module BABYLON { export class _InstancesBatch { public mustReturn = false; public visibleInstances = new Array>(); public renderSelf = new Array(); } export class Mesh extends AbstractMesh implements IGetSetVerticesData { // Consts public static _FRONTSIDE: number = 0; public static _BACKSIDE: number = 1; public static _DOUBLESIDE: number = 2; public static _DEFAULTSIDE: number = 0; public static _NO_CAP = 0; public static _CAP_START = 1; public static _CAP_END = 2; public static _CAP_ALL = 3; public static get FRONTSIDE(): number { return Mesh._FRONTSIDE; } public static get BACKSIDE(): number { return Mesh._BACKSIDE; } public static get DOUBLESIDE(): number { return Mesh._DOUBLESIDE; } public static get DEFAULTSIDE(): number { return Mesh._DEFAULTSIDE; } public static get NO_CAP(): number { return Mesh._NO_CAP; } public static get CAP_START(): number { return Mesh._CAP_START; } public static get CAP_END(): number { return Mesh._CAP_END; } public static get CAP_ALL(): number { return Mesh._CAP_ALL; } // Members public delayLoadState = Engine.DELAYLOADSTATE_NONE; public instances = new Array(); public delayLoadingFile: string; public _binaryInfo: any; private _LODLevels = new Array(); public onLODLevelSelection: (distance: number, mesh: Mesh, selectedLevel: Mesh) => void; // Private public _geometry: Geometry; private _onBeforeRenderCallbacks = new Array<(mesh: AbstractMesh) => void>(); private _onAfterRenderCallbacks = new Array<(mesh: AbstractMesh) => void>(); public _delayInfo; //ANY public _delayLoadingFunction: (any, Mesh) => void; public _visibleInstances: any = {}; private _renderIdForInstances = new Array(); private _batchCache = new _InstancesBatch(); private _worldMatricesInstancesBuffer: WebGLBuffer; private _worldMatricesInstancesArray: Float32Array; private _instancesBufferSize = 32 * 16 * 4; // let's start with a maximum of 32 instances public _shouldGenerateFlatShading: boolean; private _preActivateId: number; private _sideOrientation: number = Mesh._DEFAULTSIDE; private _areNormalsFrozen: boolean = false; // Will be used by ribbons mainly /** * @constructor * @param {string} name - The value used by scene.getMeshByName() to do a lookup. * @param {Scene} scene - The scene to add this mesh to. * @param {Node} parent - The parent of this mesh, if it has one * @param {Mesh} source - An optional Mesh from which geometry is shared, cloned. * @param {boolean} doNotCloneChildren - When cloning, skip cloning child meshes of source, default False. * When false, achieved by calling a clone(), also passing False. * This will make creation of children, recursive. */ constructor(name: string, scene: Scene, parent: Node = null, source?: Mesh, doNotCloneChildren?: boolean) { super(name, scene); if (source) { // Geometry if (source._geometry) { source._geometry.applyToMesh(this); } // Deep copy Tools.DeepCopy(source, this, ["name", "material", "skeleton", "instances"], []); // Material this.material = source.material; if (!doNotCloneChildren) { // Children for (var index = 0; index < scene.meshes.length; index++) { var mesh = scene.meshes[index]; if (mesh.parent === source) { // doNotCloneChildren is always going to be False var newChild = mesh.clone(name + "." + mesh.name, this, doNotCloneChildren); } } } // Particles for (index = 0; index < scene.particleSystems.length; index++) { var system = scene.particleSystems[index]; if (system.emitter === source) { system.clone(system.name, this); } } this.computeWorldMatrix(true); } // Parent if (parent !== null) { this.parent = parent; } } // Methods public get hasLODLevels(): boolean { return this._LODLevels.length > 0; } private _sortLODLevels(): void { this._LODLevels.sort((a, b) => { if (a.distance < b.distance) { return 1; } if (a.distance > b.distance) { return -1; } return 0; }); } /** * Add a mesh as LOD level triggered at the given distance. * @param {number} distance - the distance from the center of the object to show this level * @param {BABYLON.Mesh} mesh - the mesh to be added as LOD level * @return {BABYLON.Mesh} this mesh (for chaining) */ public addLODLevel(distance: number, mesh: Mesh): Mesh { if (mesh && mesh._masterMesh) { Tools.Warn("You cannot use a mesh as LOD level twice"); return this; } var level = new Internals.MeshLODLevel(distance, mesh); this._LODLevels.push(level); if (mesh) { mesh._masterMesh = this; } this._sortLODLevels(); return this; } public getLODLevelAtDistance(distance: number): Mesh { for (var index = 0; index < this._LODLevels.length; index++) { var level = this._LODLevels[index]; if (level.distance === distance) { return level.mesh; } } return null; } /** * Remove a mesh from the LOD array * @param {BABYLON.Mesh} mesh - the mesh to be removed. * @return {BABYLON.Mesh} this mesh (for chaining) */ public removeLODLevel(mesh: Mesh): Mesh { for (var index = 0; index < this._LODLevels.length; index++) { if (this._LODLevels[index].mesh === mesh) { this._LODLevels.splice(index, 1); if (mesh) { mesh._masterMesh = null; } } } this._sortLODLevels(); return this; } public getLOD(camera: Camera, boundingSphere?: BoundingSphere): AbstractMesh { if (!this._LODLevels || this._LODLevels.length === 0) { return this; } var distanceToCamera = (boundingSphere ? boundingSphere : this.getBoundingInfo().boundingSphere).centerWorld.subtract(camera.position).length(); if (this._LODLevels[this._LODLevels.length - 1].distance > distanceToCamera) { if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, this._LODLevels[this._LODLevels.length - 1].mesh); } return this; } for (var index = 0; index < this._LODLevels.length; index++) { var level = this._LODLevels[index]; if (level.distance < distanceToCamera) { if (level.mesh) { level.mesh._preActivate(); level.mesh._updateSubMeshesBoundingInfo(this.worldMatrixFromCache); } if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, level.mesh); } return level.mesh; } } if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, this); } return this; } public get geometry(): Geometry { return this._geometry; } public getTotalVertices(): number { if (!this._geometry) { return 0; } return this._geometry.getTotalVertices(); } public getVerticesData(kind: string, copyWhenShared?: boolean): number[] { if (!this._geometry) { return null; } return this._geometry.getVerticesData(kind, copyWhenShared); } public getVertexBuffer(kind): VertexBuffer { if (!this._geometry) { return undefined; } return this._geometry.getVertexBuffer(kind); } public isVerticesDataPresent(kind: string): boolean { if (!this._geometry) { if (this._delayInfo) { return this._delayInfo.indexOf(kind) !== -1; } return false; } return this._geometry.isVerticesDataPresent(kind); } public getVerticesDataKinds(): string[] { if (!this._geometry) { var result = []; if (this._delayInfo) { for (var kind in this._delayInfo) { result.push(kind); } } return result; } return this._geometry.getVerticesDataKinds(); } public getTotalIndices(): number { if (!this._geometry) { return 0; } return this._geometry.getTotalIndices(); } public getIndices(copyWhenShared?: boolean): number[] { if (!this._geometry) { return []; } return this._geometry.getIndices(copyWhenShared); } public get isBlocked(): boolean { return this._masterMesh !== null && this._masterMesh !== undefined; } public isReady(): boolean { if (this.delayLoadState === Engine.DELAYLOADSTATE_LOADING) { return false; } return super.isReady(); } public isDisposed(): boolean { return this._isDisposed; } public get sideOrientation(): number { return this._sideOrientation; } public set sideOrientation(sideO: number) { this._sideOrientation = sideO; } public get areNormalsFrozen(): boolean { return this._areNormalsFrozen; } public freezeNormals(): void { this._areNormalsFrozen = true; } public unfreezeNormals(): void { this._areNormalsFrozen = false; } // Methods public _preActivate(): void { var sceneRenderId = this.getScene().getRenderId(); if (this._preActivateId === sceneRenderId) { return; } this._preActivateId = sceneRenderId; this._visibleInstances = null; } public _registerInstanceForRenderId(instance: InstancedMesh, renderId: number) { if (!this._visibleInstances) { this._visibleInstances = {}; this._visibleInstances.defaultRenderId = renderId; this._visibleInstances.selfDefaultRenderId = this._renderId; } if (!this._visibleInstances[renderId]) { this._visibleInstances[renderId] = new Array(); } this._visibleInstances[renderId].push(instance); } public refreshBoundingInfo(): void { var data = this.getVerticesData(VertexBuffer.PositionKind); if (data) { var extend = Tools.ExtractMinAndMax(data, 0, this.getTotalVertices()); this._boundingInfo = new BoundingInfo(extend.minimum, extend.maximum); } if (this.subMeshes) { for (var index = 0; index < this.subMeshes.length; index++) { this.subMeshes[index].refreshBoundingInfo(); } } this._updateBoundingInfo(); } public _createGlobalSubMesh(): SubMesh { var totalVertices = this.getTotalVertices(); if (!totalVertices || !this.getIndices()) { return null; } this.releaseSubMeshes(); return new SubMesh(0, 0, totalVertices, 0, this.getTotalIndices(), this); } public subdivide(count: number): void { if (count < 1) { return; } var totalIndices = this.getTotalIndices(); var subdivisionSize = (totalIndices / count) | 0; var offset = 0; // Ensure that subdivisionSize is a multiple of 3 while (subdivisionSize % 3 !== 0) { subdivisionSize++; } this.releaseSubMeshes(); for (var index = 0; index < count; index++) { if (offset >= totalIndices) { break; } SubMesh.CreateFromIndices(0, offset, Math.min(subdivisionSize, totalIndices - offset), this); offset += subdivisionSize; } this.synchronizeInstances(); } public setVerticesData(kind: any, data: any, updatable?: boolean, stride?: number): void { if (kind instanceof Array) { var temp = data; data = kind; kind = temp; Tools.Warn("Deprecated usage of setVerticesData detected (since v1.12). Current signature is setVerticesData(kind, data, updatable)."); } if (!this._geometry) { var vertexData = new VertexData(); vertexData.set(data, kind); var scene = this.getScene(); new Geometry(Geometry.RandomId(), scene, vertexData, updatable, this); } else { this._geometry.setVerticesData(kind, data, updatable, stride); } } public updateVerticesData(kind: string, data: number[], updateExtends?: boolean, makeItUnique?: boolean): void { if (!this._geometry) { return; } if (!makeItUnique) { this._geometry.updateVerticesData(kind, data, updateExtends); } else { this.makeGeometryUnique(); this.updateVerticesData(kind, data, updateExtends, false); } } public updateVerticesDataDirectly(kind: string, data: Float32Array, offset?: number, makeItUnique?: boolean): void { if (!this._geometry) { return; } if (!makeItUnique) { this._geometry.updateVerticesDataDirectly(kind, data, offset); } else { this.makeGeometryUnique(); this.updateVerticesDataDirectly(kind, data, offset, false); } } // Mesh positions update function : // updates the mesh positions according to the positionFunction returned values. // The positionFunction argument must be a javascript function accepting the mesh "positions" array as parameter. // This dedicated positionFunction computes new mesh positions according to the given mesh type. public updateMeshPositions(positionFunction, computeNormals: boolean = true): void { var positions = this.getVerticesData(BABYLON.VertexBuffer.PositionKind); positionFunction(positions); this.updateVerticesData(BABYLON.VertexBuffer.PositionKind, positions, false, false); if (computeNormals) { var indices = this.getIndices(); var normals = this.getVerticesData(BABYLON.VertexBuffer.NormalKind); BABYLON.VertexData.ComputeNormals(positions, indices, normals); this.updateVerticesData(BABYLON.VertexBuffer.NormalKind, normals, false, false); } } public makeGeometryUnique() { if (!this._geometry) { return; } var geometry = this._geometry.copy(Geometry.RandomId()); geometry.applyToMesh(this); } public setIndices(indices: number[], totalVertices?: number): void { if (!this._geometry) { var vertexData = new VertexData(); vertexData.indices = indices; var scene = this.getScene(); new Geometry(Geometry.RandomId(), scene, vertexData, false, this); } else { this._geometry.setIndices(indices, totalVertices); } } public _bind(subMesh: SubMesh, effect: Effect, fillMode: number): void { var engine = this.getScene().getEngine(); // Wireframe var indexToBind; switch (fillMode) { case Material.PointFillMode: indexToBind = null; break; case Material.WireFrameFillMode: indexToBind = subMesh.getLinesIndexBuffer(this.getIndices(), engine); break; default: case Material.TriangleFillMode: indexToBind = this._geometry.getIndexBuffer(); break; } // VBOs engine.bindMultiBuffers(this._geometry.getVertexBuffers(), indexToBind, effect); } public _draw(subMesh: SubMesh, fillMode: number, instancesCount?: number): void { if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) { return; } var engine = this.getScene().getEngine(); // Draw order switch (fillMode) { case Material.PointFillMode: engine.drawPointClouds(subMesh.verticesStart, subMesh.verticesCount, instancesCount); break; case Material.WireFrameFillMode: engine.draw(false, 0, subMesh.linesIndexCount, instancesCount); break; default: engine.draw(true, subMesh.indexStart, subMesh.indexCount, instancesCount); } } public registerBeforeRender(func: (mesh: AbstractMesh) => void): void { this._onBeforeRenderCallbacks.push(func); } public unregisterBeforeRender(func: (mesh: AbstractMesh) => void): void { var index = this._onBeforeRenderCallbacks.indexOf(func); if (index > -1) { this._onBeforeRenderCallbacks.splice(index, 1); } } public registerAfterRender(func: (mesh: AbstractMesh) => void): void { this._onAfterRenderCallbacks.push(func); } public unregisterAfterRender(func: (mesh: AbstractMesh) => void): void { var index = this._onAfterRenderCallbacks.indexOf(func); if (index > -1) { this._onAfterRenderCallbacks.splice(index, 1); } } public _getInstancesRenderList(subMeshId: number): _InstancesBatch { var scene = this.getScene(); this._batchCache.mustReturn = false; this._batchCache.renderSelf[subMeshId] = this.isEnabled() && this.isVisible; this._batchCache.visibleInstances[subMeshId] = null; if (this._visibleInstances) { var currentRenderId = scene.getRenderId(); this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[currentRenderId]; var selfRenderId = this._renderId; if (!this._batchCache.visibleInstances[subMeshId] && this._visibleInstances.defaultRenderId) { this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[this._visibleInstances.defaultRenderId]; currentRenderId = Math.max(this._visibleInstances.defaultRenderId, currentRenderId); selfRenderId = Math.max(this._visibleInstances.selfDefaultRenderId, currentRenderId); } if (this._batchCache.visibleInstances[subMeshId] && this._batchCache.visibleInstances[subMeshId].length) { if (this._renderIdForInstances[subMeshId] === currentRenderId) { this._batchCache.mustReturn = true; return this._batchCache; } if (currentRenderId !== selfRenderId) { this._batchCache.renderSelf[subMeshId] = false; } } this._renderIdForInstances[subMeshId] = currentRenderId; } return this._batchCache; } public _renderWithInstances(subMesh: SubMesh, fillMode: number, batch: _InstancesBatch, effect: Effect, engine: Engine): void { var visibleInstances = batch.visibleInstances[subMesh._id]; var matricesCount = visibleInstances.length + 1; var bufferSize = matricesCount * 16 * 4; while (this._instancesBufferSize < bufferSize) { this._instancesBufferSize *= 2; } if (!this._worldMatricesInstancesBuffer || this._worldMatricesInstancesBuffer.capacity < this._instancesBufferSize) { if (this._worldMatricesInstancesBuffer) { engine.deleteInstancesBuffer(this._worldMatricesInstancesBuffer); } this._worldMatricesInstancesBuffer = engine.createInstancesBuffer(this._instancesBufferSize); this._worldMatricesInstancesArray = new Float32Array(this._instancesBufferSize / 4); } var offset = 0; var instancesCount = 0; var world = this.getWorldMatrix(); if (batch.renderSelf[subMesh._id]) { world.copyToArray(this._worldMatricesInstancesArray, offset); offset += 16; instancesCount++; } if (visibleInstances) { for (var instanceIndex = 0; instanceIndex < visibleInstances.length; instanceIndex++) { var instance = visibleInstances[instanceIndex]; instance.getWorldMatrix().copyToArray(this._worldMatricesInstancesArray, offset); offset += 16; instancesCount++; } } var offsetLocation0 = effect.getAttributeLocationByName("world0"); var offsetLocation1 = effect.getAttributeLocationByName("world1"); var offsetLocation2 = effect.getAttributeLocationByName("world2"); var offsetLocation3 = effect.getAttributeLocationByName("world3"); var offsetLocations = [offsetLocation0, offsetLocation1, offsetLocation2, offsetLocation3]; engine.updateAndBindInstancesBuffer(this._worldMatricesInstancesBuffer, this._worldMatricesInstancesArray, offsetLocations); this._draw(subMesh, fillMode, instancesCount); engine.unBindInstancesBuffer(this._worldMatricesInstancesBuffer, offsetLocations); } public _processRendering(subMesh: SubMesh, effect: Effect, fillMode: number, batch: _InstancesBatch, hardwareInstancedRendering: boolean, onBeforeDraw: (isInstance: boolean, world: Matrix) => void) { var scene = this.getScene(); var engine = scene.getEngine(); if (hardwareInstancedRendering) { this._renderWithInstances(subMesh, fillMode, batch, effect, engine); } else { if (batch.renderSelf[subMesh._id]) { // Draw if (onBeforeDraw) { onBeforeDraw(false, this.getWorldMatrix()); } this._draw(subMesh, fillMode); } if (batch.visibleInstances[subMesh._id]) { for (var instanceIndex = 0; instanceIndex < batch.visibleInstances[subMesh._id].length; instanceIndex++) { var instance = batch.visibleInstances[subMesh._id][instanceIndex]; // World var world = instance.getWorldMatrix(); if (onBeforeDraw) { onBeforeDraw(true, world); } // Draw this._draw(subMesh, fillMode); } } } } public render(subMesh: SubMesh): void { var scene = this.getScene(); // Managing instances var batch = this._getInstancesRenderList(subMesh._id); if (batch.mustReturn) { return; } // Checking geometry state if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) { return; } for (var callbackIndex = 0; callbackIndex < this._onBeforeRenderCallbacks.length; callbackIndex++) { this._onBeforeRenderCallbacks[callbackIndex](this); } var engine = scene.getEngine(); var hardwareInstancedRendering = (engine.getCaps().instancedArrays !== null) && (batch.visibleInstances[subMesh._id] !== null) && (batch.visibleInstances[subMesh._id] !== undefined); // Material var effectiveMaterial = subMesh.getMaterial(); if (!effectiveMaterial || !effectiveMaterial.isReady(this, hardwareInstancedRendering)) { return; } // Outline - step 1 var savedDepthWrite = engine.getDepthWrite(); if (this.renderOutline) { engine.setDepthWrite(false); scene.getOutlineRenderer().render(subMesh, batch); engine.setDepthWrite(savedDepthWrite); } effectiveMaterial._preBind(); var effect = effectiveMaterial.getEffect(); // Bind var fillMode = scene.forcePointsCloud ? Material.PointFillMode : (scene.forceWireframe ? Material.WireFrameFillMode : effectiveMaterial.fillMode); this._bind(subMesh, effect, fillMode); var world = this.getWorldMatrix(); effectiveMaterial.bind(world, this); // Draw this._processRendering(subMesh, effect, fillMode, batch, hardwareInstancedRendering, (isInstance, world) => { if (isInstance) { effectiveMaterial.bindOnlyWorldMatrix(world); } }); // Unbind effectiveMaterial.unbind(); // Outline - step 2 if (this.renderOutline && savedDepthWrite) { engine.setDepthWrite(true); engine.setColorWrite(false); scene.getOutlineRenderer().render(subMesh, batch); engine.setColorWrite(true); } // Overlay if (this.renderOverlay) { var currentMode = engine.getAlphaMode(); engine.setAlphaMode(Engine.ALPHA_COMBINE); scene.getOutlineRenderer().render(subMesh, batch, true); engine.setAlphaMode(currentMode); } for (callbackIndex = 0; callbackIndex < this._onAfterRenderCallbacks.length; callbackIndex++) { this._onAfterRenderCallbacks[callbackIndex](this); } } public getEmittedParticleSystems(): ParticleSystem[] { var results = new Array(); for (var index = 0; index < this.getScene().particleSystems.length; index++) { var particleSystem = this.getScene().particleSystems[index]; if (particleSystem.emitter === this) { results.push(particleSystem); } } return results; } public getHierarchyEmittedParticleSystems(): ParticleSystem[] { var results = new Array(); var descendants = this.getDescendants(); descendants.push(this); for (var index = 0; index < this.getScene().particleSystems.length; index++) { var particleSystem = this.getScene().particleSystems[index]; if (descendants.indexOf(particleSystem.emitter) !== -1) { results.push(particleSystem); } } return results; } public getChildren(): Node[] { var results = []; for (var index = 0; index < this.getScene().meshes.length; index++) { var mesh = this.getScene().meshes[index]; if (mesh.parent === this) { results.push(mesh); } } return results; } public _checkDelayState(): void { var that = this; var scene = this.getScene(); if (this._geometry) { this._geometry.load(scene); } else if (that.delayLoadState === Engine.DELAYLOADSTATE_NOTLOADED) { that.delayLoadState = Engine.DELAYLOADSTATE_LOADING; scene._addPendingData(that); var getBinaryData = (this.delayLoadingFile.indexOf(".babylonbinarymeshdata") !== -1); Tools.LoadFile(this.delayLoadingFile, data => { if (data instanceof ArrayBuffer) { this._delayLoadingFunction(data, this); } else { this._delayLoadingFunction(JSON.parse(data), this); } this.delayLoadState = Engine.DELAYLOADSTATE_LOADED; scene._removePendingData(this); },() => { }, scene.database, getBinaryData); } } public isInFrustum(frustumPlanes: Plane[]): boolean { if (this.delayLoadState === Engine.DELAYLOADSTATE_LOADING) { return false; } if (!super.isInFrustum(frustumPlanes)) { return false; } this._checkDelayState(); return true; } public setMaterialByID(id: string): void { var materials = this.getScene().materials; for (var index = 0; index < materials.length; index++) { if (materials[index].id === id) { this.material = materials[index]; return; } } // Multi var multiMaterials = this.getScene().multiMaterials; for (index = 0; index < multiMaterials.length; index++) { if (multiMaterials[index].id === id) { this.material = multiMaterials[index]; return; } } } public getAnimatables(): IAnimatable[] { var results = []; if (this.material) { results.push(this.material); } if (this.skeleton) { results.push(this.skeleton); } return results; } // Geometry public bakeTransformIntoVertices(transform: Matrix): void { // Position if (!this.isVerticesDataPresent(VertexBuffer.PositionKind)) { return; } this._resetPointsArrayCache(); var data = this.getVerticesData(VertexBuffer.PositionKind); var temp = []; for (var index = 0; index < data.length; index += 3) { Vector3.TransformCoordinates(Vector3.FromArray(data, index), transform).toArray(temp, index); } this.setVerticesData(VertexBuffer.PositionKind, temp, this.getVertexBuffer(VertexBuffer.PositionKind).isUpdatable()); // Normals if (!this.isVerticesDataPresent(VertexBuffer.NormalKind)) { return; } data = this.getVerticesData(VertexBuffer.NormalKind); temp = []; for (index = 0; index < data.length; index += 3) { Vector3.TransformNormal(Vector3.FromArray(data, index), transform).toArray(temp, index); } this.setVerticesData(VertexBuffer.NormalKind, temp, this.getVertexBuffer(VertexBuffer.NormalKind).isUpdatable()); } // Cache public _resetPointsArrayCache(): void { this._positions = null; } public _generatePointsArray(): boolean { if (this._positions) return true; this._positions = []; var data = this.getVerticesData(VertexBuffer.PositionKind); if (!data) { return false; } for (var index = 0; index < data.length; index += 3) { this._positions.push(Vector3.FromArray(data, index)); } return true; } // Clone public clone(name: string, newParent?: Node, doNotCloneChildren?: boolean): Mesh { return new Mesh(name, this.getScene(), newParent, this, doNotCloneChildren); } // Dispose public dispose(doNotRecurse?: boolean): void { if (this._geometry) { this._geometry.releaseForMesh(this, true); } // Instances if (this._worldMatricesInstancesBuffer) { this.getEngine().deleteInstancesBuffer(this._worldMatricesInstancesBuffer); this._worldMatricesInstancesBuffer = null; } while (this.instances.length) { this.instances[0].dispose(); } super.dispose(doNotRecurse); } // Geometric tools public applyDisplacementMap(url: string, minHeight: number, maxHeight: number, onSuccess?: (mesh: Mesh) => void): void { var scene = this.getScene(); var onload = img => { // Getting height map data var canvas = document.createElement("canvas"); var context = canvas.getContext("2d"); var heightMapWidth = img.width; var heightMapHeight = img.height; canvas.width = heightMapWidth; canvas.height = heightMapHeight; context.drawImage(img, 0, 0); // Create VertexData from map data //Cast is due to wrong definition in lib.d.ts from ts 1.3 - https://github.com/Microsoft/TypeScript/issues/949 var buffer = (context.getImageData(0, 0, heightMapWidth, heightMapHeight).data); this.applyDisplacementMapFromBuffer(buffer, heightMapWidth, heightMapHeight, minHeight, maxHeight); //execute success callback, if set if (onSuccess) { onSuccess(this); } }; Tools.LoadImage(url, onload,() => { }, scene.database); } public applyDisplacementMapFromBuffer(buffer: Uint8Array, heightMapWidth: number, heightMapHeight: number, minHeight: number, maxHeight: number): void { if (!this.isVerticesDataPresent(VertexBuffer.PositionKind) || !this.isVerticesDataPresent(VertexBuffer.NormalKind) || !this.isVerticesDataPresent(VertexBuffer.UVKind)) { Tools.Warn("Cannot call applyDisplacementMap: Given mesh is not complete. Position, Normal or UV are missing"); return; } var positions = this.getVerticesData(VertexBuffer.PositionKind); var normals = this.getVerticesData(VertexBuffer.NormalKind); var uvs = this.getVerticesData(VertexBuffer.UVKind); var position = Vector3.Zero(); var normal = Vector3.Zero(); var uv = Vector2.Zero(); for (var index = 0; index < positions.length; index += 3) { Vector3.FromArrayToRef(positions, index, position); Vector3.FromArrayToRef(normals, index, normal); Vector2.FromArrayToRef(uvs,(index / 3) * 2, uv); // Compute height var u = ((Math.abs(uv.x) * heightMapWidth) % heightMapWidth) | 0; var v = ((Math.abs(uv.y) * heightMapHeight) % heightMapHeight) | 0; var pos = (u + v * heightMapWidth) * 4; var r = buffer[pos] / 255.0; var g = buffer[pos + 1] / 255.0; var b = buffer[pos + 2] / 255.0; var gradient = r * 0.3 + g * 0.59 + b * 0.11; normal.normalize(); normal.scaleInPlace(minHeight + (maxHeight - minHeight) * gradient); position = position.add(normal); position.toArray(positions, index); } VertexData.ComputeNormals(positions, this.getIndices(), normals); this.updateVerticesData(VertexBuffer.PositionKind, positions); this.updateVerticesData(VertexBuffer.NormalKind, normals); } public convertToFlatShadedMesh(): void { /// Update normals and vertices to get a flat shading rendering. /// Warning: This may imply adding vertices to the mesh in order to get exactly 3 vertices per face var kinds = this.getVerticesDataKinds(); var vbs = []; var data = []; var newdata = []; var updatableNormals = false; for (var kindIndex = 0; kindIndex < kinds.length; kindIndex++) { var kind = kinds[kindIndex]; var vertexBuffer = this.getVertexBuffer(kind); if (kind === VertexBuffer.NormalKind) { updatableNormals = vertexBuffer.isUpdatable(); kinds.splice(kindIndex, 1); kindIndex--; continue; } vbs[kind] = vertexBuffer; data[kind] = vbs[kind].getData(); newdata[kind] = []; } // Save previous submeshes var previousSubmeshes = this.subMeshes.slice(0); var indices = this.getIndices(); var totalIndices = this.getTotalIndices(); // Generating unique vertices per face for (var index = 0; index < totalIndices; index++) { var vertexIndex = indices[index]; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var stride = vbs[kind].getStrideSize(); for (var offset = 0; offset < stride; offset++) { newdata[kind].push(data[kind][vertexIndex * stride + offset]); } } } // Updating faces & normal var normals = []; var positions = newdata[VertexBuffer.PositionKind]; for (index = 0; index < totalIndices; index += 3) { indices[index] = index; indices[index + 1] = index + 1; indices[index + 2] = index + 2; var p1 = Vector3.FromArray(positions, index * 3); var p2 = Vector3.FromArray(positions,(index + 1) * 3); var p3 = Vector3.FromArray(positions,(index + 2) * 3); var p1p2 = p1.subtract(p2); var p3p2 = p3.subtract(p2); var normal = Vector3.Normalize(Vector3.Cross(p1p2, p3p2)); // Store same normals for every vertex for (var localIndex = 0; localIndex < 3; localIndex++) { normals.push(normal.x); normals.push(normal.y); normals.push(normal.z); } } this.setIndices(indices); this.setVerticesData(VertexBuffer.NormalKind, normals, updatableNormals); // Updating vertex buffers for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable()); } // Updating submeshes this.releaseSubMeshes(); for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) { var previousOne = previousSubmeshes[submeshIndex]; var subMesh = new SubMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this); } this.synchronizeInstances(); } // Instances public createInstance(name: string): InstancedMesh { return new InstancedMesh(name, this); } public synchronizeInstances(): void { for (var instanceIndex = 0; instanceIndex < this.instances.length; instanceIndex++) { var instance = this.instances[instanceIndex]; instance._syncSubMeshes(); } } /** * Simplify the mesh according to the given array of settings. * Function will return immediately and will simplify async. * @param settings a collection of simplification settings. * @param parallelProcessing should all levels calculate parallel or one after the other. * @param type the type of simplification to run. * @param successCallback optional success callback to be called after the simplification finished processing all settings. */ public simplify(settings: Array, parallelProcessing: boolean = true, simplificationType: SimplificationType = SimplificationType.QUADRATIC, successCallback?: (mesh?: Mesh, submeshIndex?: number) => void) { this.getScene().simplificationQueue.addTask({ settings: settings, parallelProcessing: parallelProcessing, mesh: this, simplificationType: simplificationType, successCallback: successCallback }); } /** * Optimization of the mesh's indices, in case a mesh has duplicated vertices. * The function will only reorder the indices and will not remove unused vertices to avoid problems with submeshes. * This should be used together with the simplification to avoid disappearing triangles. * @param successCallback an optional success callback to be called after the optimization finished. */ public optimizeIndices(successCallback?: (mesh?: Mesh) => void) { var indices = this.getIndices(); var positions = this.getVerticesData(VertexBuffer.PositionKind); var vectorPositions = []; for (var pos = 0; pos < positions.length; pos = pos + 3) { vectorPositions.push(Vector3.FromArray(positions, pos)); } var dupes = []; AsyncLoop.SyncAsyncForLoop(vectorPositions.length, 40,(iteration) => { var realPos = vectorPositions.length - 1 - iteration; var testedPosition = vectorPositions[realPos]; for (var j = 0; j < realPos; ++j) { var againstPosition = vectorPositions[j]; if (testedPosition.equals(againstPosition)) { dupes[realPos] = j; break; } } },() => { for (var i = 0; i < indices.length; ++i) { indices[i] = dupes[indices[i]] || indices[i]; } //indices are now reordered var originalSubMeshes = this.subMeshes.slice(0); this.setIndices(indices); this.subMeshes = originalSubMeshes; if (successCallback) { successCallback(this); } }); } // Statics public static CreateRibbon(name: string, pathArray: Vector3[][], closeArray: boolean, closePath: boolean, offset: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE, ribbonInstance: Mesh = null): Mesh { if (ribbonInstance) { // existing ribbon instance update // positionFunction : ribbon case // only pathArray and sideOrientation parameters are taken into account for positions update var positionsOfRibbon = function (pathArray, sideOrientation) { var positionFunction = function (positions) { var minlg = pathArray[0].length; var i = 0; var ns = (sideOrientation == BABYLON.Mesh.DOUBLESIDE) ? 2 : 1; for (var si = 1; si <= ns; si++) { for (var p = 0; p < pathArray.length; p++) { var path = pathArray[p]; var l = path.length; minlg = (minlg < l) ? minlg : l; var j = 0; while (j < minlg) { positions[i] = path[j].x; positions[i + 1] = path[j].y; positions[i + 2] = path[j].z; j++; i += 3; } } } }; return positionFunction; }; var sideOrientation = ribbonInstance.sideOrientation; var positionFunction = positionsOfRibbon(pathArray, sideOrientation); var computeNormals = !(ribbonInstance.areNormalsFrozen); ribbonInstance.updateMeshPositions(positionFunction, computeNormals); return ribbonInstance; } else { // new ribbon creation var ribbon = new Mesh(name, scene); ribbon.sideOrientation = sideOrientation; var vertexData = VertexData.CreateRibbon(pathArray, closeArray, closePath, offset, sideOrientation); vertexData.applyToMesh(ribbon, updatable); return ribbon; } } public static CreateDisc(name: string, radius: number, tessellation: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { var disc = new Mesh(name, scene); var vertexData = VertexData.CreateDisc(radius, tessellation, sideOrientation); vertexData.applyToMesh(disc, updatable); return disc; } public static CreateBox(name: string, size: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { var box = new Mesh(name, scene); var vertexData = VertexData.CreateBox(size, sideOrientation); vertexData.applyToMesh(box, updatable); return box; } public static CreateSphere(name: string, segments: number, diameter: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { var sphere = new Mesh(name, scene); var vertexData = VertexData.CreateSphere(segments, diameter, sideOrientation); vertexData.applyToMesh(sphere, updatable); return sphere; } // Cylinder and cone (Code inspired by SharpDX.org) public static CreateCylinder(name: string, height: number, diameterTop: number, diameterBottom: number, tessellation: number, subdivisions: any, scene: Scene, updatable?: any, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { // subdivisions is a new parameter, we need to support old signature if (scene === undefined || !(scene instanceof Scene)) { if (scene !== undefined) { updatable = scene; } scene = subdivisions; subdivisions = 1; } var cylinder = new Mesh(name, scene); var vertexData = VertexData.CreateCylinder(height, diameterTop, diameterBottom, tessellation, subdivisions); vertexData.applyToMesh(cylinder, updatable); return cylinder; } // Torus (Code from SharpDX.org) public static CreateTorus(name: string, diameter: number, thickness: number, tessellation: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { var torus = new Mesh(name, scene); var vertexData = VertexData.CreateTorus(diameter, thickness, tessellation, sideOrientation); vertexData.applyToMesh(torus, updatable); return torus; } public static CreateTorusKnot(name: string, radius: number, tube: number, radialSegments: number, tubularSegments: number, p: number, q: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { var torusKnot = new Mesh(name, scene); var vertexData = VertexData.CreateTorusKnot(radius, tube, radialSegments, tubularSegments, p, q, sideOrientation); vertexData.applyToMesh(torusKnot, updatable); return torusKnot; } // Lines public static CreateLines(name: string, points: Vector3[], scene: Scene, updatable?: boolean, linesInstance: LinesMesh = null): LinesMesh { if (linesInstance) { // lines update var positionsOfLines = function (points) { var positionFunction = function (positions) { var i = 0; for (var p = 0; p < points.length; p++) { positions[i] = points[p].x; positions[i + 1] = points[p].y; positions[i + 2] = points[p].z; i += 3; } }; return positionFunction; }; var positionFunction = positionsOfLines(points); linesInstance.updateMeshPositions(positionFunction, false); return linesInstance; } // lines creation var lines = new LinesMesh(name, scene, updatable); var vertexData = VertexData.CreateLines(points); vertexData.applyToMesh(lines, updatable); return lines; } // Extrusion public static ExtrudeShape(name: string, shape: Vector3[], path: Vector3[], scale: number, rotation: number, cap: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE, extrudedInstance: Mesh = null): Mesh { scale = scale || 1; rotation = rotation || 0; var extruded = Mesh._ExtrudeShapeGeneric(name, shape, path, scale, rotation, null, null, false, false, cap, false, scene, updatable, sideOrientation, extrudedInstance); return extruded; } public static ExtrudeShapeCustom(name: string, shape: Vector3[], path: Vector3[], scaleFunction, rotationFunction, ribbonCloseArray: boolean, ribbonClosePath: boolean, cap: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE, extrudedInstance: Mesh = null): Mesh { var extrudedCustom = Mesh._ExtrudeShapeGeneric(name, shape, path, null, null, scaleFunction, rotationFunction, ribbonCloseArray, ribbonClosePath, cap, true, scene, updatable, sideOrientation, extrudedInstance); return extrudedCustom; } private static _ExtrudeShapeGeneric(name: string, shape: Vector3[], curve: Vector3[], scale: number, rotation: number, scaleFunction: { (i: number, distance: number): number; }, rotateFunction: { (i: number, distance: number): number; }, rbCA: boolean, rbCP: boolean, cap: number, custom: boolean, scene: Scene, updtbl: boolean, side: number, instance: Mesh): Mesh { // extrusion geometry var extrusionPathArray = function (shape, curve, path3D, shapePaths, scale, rotation, scaleFunction, rotateFunction, cap, custom) { var tangents = path3D.getTangents(); var normals = path3D.getNormals(); var binormals = path3D.getBinormals(); var distances = path3D.getDistances(); var angle = 0; var returnScale: { (i: number, distance: number): number; } = (i, distance) => { return scale; }; var returnRotation: { (i: number, distance: number): number; } = (i, distance) => { return rotation; }; var rotate: { (i: number, distance: number): number; } = custom ? rotateFunction : returnRotation; var scl: { (i: number, distance: number): number; } = custom ? scaleFunction : returnScale; var index = 0; for (var i = 0; i < curve.length; i++) { var shapePath = new Array(); var angleStep = rotate(i, distances[i]); var scaleRatio = scl(i, distances[i]); for (var p = 0; p < shape.length; p++) { var rotationMatrix = Matrix.RotationAxis(tangents[i], angle); var planed = ((tangents[i].scale(shape[p].z)).add(normals[i].scale(shape[p].x)).add(binormals[i].scale(shape[p].y))); var rotated = Vector3.TransformCoordinates(planed, rotationMatrix).scaleInPlace(scaleRatio).add(curve[i]); shapePath.push(rotated); } shapePaths[index] = shapePath; angle += angleStep; index++; } // cap var capPath = function (shapePath) { var pointCap = Array(); var barycenter = Vector3.Zero(); var i: number; for (i = 0; i < shapePath.length; i++) { barycenter.addInPlace(shapePath[i]); } barycenter.scaleInPlace(1 / shapePath.length); for (i = 0; i < shapePath.length; i++) { pointCap.push(barycenter); } return pointCap; }; switch (cap) { case BABYLON.Mesh.NO_CAP: break; case BABYLON.Mesh.CAP_START: shapePaths.unshift(capPath(shapePaths[0])); break; case BABYLON.Mesh.CAP_END: shapePaths.push(capPath(shapePaths[shapePaths.length - 1])); break; case BABYLON.Mesh.CAP_ALL: shapePaths.unshift(capPath(shapePaths[0])); shapePaths.push(capPath(shapePaths[shapePaths.length - 1])); break; default: break; } return shapePaths; }; if (instance) { // instance update var path3D = ((instance).path3D).update(curve); var pathArray = extrusionPathArray(shape, curve,(instance).path3D,(instance).pathArray, scale, rotation, scaleFunction, rotateFunction,(instance).cap, custom); instance = Mesh.CreateRibbon(null, pathArray, null, null, null, null, null, null, instance); return instance; } // extruded shape creation var path3D = new Path3D(curve); var newShapePaths = new Array>(); cap = (cap < 0 || cap > 3) ? 0 : cap; var pathArray = extrusionPathArray(shape, curve, path3D, newShapePaths, scale, rotation, scaleFunction, rotateFunction, cap, custom); var extrudedGeneric = Mesh.CreateRibbon(name, pathArray, rbCA, rbCP, 0, scene, updtbl, side); (extrudedGeneric).pathArray = pathArray; (extrudedGeneric).path3D = path3D; (extrudedGeneric).cap = cap; return extrudedGeneric; } // Plane & ground public static CreatePlane(name: string, size: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE): Mesh { var plane = new Mesh(name, scene); var vertexData = VertexData.CreatePlane(size, sideOrientation); vertexData.applyToMesh(plane, updatable); return plane; } public static CreateGround(name: string, width: number, height: number, subdivisions: number, scene: Scene, updatable?: boolean): Mesh { var ground = new GroundMesh(name, scene); ground._setReady(false); ground._subdivisions = subdivisions; var vertexData = VertexData.CreateGround(width, height, subdivisions); vertexData.applyToMesh(ground, updatable); ground._setReady(true); return ground; } public static CreateTiledGround(name: string, xmin: number, zmin: number, xmax: number, zmax: number, subdivisions: { w: number; h: number; }, precision: { w: number; h: number; }, scene: Scene, updatable?: boolean): Mesh { var tiledGround = new Mesh(name, scene); var vertexData = VertexData.CreateTiledGround(xmin, zmin, xmax, zmax, subdivisions, precision); vertexData.applyToMesh(tiledGround, updatable); return tiledGround; } public static CreateGroundFromHeightMap(name: string, url: string, width: number, height: number, subdivisions: number, minHeight: number, maxHeight: number, scene: Scene, updatable?: boolean, onReady?: (mesh: GroundMesh) => void): GroundMesh { var ground = new GroundMesh(name, scene); ground._subdivisions = subdivisions; ground._setReady(false); var onload = img => { // Getting height map data var canvas = document.createElement("canvas"); var context = canvas.getContext("2d"); var heightMapWidth = img.width; var heightMapHeight = img.height; canvas.width = heightMapWidth; canvas.height = heightMapHeight; context.drawImage(img, 0, 0); // Create VertexData from map data // Cast is due to wrong definition in lib.d.ts from ts 1.3 - https://github.com/Microsoft/TypeScript/issues/949 var buffer = (context.getImageData(0, 0, heightMapWidth, heightMapHeight).data); var vertexData = VertexData.CreateGroundFromHeightMap(width, height, subdivisions, minHeight, maxHeight, buffer, heightMapWidth, heightMapHeight); vertexData.applyToMesh(ground, updatable); ground._setReady(true); //execute ready callback, if set if (onReady) { onReady(ground); } }; Tools.LoadImage(url, onload,() => { }, scene.database); return ground; } public static CreateTube(name: string, path: Vector3[], radius: number, tessellation: number, radiusFunction: { (i: number, distance: number): number; }, cap: number, scene: Scene, updatable?: boolean, sideOrientation: number = Mesh.DEFAULTSIDE, tubeInstance: Mesh = null): Mesh { // tube geometry var tubePathArray = function (path, path3D, circlePaths, radius, tessellation, radiusFunction, cap) { var tangents = path3D.getTangents(); var normals = path3D.getNormals(); var distances = path3D.getDistances(); var pi2 = Math.PI * 2; var step = pi2 / tessellation; var returnRadius: { (i: number, distance: number): number; } = (i, distance) => radius; var radiusFunctionFinal: { (i: number, distance: number): number; } = radiusFunction || returnRadius; var circlePath: Vector3[]; var rad: number; var normal: Vector3; var rotated: Vector3; var rotationMatrix: Matrix; var index = 0; for (var i = 0; i < path.length; i++) { rad = radiusFunctionFinal(i, distances[i]); // current radius circlePath = Array(); // current circle array normal = normals[i]; // current normal for (var t = 0; t < tessellation; t++) { rotationMatrix = Matrix.RotationAxis(tangents[i], step * t); rotated = Vector3.TransformCoordinates(normal, rotationMatrix).scaleInPlace(rad).add(path[i]); circlePath.push(rotated); } circlePath.push(circlePath[0]); circlePaths[index] = circlePath; index++; } // cap var capPath = function (nbPoints, pathIndex) { var pointCap = Array(); for (var i = 0; i < nbPoints; i++) { pointCap.push(path[pathIndex]); } return pointCap; }; switch (cap) { case BABYLON.Mesh.NO_CAP: break; case BABYLON.Mesh.CAP_START: circlePaths.unshift(capPath(tessellation + 1, 0)); break; case BABYLON.Mesh.CAP_END: circlePaths.push(capPath(tessellation + 1, path.length - 1)); break; case BABYLON.Mesh.CAP_ALL: circlePaths.unshift(capPath(tessellation + 1, 0)); circlePaths.push(capPath(tessellation + 1, path.length - 1)); break; default: break; } return circlePaths; }; if (tubeInstance) { // tube update var path3D = ((tubeInstance).path3D).update(path); var pathArray = tubePathArray(path, path3D,(tubeInstance).pathArray, radius,(tubeInstance).tessellation, radiusFunction,(tubeInstance).cap); tubeInstance = Mesh.CreateRibbon(null, pathArray, null, null, null, null, null, null, tubeInstance); return tubeInstance; } // tube creation var path3D = new Path3D(path); var newPathArray = new Array>(); cap = (cap < 0 || cap > 3) ? 0 : cap; var pathArray = tubePathArray(path, path3D, newPathArray, radius, tessellation, radiusFunction, cap); var tube = Mesh.CreateRibbon(name, pathArray, false, true, 0, scene, updatable, sideOrientation); (tube).pathArray = pathArray; (tube).path3D = path3D; (tube).tessellation = tessellation; (tube).cap = cap; return tube; } // Decals public static CreateDecal(name: string, sourceMesh: AbstractMesh, position: Vector3, normal: Vector3, size: Vector3, angle: number = 0) { var indices = sourceMesh.getIndices(); var positions = sourceMesh.getVerticesData(VertexBuffer.PositionKind); var normals = sourceMesh.getVerticesData(VertexBuffer.NormalKind); // Getting correct rotation if (!normal) { var target = new Vector3(0, 0, 1); var camera = sourceMesh.getScene().activeCamera; var cameraWorldTarget = Vector3.TransformCoordinates(target, camera.getWorldMatrix()); normal = camera.globalPosition.subtract(cameraWorldTarget); } var yaw = -Math.atan2(normal.z, normal.x) - Math.PI / 2; var len = Math.sqrt(normal.x * normal.x + normal.z * normal.z); var pitch = Math.atan2(normal.y, len); // Matrix var decalWorldMatrix = Matrix.RotationYawPitchRoll(yaw, pitch, angle).multiply(Matrix.Translation(position.x, position.y, position.z)); var inverseDecalWorldMatrix = Matrix.Invert(decalWorldMatrix); var meshWorldMatrix = sourceMesh.getWorldMatrix(); var transformMatrix = meshWorldMatrix.multiply(inverseDecalWorldMatrix); var vertexData = new VertexData(); vertexData.indices = []; vertexData.positions = []; vertexData.normals = []; vertexData.uvs = []; var currentVertexDataIndex = 0; var extractDecalVector3 = (indexId: number): PositionNormalVertex => { var vertexId = indices[indexId]; var result = new PositionNormalVertex(); result.position = new Vector3(positions[vertexId * 3], positions[vertexId * 3 + 1], positions[vertexId * 3 + 2]); // Send vector to decal local world result.position = Vector3.TransformCoordinates(result.position, transformMatrix); // Get normal result.normal = new Vector3(normals[vertexId * 3], normals[vertexId * 3 + 1], normals[vertexId * 3 + 2]); return result; } // Inspired by https://github.com/mrdoob/three.js/blob/eee231960882f6f3b6113405f524956145148146/examples/js/geometries/DecalGeometry.js var clip = (vertices: PositionNormalVertex[], axis: Vector3): PositionNormalVertex[]=> { if (vertices.length === 0) { return vertices; } var clipSize = 0.5 * Math.abs(Vector3.Dot(size, axis)); var clipVertices = (v0: PositionNormalVertex, v1: PositionNormalVertex): PositionNormalVertex => { var clipFactor = Vector3.GetClipFactor(v0.position, v1.position, axis, clipSize); return new PositionNormalVertex( Vector3.Lerp(v0.position, v1.position, clipFactor), Vector3.Lerp(v0.normal, v1.normal, clipFactor) ); } var result = new Array(); for (var index = 0; index < vertices.length; index += 3) { var v1Out: boolean; var v2Out: boolean; var v3Out: boolean; var total = 0; var nV1: PositionNormalVertex, nV2: PositionNormalVertex, nV3: PositionNormalVertex, nV4: PositionNormalVertex; var d1 = Vector3.Dot(vertices[index].position, axis) - clipSize; var d2 = Vector3.Dot(vertices[index + 1].position, axis) - clipSize; var d3 = Vector3.Dot(vertices[index + 2].position, axis) - clipSize; v1Out = d1 > 0; v2Out = d2 > 0; v3Out = d3 > 0; total = (v1Out ? 1 : 0) + (v2Out ? 1 : 0) + (v3Out ? 1 : 0); switch (total) { case 0: result.push(vertices[index]); result.push(vertices[index + 1]); result.push(vertices[index + 2]); break; case 1: if (v1Out) { nV1 = vertices[index + 1]; nV2 = vertices[index + 2]; nV3 = clipVertices(vertices[index], nV1); nV4 = clipVertices(vertices[index], nV2); } if (v2Out) { nV1 = vertices[index]; nV2 = vertices[index + 2]; nV3 = clipVertices(vertices[index + 1], nV1); nV4 = clipVertices(vertices[index + 1], nV2); result.push(nV3); result.push(nV2.clone()); result.push(nV1.clone()); result.push(nV2.clone()); result.push(nV3.clone()); result.push(nV4); break; } if (v3Out) { nV1 = vertices[index]; nV2 = vertices[index + 1]; nV3 = clipVertices(vertices[index + 2], nV1); nV4 = clipVertices(vertices[index + 2], nV2); } result.push(nV1.clone()); result.push(nV2.clone()); result.push(nV3); result.push(nV4); result.push(nV3.clone()); result.push(nV2.clone()); break; case 2: if (!v1Out) { nV1 = vertices[index].clone(); nV2 = clipVertices(nV1, vertices[index + 1]); nV3 = clipVertices(nV1, vertices[index + 2]); result.push(nV1); result.push(nV2); result.push(nV3); } if (!v2Out) { nV1 = vertices[index + 1].clone(); nV2 = clipVertices(nV1, vertices[index + 2]); nV3 = clipVertices(nV1, vertices[index]); result.push(nV1); result.push(nV2); result.push(nV3); } if (!v3Out) { nV1 = vertices[index + 2].clone(); nV2 = clipVertices(nV1, vertices[index]); nV3 = clipVertices(nV1, vertices[index + 1]); result.push(nV1); result.push(nV2); result.push(nV3); } break; case 3: break; } } return result; } for (var index = 0; index < indices.length; index += 3) { var faceVertices = new Array(); faceVertices.push(extractDecalVector3(index)); faceVertices.push(extractDecalVector3(index + 1)); faceVertices.push(extractDecalVector3(index + 2)); // Clip faceVertices = clip(faceVertices, new Vector3(1, 0, 0)); faceVertices = clip(faceVertices, new Vector3(-1, 0, 0)); faceVertices = clip(faceVertices, new Vector3(0, 1, 0)); faceVertices = clip(faceVertices, new Vector3(0, -1, 0)); faceVertices = clip(faceVertices, new Vector3(0, 0, 1)); faceVertices = clip(faceVertices, new Vector3(0, 0, -1)); if (faceVertices.length === 0) { continue; } // Add UVs and get back to world var localRotationMatrix = Matrix.RotationYawPitchRoll(yaw, pitch, angle); for (var vIndex = 0; vIndex < faceVertices.length; vIndex++) { var vertex = faceVertices[vIndex]; vertexData.indices.push(currentVertexDataIndex); vertex.position.toArray(vertexData.positions, currentVertexDataIndex * 3); vertex.normal.toArray(vertexData.normals, currentVertexDataIndex * 3); vertexData.uvs.push(0.5 + vertex.position.x / size.x); vertexData.uvs.push(0.5 + vertex.position.y / size.y); currentVertexDataIndex++; } } // Return mesh var decal = new Mesh(name, sourceMesh.getScene()); vertexData.applyToMesh(decal); decal.position = position.clone(); decal.rotation = new Vector3(pitch, yaw, angle); return decal; } // Tools public static MinMax(meshes: AbstractMesh[]): { min: Vector3; max: Vector3 } { var minVector: Vector3 = null; var maxVector: Vector3 = null; for (var i in meshes) { var mesh = meshes[i]; var boundingBox = mesh.getBoundingInfo().boundingBox; if (!minVector) { minVector = boundingBox.minimumWorld; maxVector = boundingBox.maximumWorld; continue; } minVector.MinimizeInPlace(boundingBox.minimumWorld); maxVector.MaximizeInPlace(boundingBox.maximumWorld); } return { min: minVector, max: maxVector }; } public static Center(meshesOrMinMaxVector): Vector3 { var minMaxVector = meshesOrMinMaxVector.min !== undefined ? meshesOrMinMaxVector : Mesh.MinMax(meshesOrMinMaxVector); return Vector3.Center(minMaxVector.min, minMaxVector.max); } /** * Merge the array of meshes into a single mesh for performance reasons. * @param {Array} meshes - The vertices source. They should all be of the same material. Entries can empty * @param {boolean} disposeSource - When true (default), dispose of the vertices from the source meshes * @param {boolean} allow32BitsIndices - When the sum of the vertices > 64k, this must be set to true. * @param {Mesh} meshSubclass - When set, vertices inserted into this Mesh. Meshes can then be merged into a Mesh sub-class. */ public static MergeMeshes(meshes: Array, disposeSource = true, allow32BitsIndices?: boolean, meshSubclass?: Mesh): Mesh { if (!allow32BitsIndices) { var totalVertices = 0; // Counting vertices for (var index = 0; index < meshes.length; index++) { if (meshes[index]) { totalVertices += meshes[index].getTotalVertices(); if (totalVertices > 65536) { Tools.Warn("Cannot merge meshes because resulting mesh will have more than 65536 vertices. Please use allow32BitsIndices = true to use 32 bits indices"); return null; } } } } // Merge var vertexData: VertexData; var otherVertexData: VertexData; var source: Mesh; for (index = 0; index < meshes.length; index++) { if (meshes[index]) { otherVertexData = VertexData.ExtractFromMesh(meshes[index], true); otherVertexData.transform(meshes[index].getWorldMatrix()); if (vertexData) { vertexData.merge(otherVertexData); } else { vertexData = otherVertexData; source = meshes[index]; } } } if (!meshSubclass) { meshSubclass = new Mesh(source.name + "_merged", source.getScene()); } vertexData.applyToMesh(meshSubclass); // Setting properties meshSubclass.material = source.material; meshSubclass.checkCollisions = source.checkCollisions; // Cleaning if (disposeSource) { for (index = 0; index < meshes.length; index++) { if (meshes[index]) { meshes[index].dispose(); } } } return meshSubclass; } } }