precision mediump float; // Constants #define RECIPROCAL_PI2 0.15915494 #define FRESNEL_MAXIMUM_ON_ROUGH 0.25 uniform vec3 vEyePosition; uniform vec3 vAmbientColor; uniform vec4 vAlbedoColor; uniform vec3 vReflectionColor; // CUSTOM CONTROLS uniform vec4 vLightingIntensity; uniform vec4 vCameraInfos; #ifdef OVERLOADEDVALUES uniform vec4 vOverloadedIntensity; uniform vec3 vOverloadedAmbient; uniform vec3 vOverloadedAlbedo; uniform vec3 vOverloadedReflectivity; uniform vec3 vOverloadedEmissive; uniform vec3 vOverloadedReflection; uniform vec3 vOverloadedMicroSurface; #endif #ifdef OVERLOADEDSHADOWVALUES uniform vec4 vOverloadedShadowIntensity; #endif // PBR CUSTOM CONSTANTS const float kPi = 3.1415926535897932384626433832795; // PBR HELPER METHODS float Square(float value) { return value * value; } float getLuminance(vec3 color) { return clamp(dot(color, vec3(0.2126, 0.7152, 0.0722)), 0., 1.); } float convertRoughnessToAverageSlope(float roughness) { // Calculate AlphaG as square of roughness; add epsilon to avoid numerical issues const float kMinimumVariance = 0.0005; float alphaG = Square(roughness) + kMinimumVariance; return alphaG; } // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007 float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG) { float tanSquared = (1.0 - dot * dot) / (dot * dot); return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared)); } float smithVisibilityG_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG) { return smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG); } // Trowbridge-Reitz (GGX) // Generalised Trowbridge-Reitz with gamma power=2.0 float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG) { // Note: alphaG is average slope (gradient) of the normals in slope-space. // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have // a tangent (gradient) closer to the macrosurface than this slope. float a2 = Square(alphaG); float d = NdotH * NdotH * (a2 - 1.0) + 1.0; return a2 / (kPi * d * d); } vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90) { return reflectance0 + (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotH, 0., 1.), 5.0); } vec3 FresnelSchlickEnvironmentGGX(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness) { // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness); return reflectance0 + weight * (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotN, 0., 1.), 5.0); } // Cook Torance Specular computation. vec3 computeSpecularTerm(float NdotH, float NdotL, float NdotV, float VdotH, float roughness, vec3 specularColor) { float alphaG = convertRoughnessToAverageSlope(roughness); float distribution = normalDistributionFunction_TrowbridgeReitzGGX(NdotH, alphaG); float visibility = smithVisibilityG_TrowbridgeReitzGGX_Walter(NdotL, NdotV, alphaG); visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integated in viibility to avoid issues when visibility function changes. vec3 fresnel = fresnelSchlickGGX(VdotH, specularColor, vec3(1., 1., 1.)); float specTerm = max(0., visibility * distribution) * NdotL; return fresnel * specTerm; } float computeDiffuseTerm(float NdotL, float NdotV, float VdotH, float roughness) { // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of // of general coupled diffuse/specular models e.g. Ashikhmin Shirley. float diffuseFresnelNV = pow(clamp(1.0 - NdotL, 0.000001, 1.), 5.0); float diffuseFresnelNL = pow(clamp(1.0 - NdotV, 0.000001, 1.), 5.0); float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness; float diffuseFresnelTerm = (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) * (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV); return diffuseFresnelTerm * NdotL; } float computeDefaultMicroSurface(float microSurface, vec3 reflectivityColor) { if (microSurface == 0.) { float kReflectivityNoAlphaWorkflow_SmoothnessMax = 0.95; float reflectivityLuminance = getLuminance(reflectivityColor); float reflectivityLuma = sqrt(reflectivityLuminance); microSurface = reflectivityLuma * kReflectivityNoAlphaWorkflow_SmoothnessMax; } return microSurface; } vec3 toLinearSpace(vec3 color) { return vec3(pow(color.r, 2.2), pow(color.g, 2.2), pow(color.b, 2.2)); } vec3 toGammaSpace(vec3 color) { return vec3(pow(color.r, 1.0 / 2.2), pow(color.g, 1.0 / 2.2), pow(color.b, 1.0 / 2.2)); } #ifdef CAMERATONEMAP vec3 toneMaps(vec3 color) { color = max(color, 0.0); // TONE MAPPING / EXPOSURE color.rgb = color.rgb * vCameraInfos.x; float tuning = 1.5; // TODO: sync up so e.g. 18% greys are matched to exposure appropriately vec3 tonemapped = 1.0 - exp2(-color.rgb * tuning); // simple local photographic tonemapper color.rgb = mix(color.rgb, tonemapped, 1.0); return color; } #endif #ifdef CAMERACONTRAST vec4 contrasts(vec4 color) { color = clamp(color, 0.0, 1.0); vec3 resultHighContrast = color.rgb * color.rgb * (3.0 - 2.0 * color.rgb); float contrast = vCameraInfos.y; if (contrast < 1.0) { // Decrease contrast: interpolate towards zero-contrast image (flat grey) color.rgb = mix(vec3(0.5, 0.5, 0.5), color.rgb, contrast); } else { // Increase contrast: apply simple shoulder-toe high contrast curve color.rgb = mix(color.rgb, resultHighContrast, contrast - 1.0); } return color; } #endif // END PBR HELPER METHODS uniform vec4 vReflectivityColor; uniform vec3 vEmissiveColor; // Input varying vec3 vPositionW; #ifdef NORMAL varying vec3 vNormalW; #endif #ifdef VERTEXCOLOR varying vec4 vColor; #endif // Lights #include #include #include #include // Samplers #ifdef ALBEDO varying vec2 vAlbedoUV; uniform sampler2D albedoSampler; uniform vec2 vAlbedoInfos; #endif #ifdef AMBIENT varying vec2 vAmbientUV; uniform sampler2D ambientSampler; uniform vec2 vAmbientInfos; #endif #ifdef OPACITY varying vec2 vOpacityUV; uniform sampler2D opacitySampler; uniform vec2 vOpacityInfos; #endif #ifdef EMISSIVE varying vec2 vEmissiveUV; uniform vec2 vEmissiveInfos; uniform sampler2D emissiveSampler; #endif #ifdef LIGHTMAP varying vec2 vLightmapUV; uniform vec2 vLightmapInfos; uniform sampler2D lightmapSampler; #endif #if defined(REFLECTIVITY) varying vec2 vReflectivityUV; uniform vec2 vReflectivityInfos; uniform sampler2D reflectivitySampler; #endif #include // Light Computing struct lightingInfo { vec3 diffuse; #ifdef SPECULARTERM vec3 specular; #endif }; lightingInfo computeLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) { lightingInfo result; vec3 lightVectorW; float attenuation = 1.0; if (lightData.w == 0.) { vec3 direction = lightData.xyz - vPositionW; attenuation = max(0., 1.0 - length(direction) / range); lightVectorW = normalize(direction); } else { lightVectorW = normalize(-lightData.xyz); } // diffuse vec3 H = normalize(viewDirectionW + lightVectorW); float NdotL = max(0.00000000001, dot(vNormal, lightVectorW)); float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H)); float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness); result.diffuse = diffuseTerm * diffuseColor * attenuation; #ifdef SPECULARTERM // Specular float NdotH = max(0.00000000001, dot(vNormal, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * specularColor * attenuation; #endif return result; } lightingInfo computeSpotLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec4 lightDirection, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) { lightingInfo result; vec3 direction = lightData.xyz - vPositionW; vec3 lightVectorW = normalize(direction); float attenuation = max(0., 1.0 - length(direction) / range); // diffuse float cosAngle = max(0.0000001, dot(-lightDirection.xyz, lightVectorW)); float spotAtten = 0.0; if (cosAngle >= lightDirection.w) { cosAngle = max(0., pow(cosAngle, lightData.w)); spotAtten = clamp((cosAngle - lightDirection.w) / (1. - cosAngle), 0.0, 1.0); // Diffuse vec3 H = normalize(viewDirectionW - lightDirection.xyz); float NdotL = max(0.00000000001, dot(vNormal, -lightDirection.xyz)); float VdotH = clamp(dot(viewDirectionW, H), 0.00000000001, 1.0); float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness); result.diffuse = diffuseTerm * diffuseColor * attenuation * spotAtten; #ifdef SPECULARTERM // Specular float NdotH = max(0.00000000001, dot(vNormal, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * specularColor * attenuation * spotAtten; #endif return result; } result.diffuse = vec3(0.); #ifdef SPECULARTERM result.specular = vec3(0.); #endif return result; } lightingInfo computeHemisphericLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, vec3 groundColor, float roughness, float NdotV) { lightingInfo result; vec3 lightVectorW = normalize(lightData.xyz); // Diffuse float ndl = dot(vNormal, lightData.xyz) * 0.5 + 0.5; result.diffuse = mix(groundColor, diffuseColor, ndl); #ifdef SPECULARTERM // Specular vec3 H = normalize(viewDirectionW + lightVectorW); float NdotH = max(0.00000000001, dot(vNormal, H)); float NdotL = max(0.00000000001, ndl); float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * specularColor; #endif return result; } void main(void) { #include vec3 viewDirectionW = normalize(vEyePosition - vPositionW); // Base color vec4 baseColor = vec4(1., 1., 1., 1.); vec3 diffuseColor = vAlbedoColor.rgb; // Alpha float alpha = vAlbedoColor.a; #ifdef ALBEDO baseColor = texture2D(diffuseSampler, vAlbedoUV); baseColor = vec4(toLinearSpace(baseColor.rgb), baseColor.a); #ifdef ALPHATEST if (baseColor.a < 0.4) discard; #endif #ifdef ALPHAFROMALBEDO alpha *= baseColor.a; #endif baseColor.rgb *= vAlbedoInfos.y; #endif #ifdef VERTEXCOLOR baseColor.rgb *= vColor.rgb; #endif #ifdef OVERLOADEDVALUES baseColor.rgb = mix(baseColor.rgb, vOverloadedAlbedo, vOverloadedIntensity.y); albedoColor.rgb = mix(albedoColor.rgb, vOverloadedAlbedo, vOverloadedIntensity.y); #endif // Bump #ifdef NORMAL vec3 normalW = normalize(vNormalW); #else vec3 normalW = vec3(1.0, 1.0, 1.0); #endif // Ambient color vec3 baseAmbientColor = vec3(1., 1., 1.); #ifdef AMBIENT baseAmbientColor = texture2D(ambientSampler, vAmbientUV).rgb * vAmbientInfos.y; #ifdef OVERLOADEDVALUES baseAmbientColor.rgb = mix(baseAmbientColor.rgb, vOverloadedAmbient, vOverloadedIntensity.x); #endif #endif // Reflectivity map float microSurface = vReflectivityColor.a; vec3 reflectivityColor = vReflectivityColor.rgb; #ifdef OVERLOADEDVALUES reflectivityColor.rgb = mix(reflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z); #endif #ifdef REFLECTIVITY vec4 reflectivityMapColor = texture2D(reflectivitySampler, vReflectivityUV); reflectivityColor = toLinearSpace(reflectivityMapColor.rgb); #ifdef OVERLOADEDVALUES reflectivityColor.rgb = mix(reflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z); #endif #ifdef MICROSURFACEFROMREFLECTIVITYMAP microSurface = reflectivityMapColor.a; #else microSurface = computeDefaultMicroSurface(microSurface, reflectivityColor); #endif #endif #ifdef OVERLOADEDVALUES microSurface = mix(microSurface, vOverloadedMicroSurface.x, vOverloadedMicroSurface.y); #endif // Apply Energy Conservation taking in account the environment level only if the environment is present. float reflectance = max(max(reflectivityColor.r, reflectivityColor.g), reflectivityColor.b); baseColor.rgb = (1. - reflectance) * baseColor.rgb; // Compute Specular Fresnel + Reflectance. float NdotV = max(0.00000000001, dot(normalW, viewDirectionW)); // Adapt microSurface. microSurface = clamp(microSurface, 0., 1.) * 0.98; // Call rough to not conflict with previous one. float rough = clamp(1. - microSurface, 0.000001, 1.0); // Lighting vec3 diffuseBase = vec3(0., 0., 0.); #ifdef OVERLOADEDSHADOWVALUES vec3 shadowedOnlyDiffuseBase = vec3(1., 1., 1.); #endif #ifdef SPECULARTERM vec3 specularBase = vec3(0., 0., 0.); #endif float shadow = 1.; #ifdef LIGHT0 #ifndef SPECULARTERM vec3 vLightSpecular0 = vec3(0.0); #endif #ifdef SPOTLIGHT0 lightingInfo info = computeSpotLighting(viewDirectionW, normalW, vLightData0, vLightDirection0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV); #endif #ifdef HEMILIGHT0 lightingInfo info = computeHemisphericLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightGround0, rough, NdotV); #endif #if defined(POINTLIGHT0) || defined(DIRLIGHT0) lightingInfo info = computeLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV); #endif shadow = 1.; diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif #ifdef LIGHT1 #ifndef SPECULARTERM vec3 vLightSpecular1 = vec3(0.0); #endif #ifdef SPOTLIGHT1 info = computeSpotLighting(viewDirectionW, normalW, vLightData1, vLightDirection1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV); #endif #ifdef HEMILIGHT1 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightGround1, rough, NdotV); #endif #if defined(POINTLIGHT1) || defined(DIRLIGHT1) info = computeLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV); #endif shadow = 1.; diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif #ifdef LIGHT2 #ifndef SPECULARTERM vec3 vLightSpecular2 = vec3(0.0); #endif #ifdef SPOTLIGHT2 info = computeSpotLighting(viewDirectionW, normalW, vLightData2, vLightDirection2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV); #endif #ifdef HEMILIGHT2 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightGround2, rough, NdotV); #endif #if defined(POINTLIGHT2) || defined(DIRLIGHT2) info = computeLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV); #endif shadow = 1.; diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif #ifdef LIGHT3 #ifndef SPECULARTERM vec3 vLightSpecular3 = vec3(0.0); #endif #ifdef SPOTLIGHT3 info = computeSpotLighting(viewDirectionW, normalW, vLightData3, vLightDirection3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV); #endif #ifdef HEMILIGHT3 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightGround3, rough, NdotV); #endif #if defined(POINTLIGHT3) || defined(DIRLIGHT3) info = computeLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV); #endif shadow = 1.; diffuseBase += info.diffuse * shadow; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase *= shadow; #endif #ifdef SPECULARTERM specularBase += info.specular * shadow; #endif #endif // Reflection vec3 reflectionColor = vReflectionColor.rgb; vec3 ambientReflectionColor = vReflectionColor.rgb; reflectionColor *= vLightingIntensity.z; ambientReflectionColor *= vLightingIntensity.z; // Compute reflection reflectivity fresnel vec3 reflectivityEnvironmentR0 = reflectivityColor.rgb; vec3 reflectivityEnvironmentR90 = vec3(1.0, 1.0, 1.0); vec3 reflectivityEnvironmentReflectanceViewer = FresnelSchlickEnvironmentGGX(clamp(NdotV, 0., 1.), reflectivityEnvironmentR0, reflectivityEnvironmentR90, sqrt(microSurface)); reflectionColor *= reflectivityEnvironmentReflectanceViewer; #ifdef OVERLOADEDVALUES ambientReflectionColor = mix(ambientReflectionColor, vOverloadedReflection, vOverloadedMicroSurface.z); reflectionColor = mix(reflectionColor, vOverloadedReflection, vOverloadedMicroSurface.z); #endif #ifdef OPACITY vec4 opacityMap = texture2D(opacitySampler, vOpacityUV); #ifdef OPACITYRGB opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11); alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y; #else alpha *= opacityMap.a * vOpacityInfos.y; #endif #endif #ifdef VERTEXALPHA alpha *= vColor.a; #endif // Emissive vec3 emissiveColor = vEmissiveColor; #ifdef EMISSIVE vec3 emissiveColorTex = texture2D(emissiveSampler, vEmissiveUV).rgb; emissiveColor = toLinearSpace(emissiveColorTex.rgb) * emissiveColor * vEmissiveInfos.y; #endif #ifdef OVERLOADEDVALUES emissiveColor = mix(emissiveColor, vOverloadedEmissive, vOverloadedIntensity.w); #endif // Composition #ifdef EMISSIVEASILLUMINATION vec3 finalDiffuse = max(diffuseBase * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase = max(shadowedOnlyDiffuseBase * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #endif #else #ifdef LINKEMISSIVEWITHALBEDO vec3 finalDiffuse = max((diffuseBase + emissiveColor) * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase = max((shadowedOnlyDiffuseBase + emissiveColor) * albedoColor + vAmbientColor, 0.0) * baseColor.rgb; #endif #else vec3 finalDiffuse = max(diffuseBase * albedoColor + emissiveColor + vAmbientColor, 0.0) * baseColor.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyDiffuseBase = max(shadowedOnlyDiffuseBase * albedoColor + emissiveColor + vAmbientColor, 0.0) * baseColor.rgb; #endif #endif #endif #ifdef OVERLOADEDSHADOWVALUES finalDiffuse = mix(finalDiffuse, shadowedOnlyDiffuseBase, (1.0 - vOverloadedShadowIntensity.y)); #endif // diffuse lighting from environment 0.2 replaces Harmonic... // Ambient Reflection already includes the environment intensity. finalDiffuse += baseColor.rgb * ambientReflectionColor * 0.2; #ifdef SPECULARTERM vec3 finalSpecular = specularBase * reflectivityColor * vLightingIntensity.w; #else vec3 finalSpecular = vec3(0.0); #endif #ifdef SPECULAROVERALPHA alpha = clamp(alpha + dot(finalSpecular, vec3(0.3, 0.59, 0.11)), 0., 1.); #endif // Composition // Reflection already includes the environment intensity. #ifdef EMISSIVEASILLUMINATION vec4 color = vec4(finalDiffuse * baseAmbientColor * vLightingIntensity.x + finalSpecular * vLightingIntensity.x + reflectionColor + emissiveColor * vLightingIntensity.y, alpha); #else vec4 color = vec4(finalDiffuse * baseAmbientColor * vLightingIntensity.x + finalSpecular * vLightingIntensity.x + reflectionColor, alpha); #endif color = max(color, 0.0); #ifdef CAMERATONEMAP color.rgb = toneMaps(color.rgb); #endif color.rgb = toGammaSpace(color.rgb); #ifdef CAMERACONTRAST color = contrasts(color); #endif gl_FragColor = color; }