image].mimeType }); } } return container; }; /** * Creates a binary buffer for glTF * @returns - array buffer for binary data */ _Exporter.prototype.generateBinary = function () { var byteOffset = 0; var binaryBuffer = new ArrayBuffer(this.totalByteLength); var dataBuffer = new DataView(binaryBuffer); byteOffset = this.createScene(this.babylonScene, byteOffset, dataBuffer); return binaryBuffer; }; /** * Pads the number to a multiple of 4 * @param num - number to pad * @returns - padded number */ _Exporter.prototype._getPadding = function (num) { var remainder = num % 4; var padding = remainder === 0 ? remainder : 4 - remainder; return padding; }; /** * Generates a glb file from the json and binary data. * Returns an object with the glb file name as the key and data as the value. * @param glTFPrefix * @returns - object with glb filename as key and data as value */ _Exporter.prototype._generateGLB = function (glTFPrefix) { var jsonText = this.generateJSON(true); var binaryBuffer = this.generateBinary(); var glbFileName = glTFPrefix + '.glb'; var headerLength = 12; var chunkLengthPrefix = 8; var jsonLength = jsonText.length; var imageByteLength = 0; for (var key in this.imageData) { imageByteLength += this.imageData[key].data.byteLength; } var jsonPadding = this._getPadding(jsonLength); var binPadding = this._getPadding(binaryBuffer.byteLength); var imagePadding = this._getPadding(imageByteLength); var byteLength = headerLength + (2 * chunkLengthPrefix) + jsonLength + jsonPadding + binaryBuffer.byteLength + binPadding + imageByteLength + imagePadding; //header var headerBuffer = new ArrayBuffer(headerLength); var headerBufferView = new DataView(headerBuffer); headerBufferView.setUint32(0, 0x46546C67, true); //glTF headerBufferView.setUint32(4, 2, true); // version headerBufferView.setUint32(8, byteLength, true); // total bytes in file //json chunk var jsonChunkBuffer = new ArrayBuffer(chunkLengthPrefix + jsonLength + jsonPadding); var jsonChunkBufferView = new DataView(jsonChunkBuffer); jsonChunkBufferView.setUint32(0, jsonLength + jsonPadding, true); jsonChunkBufferView.setUint32(4, 0x4E4F534A, true); //json chunk bytes var jsonData = new Uint8Array(jsonChunkBuffer, chunkLengthPrefix); for (var i = 0; i < jsonLength; ++i) { jsonData[i] = jsonText.charCodeAt(i); } //json padding var jsonPaddingView = new Uint8Array(jsonChunkBuffer, chunkLengthPrefix + jsonLength); for (var i = 0; i < jsonPadding; ++i) { jsonPaddingView[i] = 0x20; } //binary chunk var binaryChunkBuffer = new ArrayBuffer(chunkLengthPrefix); var binaryChunkBufferView = new DataView(binaryChunkBuffer); binaryChunkBufferView.setUint32(0, binaryBuffer.byteLength + imageByteLength + imagePadding, true); binaryChunkBufferView.setUint32(4, 0x004E4942, true); // binary padding var binPaddingBuffer = new ArrayBuffer(binPadding); var binPaddingView = new Uint8Array(binPaddingBuffer); for (var i = 0; i < binPadding; ++i) { binPaddingView[i] = 0; } var imagePaddingBuffer = new ArrayBuffer(imagePadding); var imagePaddingView = new Uint8Array(imagePaddingBuffer); for (var i = 0; i < imagePadding; ++i) { imagePaddingView[i] = 0; } var glbData = [headerBuffer, jsonChunkBuffer, binaryChunkBuffer, binaryBuffer]; // binary data for (var key in this.imageData) { glbData.push(this.imageData[key].data.buffer); } glbData.push(binPaddingBuffer); glbData.push(imagePaddingBuffer); var glbFile = new Blob(glbData, { type: 'application/octet-stream' }); var container = new BABYLON._GLTFData(); container.glTFFiles[glbFileName] = glbFile; return container; }; /** * Sets the TRS for each node * @param node - glTF Node for storing the transformation data. * @param babylonMesh - Babylon mesh used as the source for the transformation data. * @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system. */ _Exporter.prototype.setNodeTransformation = function (node, babylonMesh, useRightHandedSystem) { if (!(babylonMesh.position.x === 0 && babylonMesh.position.y === 0 && babylonMesh.position.z === 0)) { if (useRightHandedSystem) { node.translation = babylonMesh.position.asArray(); } else { node.translation = [babylonMesh.position.x, babylonMesh.position.y, -babylonMesh.position.z]; } } if (!(babylonMesh.scaling.x === 1 && babylonMesh.scaling.y === 1 && babylonMesh.scaling.z === 1)) { if (useRightHandedSystem) { node.scale = babylonMesh.scaling.asArray(); } else { node.scale = [babylonMesh.scaling.x, babylonMesh.scaling.y, -babylonMesh.scaling.z]; } } var rotationQuaternion = BABYLON.Quaternion.RotationYawPitchRoll(babylonMesh.rotation.y, babylonMesh.rotation.x, babylonMesh.rotation.z); if (babylonMesh.rotationQuaternion) { rotationQuaternion = rotationQuaternion.multiply(babylonMesh.rotationQuaternion); } if (!(rotationQuaternion.x === 0 && rotationQuaternion.y === 0 && rotationQuaternion.z === 0 && rotationQuaternion.w === 1)) { if (useRightHandedSystem) { node.rotation = rotationQuaternion.asArray(); } else { node.rotation = [-rotationQuaternion.x, -rotationQuaternion.y, rotationQuaternion.z, rotationQuaternion.w]; } } }; /** * * @param babylonTexture - Babylon texture to extract. * @param mimeType - Mime Type of the babylonTexture. * @return - glTF texture, or null if the texture format is not supported. */ _Exporter.prototype.exportTexture = function (babylonTexture, mimeType) { if (mimeType === void 0) { mimeType = "image/jpeg" /* JPEG */; } var textureInfo = null; var glTFTexture; glTFTexture = { source: this.images.length }; var textureName = babylonTexture.getInternalTexture().url; if (textureName.search('/') !== -1) { var splitFilename = textureName.split('/'); textureName = splitFilename[splitFilename.length - 1]; var basefile = textureName.split('.')[0]; var extension = textureName.split('.')[1]; if (mimeType === "image/jpeg" /* JPEG */) { extension = ".jpg"; } else if (mimeType === "image/png" /* PNG */) { extension = ".png"; } else { throw new Error("Unsupported mime type " + mimeType); } textureName = basefile + extension; } var pixels = babylonTexture.readPixels(); var imageCanvas = document.createElement('canvas'); imageCanvas.id = "ImageCanvas"; var ctx = imageCanvas.getContext('2d'); var size = babylonTexture.getSize(); imageCanvas.width = size.width; imageCanvas.height = size.height; var imgData = ctx.createImageData(size.width, size.height); imgData.data.set(pixels); ctx.putImageData(imgData, 0, 0); var base64Data = imageCanvas.toDataURL(mimeType); var binStr = atob(base64Data.split(',')[1]); var arr = new Uint8Array(binStr.length); for (var i = 0; i < binStr.length; ++i) { arr[i] = binStr.charCodeAt(i); } var imageValues = { data: arr, mimeType: mimeType }; this.imageData[textureName] = imageValues; if (mimeType === "image/jpeg" /* JPEG */) { var glTFImage = { uri: textureName }; var foundIndex = -1; for (var i = 0; i < this.images.length; ++i) { if (this.images[i].uri === textureName) { foundIndex = i; break; } } if (foundIndex === -1) { this.images.push(glTFImage); glTFTexture.source = this.images.length - 1; this.textures.push({ source: this.images.length - 1 }); textureInfo = { index: this.images.length - 1 }; } else { glTFTexture.source = foundIndex; textureInfo = { index: foundIndex }; } } return textureInfo; }; /** * Creates a bufferview based on the vertices type for the Babylon mesh * @param kind - Indicates the type of vertices data. * @param babylonMesh - The Babylon mesh to get the vertices data from. * @param byteOffset - The offset from the buffer to start indexing from. * @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system. * @param dataBuffer - The buffer to write the bufferview data to. * @returns bytelength of the bufferview data. */ _Exporter.prototype.createBufferViewKind = function (kind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer) { var bufferMesh = null; var byteLength = 0; if (babylonMesh instanceof BABYLON.Mesh) { bufferMesh = babylonMesh; } else if (babylonMesh instanceof BABYLON.InstancedMesh) { bufferMesh = babylonMesh.sourceMesh; } if (bufferMesh !== null) { var vertexBuffer = null; var vertexBufferOffset = null; var vertexData = null; var vertexStrideSize = null; if (bufferMesh.getVerticesDataKinds().indexOf(kind) > -1) { vertexBuffer = bufferMesh.getVertexBuffer(kind); vertexBufferOffset = vertexBuffer.getOffset(); vertexData = vertexBuffer.getData(); vertexStrideSize = vertexBuffer.getStrideSize(); if (dataBuffer && vertexData) { byteLength = this.writeAttributeData(kind, vertexData, vertexStrideSize, vertexBufferOffset, byteOffset, dataBuffer, useRightHandedSystem); byteOffset += byteLength; } else { var bufferViewName = null; switch (kind) { case BABYLON.VertexBuffer.PositionKind: { byteLength = vertexData.length * 4; bufferViewName = "Position - " + bufferMesh.name; break; } case BABYLON.VertexBuffer.NormalKind: { byteLength = vertexData.length * 4; bufferViewName = "Normal - " + bufferMesh.name; break; } case BABYLON.VertexBuffer.TangentKind: { byteLength = vertexData.length * 4; bufferViewName = "Tangent - " + bufferMesh.name; break; } case BABYLON.VertexBuffer.ColorKind: { byteLength = vertexData.length * 4; bufferViewName = "Color - " + bufferMesh.name; break; } case BABYLON.VertexBuffer.UVKind: { byteLength = vertexData.length * 4; bufferViewName = "TexCoord 0 - " + bufferMesh.name; break; } case BABYLON.VertexBuffer.UV2Kind: { byteLength = vertexData.length * 4; bufferViewName = "TexCoord 1 - " + bufferMesh.name; break; } default: { console.warn("Unsupported VertexBuffer kind: " + kind); } } if (bufferViewName !== null) { var bufferView = this.createBufferView(0, byteOffset, byteLength, vertexStrideSize * 4, bufferViewName); byteOffset += byteLength; this.bufferViews.push(bufferView); } } } } return byteLength; }; /** * Sets data for the primitive attributes of each submesh * @param mesh - glTF Mesh object to store the primitive attribute information. * @param babylonMesh - Babylon mesh to get the primitive attribute data from. * @param byteOffset - The offset in bytes of the buffer data. * @param useRightHandedSystem - Indicates whether the data should be modified for a right or left handed coordinate system. * @param dataBuffer - Buffer to write the attribute data to. * @returns - bytelength of the primitive attributes plus the passed in byteOffset. */ _Exporter.prototype.setPrimitiveAttributes = function (mesh, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer) { var bufferMesh = null; if (babylonMesh instanceof BABYLON.Mesh) { bufferMesh = babylonMesh; } else if (babylonMesh instanceof BABYLON.InstancedMesh) { bufferMesh = babylonMesh.sourceMesh; } var positionBufferViewIndex = null; var normalBufferViewIndex = null; var colorBufferViewIndex = null; var tangentBufferViewIndex = null; var texCoord0BufferViewIndex = null; var texCoord1BufferViewIndex = null; var indexBufferViewIndex = null; if (bufferMesh !== null) { // For each BabylonMesh, create bufferviews for each 'kind' if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.PositionKind)) { byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.PositionKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); positionBufferViewIndex = this.bufferViews.length - 1; } if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) { byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.NormalKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); normalBufferViewIndex = this.bufferViews.length - 1; } if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.ColorKind)) { byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.ColorKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); colorBufferViewIndex = this.bufferViews.length - 1; } if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.TangentKind)) { byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.TangentKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); colorBufferViewIndex = this.bufferViews.length - 1; } if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) { byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.UVKind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); texCoord0BufferViewIndex = this.bufferViews.length - 1; } if (bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UV2Kind)) { byteOffset += this.createBufferViewKind(BABYLON.VertexBuffer.UV2Kind, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); texCoord1BufferViewIndex = this.bufferViews.length - 1; } if (bufferMesh.getTotalIndices() > 0) { var indices = bufferMesh.getIndices(); if (dataBuffer) { var end = indices.length; var byteOff = byteOffset; for (var k = 0; k < end; ++k) { dataBuffer.setUint32(byteOff, indices[k], true); byteOff += 4; } byteOffset = byteOff; } else { var byteLength = indices.length * 4; var bufferView = this.createBufferView(0, byteOffset, byteLength, undefined, "Indices - " + bufferMesh.name); byteOffset += byteLength; this.bufferViews.push(bufferView); indexBufferViewIndex = this.bufferViews.length - 1; } } } // go through all mesh primitives (submeshes) for (var j = 0; j < babylonMesh.subMeshes.length; ++j) { var submesh = babylonMesh.subMeshes[j]; var meshPrimitive = { attributes: {} }; if (bufferMesh !== null) { // Create a bufferview storing all the positions if (!dataBuffer) { // Loop through each attribute of the submesh (mesh primitive) if (positionBufferViewIndex !== null) { var positionVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.PositionKind); var positions = positionVertexBuffer.getData(); var positionStrideSize = positionVertexBuffer.getStrideSize(); // Create accessor var result = this.calculateMinMax(positions, 0, positions.length / positionStrideSize, positionStrideSize, useRightHandedSystem); var accessor = this.createAccessor(positionBufferViewIndex, "Position", "VEC3" /* VEC3 */, 5126 /* FLOAT */, positions.length / positionStrideSize, 0, result.min, result.max); this.accessors.push(accessor); meshPrimitive.attributes.POSITION = this.accessors.length - 1; } if (normalBufferViewIndex !== null) { var normalVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.NormalKind); var normals = normalVertexBuffer.getData(); var normalStrideSize = normalVertexBuffer.getStrideSize(); // Create accessor var accessor = this.createAccessor(normalBufferViewIndex, "Normal", "VEC3" /* VEC3 */, 5126 /* FLOAT */, normals.length / normalStrideSize); this.accessors.push(accessor); meshPrimitive.attributes.NORMAL = this.accessors.length - 1; } if (tangentBufferViewIndex !== null) { var tangentVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.TangentKind); var tangents = tangentVertexBuffer.getData(); var tangentStrideSize = tangentVertexBuffer.getStrideSize(); // Create accessor var accessor = this.createAccessor(tangentBufferViewIndex, "Tangent", "VEC4" /* VEC4 */, 5126 /* FLOAT */, tangents.length / tangentStrideSize); this.accessors.push(accessor); meshPrimitive.attributes.TANGENT = this.accessors.length - 1; } if (colorBufferViewIndex !== null) { var colorVertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.ColorKind); var colors = colorVertexBuffer.getData(); var colorStrideSize = colorVertexBuffer.getStrideSize(); // Create accessor var accessor = this.createAccessor(colorBufferViewIndex, "Color", "VEC4" /* VEC4 */, 5126 /* FLOAT */, colors.length / colorStrideSize); this.accessors.push(accessor); meshPrimitive.attributes.COLOR_0 = this.accessors.length - 1; } if (texCoord0BufferViewIndex !== null) { // Create accessor var texCoord0VertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.UVKind); var texCoord0s = texCoord0VertexBuffer.getData(); var texCoord0StrideSize = texCoord0VertexBuffer.getStrideSize(); var accessor = this.createAccessor(texCoord0BufferViewIndex, "Texture Coords 0", "VEC2" /* VEC2 */, 5126 /* FLOAT */, texCoord0s.length / texCoord0StrideSize); this.accessors.push(accessor); meshPrimitive.attributes.TEXCOORD_0 = this.accessors.length - 1; } if (texCoord1BufferViewIndex !== null) { // Create accessor var texCoord1VertexBuffer = bufferMesh.getVertexBuffer(BABYLON.VertexBuffer.UV2Kind); var texCoord1s = texCoord1VertexBuffer.getData(); var texCoord1StrideSize = texCoord1VertexBuffer.getStrideSize(); var accessor = this.createAccessor(texCoord1BufferViewIndex, "Texture Coords 1", "VEC2" /* VEC2 */, 5126 /* FLOAT */, texCoord1s.length / texCoord1StrideSize); this.accessors.push(accessor); meshPrimitive.attributes.TEXCOORD_1 = this.accessors.length - 1; } if (indexBufferViewIndex) { // Create accessor var accessor = this.createAccessor(indexBufferViewIndex, "Indices", "SCALAR" /* SCALAR */, 5125 /* UNSIGNED_INT */, submesh.indexCount, submesh.indexStart * 4); this.accessors.push(accessor); meshPrimitive.indices = this.accessors.length - 1; } } if (bufferMesh.material) { if (bufferMesh.material instanceof BABYLON.StandardMaterial) { console.warn("Standard Material is currently not fully supported/implemented in glTF serializer"); var babylonStandardMaterial = bufferMesh.material; var glTFPbrMetallicRoughness = GLTF2._GLTFMaterial.ConvertToGLTFPBRMetallicRoughness(babylonStandardMaterial); var glTFMaterial = { name: babylonStandardMaterial.name }; if (!babylonStandardMaterial.backFaceCulling) { glTFMaterial.doubleSided = true; } if (babylonStandardMaterial.diffuseTexture && bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) { var glTFTexture = this.exportTexture(babylonStandardMaterial.diffuseTexture); if (glTFTexture !== null) { glTFPbrMetallicRoughness.baseColorTexture = glTFTexture; } } if (babylonStandardMaterial.bumpTexture && bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) { var glTFTexture = this.exportTexture(babylonStandardMaterial.bumpTexture); if (glTFTexture) { glTFMaterial.normalTexture = glTFTexture; } } if (babylonStandardMaterial.emissiveTexture && bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) { var glTFEmissiveTexture = this.exportTexture(babylonStandardMaterial.emissiveTexture); if (glTFEmissiveTexture) { glTFMaterial.emissiveTexture = glTFEmissiveTexture; } glTFMaterial.emissiveFactor = [1.0, 1.0, 1.0]; } if (babylonStandardMaterial.ambientTexture && bufferMesh.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) { var glTFOcclusionTexture = this.exportTexture(babylonStandardMaterial.ambientTexture); if (glTFOcclusionTexture) { glTFMaterial.occlusionTexture = glTFOcclusionTexture; } } if (babylonStandardMaterial.alpha < 1.0 || babylonStandardMaterial.opacityTexture) { if (babylonStandardMaterial.alphaMode === BABYLON.Engine.ALPHA_COMBINE) { glTFMaterial.alphaMode = "BLEND" /* BLEND */; } else { console.warn("glTF 2.0 does not support alpha mode: " + babylonStandardMaterial.alphaMode.toString()); } } glTFMaterial.pbrMetallicRoughness = glTFPbrMetallicRoughness; this.materials.push(glTFMaterial); meshPrimitive.material = this.materials.length - 1; } else if (bufferMesh.material instanceof BABYLON.PBRMetallicRoughnessMaterial) { var babylonPBRMaterial = bufferMesh.material; var glTFPbrMetallicRoughness = {}; if (babylonPBRMaterial.baseColor) { glTFPbrMetallicRoughness.baseColorFactor = [ babylonPBRMaterial.baseColor.r, babylonPBRMaterial.baseColor.g, babylonPBRMaterial.baseColor.b, babylonPBRMaterial.alpha ]; } if (babylonPBRMaterial.baseTexture !== undefined) { var glTFTexture = this.exportTexture(babylonPBRMaterial.baseTexture); if (glTFTexture !== null) { glTFPbrMetallicRoughness.baseColorTexture = glTFTexture; } glTFPbrMetallicRoughness.baseColorTexture; } if (babylonPBRMaterial.metallic !== undefined) { glTFPbrMetallicRoughness.metallicFactor = babylonPBRMaterial.metallic; } if (babylonPBRMaterial.roughness !== undefined) { glTFPbrMetallicRoughness.roughnessFactor = babylonPBRMaterial.roughness; } var glTFMaterial = { name: babylonPBRMaterial.name }; if (babylonPBRMaterial.doubleSided) { glTFMaterial.doubleSided = babylonPBRMaterial.doubleSided; } if (babylonPBRMaterial.normalTexture) { var glTFTexture = this.exportTexture(babylonPBRMaterial.normalTexture); if (glTFTexture) { glTFMaterial.normalTexture = glTFTexture; } } if (babylonPBRMaterial.occlusionTexture) { var glTFTexture = this.exportTexture(babylonPBRMaterial.occlusionTexture); if (glTFTexture) { glTFMaterial.occlusionTexture = glTFTexture; if (babylonPBRMaterial.occlusionStrength !== undefined) { glTFMaterial.occlusionTexture.strength = babylonPBRMaterial.occlusionStrength; } } } if (babylonPBRMaterial.emissiveTexture) { var glTFTexture = this.exportTexture(babylonPBRMaterial.emissiveTexture); if (glTFTexture !== null) { glTFMaterial.emissiveTexture = glTFTexture; } } if (!babylonPBRMaterial.emissiveColor.equals(new BABYLON.Color3(0.0, 0.0, 0.0))) { glTFMaterial.emissiveFactor = babylonPBRMaterial.emissiveColor.asArray(); } if (babylonPBRMaterial.transparencyMode) { var alphaMode = GLTF2._GLTFMaterial.GetAlphaMode(babylonPBRMaterial); if (alphaMode !== "OPAQUE" /* OPAQUE */) { glTFMaterial.alphaMode = alphaMode; if (alphaMode === "BLEND" /* BLEND */) { glTFMaterial.alphaCutoff = babylonPBRMaterial.alphaCutOff; } } } glTFMaterial.pbrMetallicRoughness = glTFPbrMetallicRoughness; this.materials.push(glTFMaterial); meshPrimitive.material = this.materials.length - 1; } else { console.warn("Material type is not yet implemented in glTF serializer: " + bufferMesh.material.name); } } mesh.primitives.push(meshPrimitive); } } return byteOffset; }; /** * Creates a glTF scene based on the array of meshes. * Returns the the total byte offset. * @param babylonScene - Babylon scene to get the mesh data from. * @param byteOffset - Offset to start from in bytes. * @param dataBuffer - Buffer to write geometry data to. * @returns bytelength + byteoffset */ _Exporter.prototype.createScene = function (babylonScene, byteOffset, dataBuffer) { if (babylonScene.meshes.length > 0) { var babylonMeshes = babylonScene.meshes; var scene = { nodes: new Array() }; for (var i = 0; i < babylonMeshes.length; ++i) { if (this.options && this.options.shouldExportMesh !== undefined && !this.options.shouldExportMesh(babylonMeshes[i])) { continue; } else { // create node to hold translation/rotation/scale and the mesh var node = { mesh: -1 }; var babylonMesh = babylonMeshes[i]; var useRightHandedSystem = babylonMesh.getScene().useRightHandedSystem; // Set transformation this.setNodeTransformation(node, babylonMesh, useRightHandedSystem); // create mesh var mesh = { primitives: new Array() }; mesh.primitives = []; byteOffset = this.setPrimitiveAttributes(mesh, babylonMesh, byteOffset, useRightHandedSystem, dataBuffer); // go through all mesh primitives (submeshes) this.meshes.push(mesh); node.mesh = this.meshes.length - 1; if (babylonMesh.name) { node.name = babylonMesh.name; } this.nodes.push(node); scene.nodes.push(this.nodes.length - 1); } } this.scenes.push(scene); } return byteOffset; }; return _Exporter; }()); GLTF2._Exporter = _Exporter; })(GLTF2 = BABYLON.GLTF2 || (BABYLON.GLTF2 = {})); })(BABYLON || (BABYLON = {})); //# sourceMappingURL=babylon.glTFExporter.js.map /// var BABYLON; (function (BABYLON) { /** * Class for holding and downloading glTF file data */ var _GLTFData = /** @class */ (function () { /** * Initializes the glTF file object. */ function _GLTFData() { this.glTFFiles = {}; } /** * Downloads the glTF data as files based on their names and data. */ _GLTFData.prototype.downloadFiles = function () { /** * Checks for a matching suffix at the end of a string (for ES5 and lower). * @param str - Source string. * @param suffix - Suffix to search for in the source string. * @returns - Boolean indicating whether the suffix was found (true) or not (false). */ function endsWith(str, suffix) { return str.indexOf(suffix, str.length - suffix.length) !== -1; } for (var key in this.glTFFiles) { var link = document.createElement('a'); document.body.appendChild(link); link.setAttribute("type", "hidden"); link.download = key; var blob = this.glTFFiles[key]; var mimeType = void 0; if (endsWith(key, ".glb")) { mimeType = { type: "model/gltf-binary" }; } else if (endsWith(key, ".bin")) { mimeType = { type: "application/octet-stream" }; } else if (endsWith(key, ".gltf")) { mimeType = { type: "model/gltf+json" }; } else if (endsWith(key, ".jpeg" || ".jpg")) { mimeType = { type: "image/jpeg" /* JPEG */ }; } else if (endsWith(key, ".png")) { mimeType = { type: "image/png" /* PNG */ }; } link.href = window.URL.createObjectURL(new Blob([blob], mimeType)); link.click(); } }; return _GLTFData; }()); BABYLON._GLTFData = _GLTFData; })(BABYLON || (BABYLON = {})); //# sourceMappingURL=babylon.glTFData.js.map /// var BABYLON; (function (BABYLON) { var GLTF2; (function (GLTF2) { /** * Utility methods for working with glTF material conversion properties. This class should only be used internally. */ var _GLTFMaterial = /** @class */ (function () { function _GLTFMaterial() { } /** * Converts a Babylon StandardMaterial to a glTF Metallic Roughness Material. * @param babylonStandardMaterial * @returns - glTF Metallic Roughness Material representation */ _GLTFMaterial.ConvertToGLTFPBRMetallicRoughness = function (babylonStandardMaterial) { var babylonSpecularGlossiness = { diffuse: babylonStandardMaterial.diffuseColor, opacity: babylonStandardMaterial.alpha, specular: babylonStandardMaterial.specularColor || BABYLON.Color3.Black(), glossiness: babylonStandardMaterial.specularPower / 256 }; if (babylonStandardMaterial.specularTexture) { } var babylonMetallicRoughness = _GLTFMaterial._ConvertToMetallicRoughness(babylonSpecularGlossiness); var glTFPbrMetallicRoughness = { baseColorFactor: [ babylonMetallicRoughness.baseColor.r, babylonMetallicRoughness.baseColor.g, babylonMetallicRoughness.baseColor.b, babylonMetallicRoughness.opacity ], metallicFactor: babylonMetallicRoughness.metallic, roughnessFactor: babylonMetallicRoughness.roughness }; return glTFPbrMetallicRoughness; }; /** * Converts Specular Glossiness to Metallic Roughness. This is based on the algorithm used in the Babylon glTF 3ds Max Exporter. * {@link https://github.com/BabylonJS/Exporters/blob/master/3ds%20Max/Max2Babylon/Exporter/BabylonExporter.GLTFExporter.Material.cs} * @param babylonSpecularGlossiness - Babylon specular glossiness parameters * @returns - Babylon metallic roughness values */ _GLTFMaterial._ConvertToMetallicRoughness = function (babylonSpecularGlossiness) { var diffuse = babylonSpecularGlossiness.diffuse; var opacity = babylonSpecularGlossiness.opacity; var specular = babylonSpecularGlossiness.specular; var glossiness = BABYLON.Scalar.Clamp(babylonSpecularGlossiness.glossiness); var oneMinusSpecularStrength = 1 - Math.max(specular.r, Math.max(specular.g, specular.b)); var diffusePerceivedBrightness = _GLTFMaterial.PerceivedBrightness(diffuse); var specularPerceivedBrightness = _GLTFMaterial.PerceivedBrightness(specular); var metallic = _GLTFMaterial.SolveMetallic(diffusePerceivedBrightness, specularPerceivedBrightness, oneMinusSpecularStrength); var diffuseScaleFactor = oneMinusSpecularStrength / (1 - this.dielectricSpecular.r) / Math.max(1 - metallic, this.epsilon); var baseColorFromDiffuse = diffuse.scale(diffuseScaleFactor); var baseColorFromSpecular = specular.subtract(this.dielectricSpecular.scale(1 - metallic)).scale(1 / Math.max(metallic, this.epsilon)); var lerpColor = BABYLON.Color3.Lerp(baseColorFromDiffuse, baseColorFromSpecular, metallic * metallic); var baseColor = new BABYLON.Color3(); lerpColor.clampToRef(0, 1, baseColor); var babylonMetallicRoughness = { baseColor: baseColor, opacity: opacity, metallic: metallic, roughness: 1.0 - glossiness }; return babylonMetallicRoughness; }; /** * Returns the perceived brightness value based on the provided color * @param color - color used in calculating the perceived brightness * @returns - perceived brightness value */ _GLTFMaterial.PerceivedBrightness = function (color) { return Math.sqrt(0.299 * color.r * color.r + 0.587 * color.g * color.g + 0.114 * color.b * color.b); }; /** * Computes the metallic factor * @param diffuse - diffused value * @param specular - specular value * @param oneMinusSpecularStrength - one minus the specular strength * @returns - metallic value */ _GLTFMaterial.SolveMetallic = function (diffuse, specular, oneMinusSpecularStrength) { if (specular < this.dielectricSpecular.r) { return 0; } var a = this.dielectricSpecular.r; var b = diffuse * oneMinusSpecularStrength / (1.0 - this.dielectricSpecular.r) + specular - 2.0 * this.dielectricSpecular.r; var c = this.dielectricSpecular.r - specular; var D = b * b - 4.0 * a * c; return BABYLON.Scalar.Clamp((-b + Math.sqrt(D)) / (2.0 * a)); }; /** * Gets the glTF alpha mode from the Babylon Material * @param babylonMaterial - Babylon Material * @returns - The Babylon alpha mode value */ _GLTFMaterial.GetAlphaMode = function (babylonMaterial) { if (babylonMaterial instanceof BABYLON.StandardMaterial) { var babylonStandardMaterial = babylonMaterial; if ((babylonStandardMaterial.alpha != 1.0) || (babylonStandardMaterial.diffuseTexture != null && babylonStandardMaterial.diffuseTexture.hasAlpha) || (babylonStandardMaterial.opacityTexture != null)) { return "BLEND" /* BLEND */; } else { return "OPAQUE" /* OPAQUE */; } } else if (babylonMaterial instanceof BABYLON.PBRMetallicRoughnessMaterial) { var babylonPBRMetallicRoughness = babylonMaterial; switch (babylonPBRMetallicRoughness.transparencyMode) { case BABYLON.PBRMaterial.PBRMATERIAL_OPAQUE: { return "OPAQUE" /* OPAQUE */; } case BABYLON.PBRMaterial.PBRMATERIAL_ALPHABLEND: { return "BLEND" /* BLEND */; } case BABYLON.PBRMaterial.PBRMATERIAL_ALPHATEST: { return "MASK" /* MASK */; } case BABYLON.PBRMaterial.PBRMATERIAL_ALPHATESTANDBLEND: { console.warn("GLTF Exporter | Alpha test and blend mode not supported in glTF. Alpha blend used instead."); return "BLEND" /* BLEND */; } default: { throw new Error("Unsupported alpha mode " + babylonPBRMetallicRoughness.transparencyMode); } } } else { throw new Error("Unsupported Babylon material type"); } }; /** * Represents the dielectric specular values for R, G and B. */ _GLTFMaterial.dielectricSpecular = new BABYLON.Color3(0.04, 0.04, 0.04); /** * Epsilon value, used as a small tolerance value for a numeric value. */ _GLTFMaterial.epsilon = 1e-6; return _GLTFMaterial; }()); GLTF2._GLTFMaterial = _GLTFMaterial; })(GLTF2 = BABYLON.GLTF2 || (BABYLON.GLTF2 = {})); })(BABYLON || (BABYLON = {})); //# sourceMappingURL=babylon.glTFMaterial.js.map