var __extends = (this && this.__extends) || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
function __() { this.constructor = d; }
d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
};
var BABYLON;
(function (BABYLON) {
var _InstancesBatch = (function () {
function _InstancesBatch() {
this.mustReturn = false;
this.visibleInstances = new Array();
this.renderSelf = new Array();
}
return _InstancesBatch;
}());
BABYLON._InstancesBatch = _InstancesBatch;
var Mesh = (function (_super) {
__extends(Mesh, _super);
/**
* @constructor
* @param {string} name The value used by scene.getMeshByName() to do a lookup.
* @param {Scene} scene The scene to add this mesh to.
* @param {Node} parent The parent of this mesh, if it has one
* @param {Mesh} source An optional Mesh from which geometry is shared, cloned.
* @param {boolean} doNotCloneChildren When cloning, skip cloning child meshes of source, default False.
* When false, achieved by calling a clone(), also passing False.
* This will make creation of children, recursive.
*/
function Mesh(name, scene, parent, source, doNotCloneChildren, clonePhysicsImpostor) {
if (parent === void 0) { parent = null; }
if (clonePhysicsImpostor === void 0) { clonePhysicsImpostor = true; }
_super.call(this, name, scene);
// Events
/**
* An event triggered before rendering the mesh
* @type {BABYLON.Observable}
*/
this.onBeforeRenderObservable = new BABYLON.Observable();
/**
* An event triggered after rendering the mesh
* @type {BABYLON.Observable}
*/
this.onAfterRenderObservable = new BABYLON.Observable();
/**
* An event triggered before drawing the mesh
* @type {BABYLON.Observable}
*/
this.onBeforeDrawObservable = new BABYLON.Observable();
// Members
this.delayLoadState = BABYLON.Engine.DELAYLOADSTATE_NONE;
this.instances = new Array();
this._LODLevels = new Array();
this._visibleInstances = {};
this._renderIdForInstances = new Array();
this._batchCache = new _InstancesBatch();
this._instancesBufferSize = 32 * 16 * 4; // let's start with a maximum of 32 instances
this._sideOrientation = Mesh._DEFAULTSIDE;
this._areNormalsFrozen = false; // Will be used by ribbons mainly
if (source) {
// Geometry
if (source._geometry) {
source._geometry.applyToMesh(this);
}
// Deep copy
BABYLON.Tools.DeepCopy(source, this, ["name", "material", "skeleton", "instances"], ["_poseMatrix"]);
// Pivot
this.setPivotMatrix(source.getPivotMatrix());
this.id = name + "." + source.id;
// Material
this.material = source.material;
var index;
if (!doNotCloneChildren) {
// Children
for (index = 0; index < scene.meshes.length; index++) {
var mesh = scene.meshes[index];
if (mesh.parent === source) {
// doNotCloneChildren is always going to be False
var newChild = mesh.clone(name + "." + mesh.name, this, doNotCloneChildren);
}
}
}
// Physics clone
var physicsEngine = this.getScene().getPhysicsEngine();
if (clonePhysicsImpostor && physicsEngine) {
var impostor = physicsEngine.getImpostorForPhysicsObject(source);
if (impostor) {
this.physicsImpostor = impostor.clone(this);
}
}
// Particles
for (index = 0; index < scene.particleSystems.length; index++) {
var system = scene.particleSystems[index];
if (system.emitter === source) {
system.clone(system.name, this);
}
}
this.computeWorldMatrix(true);
}
// Parent
if (parent !== null) {
this.parent = parent;
}
}
Object.defineProperty(Mesh, "FRONTSIDE", {
/**
* Mesh side orientation : usually the external or front surface
*/
get: function () {
return Mesh._FRONTSIDE;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "BACKSIDE", {
/**
* Mesh side orientation : usually the internal or back surface
*/
get: function () {
return Mesh._BACKSIDE;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "DOUBLESIDE", {
/**
* Mesh side orientation : both internal and external or front and back surfaces
*/
get: function () {
return Mesh._DOUBLESIDE;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "DEFAULTSIDE", {
/**
* Mesh side orientation : by default, `FRONTSIDE`
*/
get: function () {
return Mesh._DEFAULTSIDE;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "NO_CAP", {
/**
* Mesh cap setting : no cap
*/
get: function () {
return Mesh._NO_CAP;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "CAP_START", {
/**
* Mesh cap setting : one cap at the beginning of the mesh
*/
get: function () {
return Mesh._CAP_START;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "CAP_END", {
/**
* Mesh cap setting : one cap at the end of the mesh
*/
get: function () {
return Mesh._CAP_END;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh, "CAP_ALL", {
/**
* Mesh cap setting : two caps, one at the beginning and one at the end of the mesh
*/
get: function () {
return Mesh._CAP_ALL;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh.prototype, "onBeforeDraw", {
set: function (callback) {
if (this._onBeforeDrawObserver) {
this.onBeforeDrawObservable.remove(this._onBeforeDrawObserver);
}
this._onBeforeDrawObserver = this.onBeforeDrawObservable.add(callback);
},
enumerable: true,
configurable: true
});
// Methods
/**
* @param {boolean} fullDetails - support for multiple levels of logging within scene loading
*/
Mesh.prototype.toString = function (fullDetails) {
var ret = _super.prototype.toString.call(this, fullDetails);
ret += ", n vertices: " + this.getTotalVertices();
ret += ", parent: " + (this._waitingParentId ? this._waitingParentId : (this.parent ? this.parent.name : "NONE"));
if (this.animations) {
for (var i = 0; i < this.animations.length; i++) {
ret += ", animation[0]: " + this.animations[i].toString(fullDetails);
}
}
if (fullDetails) {
ret += ", flat shading: " + (this._geometry ? (this.getVerticesData(BABYLON.VertexBuffer.PositionKind).length / 3 === this.getIndices().length ? "YES" : "NO") : "UNKNOWN");
}
return ret;
};
Object.defineProperty(Mesh.prototype, "hasLODLevels", {
get: function () {
return this._LODLevels.length > 0;
},
enumerable: true,
configurable: true
});
Mesh.prototype._sortLODLevels = function () {
this._LODLevels.sort(function (a, b) {
if (a.distance < b.distance) {
return 1;
}
if (a.distance > b.distance) {
return -1;
}
return 0;
});
};
/**
* Add a mesh as LOD level triggered at the given distance.
* tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD
* @param {number} distance The distance from the center of the object to show this level
* @param {Mesh} mesh The mesh to be added as LOD level
* @return {Mesh} This mesh (for chaining)
*/
Mesh.prototype.addLODLevel = function (distance, mesh) {
if (mesh && mesh._masterMesh) {
BABYLON.Tools.Warn("You cannot use a mesh as LOD level twice");
return this;
}
var level = new BABYLON.Internals.MeshLODLevel(distance, mesh);
this._LODLevels.push(level);
if (mesh) {
mesh._masterMesh = this;
}
this._sortLODLevels();
return this;
};
/**
* Returns the LOD level mesh at the passed distance or null if not found.
* It is related to the method `addLODLevel(distance, mesh)`.
* tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD
*/
Mesh.prototype.getLODLevelAtDistance = function (distance) {
for (var index = 0; index < this._LODLevels.length; index++) {
var level = this._LODLevels[index];
if (level.distance === distance) {
return level.mesh;
}
}
return null;
};
/**
* Remove a mesh from the LOD array
* tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD
* @param {Mesh} mesh The mesh to be removed.
* @return {Mesh} This mesh (for chaining)
*/
Mesh.prototype.removeLODLevel = function (mesh) {
for (var index = 0; index < this._LODLevels.length; index++) {
if (this._LODLevels[index].mesh === mesh) {
this._LODLevels.splice(index, 1);
if (mesh) {
mesh._masterMesh = null;
}
}
}
this._sortLODLevels();
return this;
};
/**
* Returns the registered LOD mesh distant from the parameter `camera` position if any, else returns the current mesh.
* tuto : http://doc.babylonjs.com/tutorials/How_to_use_LOD
*/
Mesh.prototype.getLOD = function (camera, boundingSphere) {
if (!this._LODLevels || this._LODLevels.length === 0) {
return this;
}
var distanceToCamera = (boundingSphere ? boundingSphere : this.getBoundingInfo().boundingSphere).centerWorld.subtract(camera.globalPosition).length();
if (this._LODLevels[this._LODLevels.length - 1].distance > distanceToCamera) {
if (this.onLODLevelSelection) {
this.onLODLevelSelection(distanceToCamera, this, this._LODLevels[this._LODLevels.length - 1].mesh);
}
return this;
}
for (var index = 0; index < this._LODLevels.length; index++) {
var level = this._LODLevels[index];
if (level.distance < distanceToCamera) {
if (level.mesh) {
level.mesh._preActivate();
level.mesh._updateSubMeshesBoundingInfo(this.worldMatrixFromCache);
}
if (this.onLODLevelSelection) {
this.onLODLevelSelection(distanceToCamera, this, level.mesh);
}
return level.mesh;
}
}
if (this.onLODLevelSelection) {
this.onLODLevelSelection(distanceToCamera, this, this);
}
return this;
};
Object.defineProperty(Mesh.prototype, "geometry", {
/**
* Returns the mesh internal Geometry object.
*/
get: function () {
return this._geometry;
},
enumerable: true,
configurable: true
});
/**
* Returns a positive integer : the total number of vertices within the mesh geometry or zero if the mesh has no geometry.
*/
Mesh.prototype.getTotalVertices = function () {
if (!this._geometry) {
return 0;
}
return this._geometry.getTotalVertices();
};
/**
* Returns an array of integers or floats, or a Float32Array, depending on the requested `kind` (positions, indices, normals, etc).
* If `copywhenShared` is true (default false) and if the mesh geometry is shared among some other meshes, the returned array is a copy of the internal one.
* Returns null if the mesh has no geometry or no vertex buffer.
* Possible `kind` values :
* - BABYLON.VertexBuffer.PositionKind
* - BABYLON.VertexBuffer.UVKind
* - BABYLON.VertexBuffer.UV2Kind
* - BABYLON.VertexBuffer.UV3Kind
* - BABYLON.VertexBuffer.UV4Kind
* - BABYLON.VertexBuffer.UV5Kind
* - BABYLON.VertexBuffer.UV6Kind
* - BABYLON.VertexBuffer.ColorKind
* - BABYLON.VertexBuffer.MatricesIndicesKind
* - BABYLON.VertexBuffer.MatricesIndicesExtraKind
* - BABYLON.VertexBuffer.MatricesWeightsKind
* - BABYLON.VertexBuffer.MatricesWeightsExtraKind
*/
Mesh.prototype.getVerticesData = function (kind, copyWhenShared) {
if (!this._geometry) {
return null;
}
return this._geometry.getVerticesData(kind, copyWhenShared);
};
/**
* Returns the mesh VertexBuffer object from the requested `kind` : positions, indices, normals, etc.
* Returns `undefined` if the mesh has no geometry.
* Possible `kind` values :
* - BABYLON.VertexBuffer.PositionKind
* - BABYLON.VertexBuffer.UVKind
* - BABYLON.VertexBuffer.UV2Kind
* - BABYLON.VertexBuffer.UV3Kind
* - BABYLON.VertexBuffer.UV4Kind
* - BABYLON.VertexBuffer.UV5Kind
* - BABYLON.VertexBuffer.UV6Kind
* - BABYLON.VertexBuffer.ColorKind
* - BABYLON.VertexBuffer.MatricesIndicesKind
* - BABYLON.VertexBuffer.MatricesIndicesExtraKind
* - BABYLON.VertexBuffer.MatricesWeightsKind
* - BABYLON.VertexBuffer.MatricesWeightsExtraKind
*/
Mesh.prototype.getVertexBuffer = function (kind) {
if (!this._geometry) {
return undefined;
}
return this._geometry.getVertexBuffer(kind);
};
/**
* Returns a boolean depending on the existence of the Vertex Data for the requested `kind`.
* Possible `kind` values :
* - BABYLON.VertexBuffer.PositionKind
* - BABYLON.VertexBuffer.UVKind
* - BABYLON.VertexBuffer.UV2Kind
* - BABYLON.VertexBuffer.UV3Kind
* - BABYLON.VertexBuffer.UV4Kind
* - BABYLON.VertexBuffer.UV5Kind
* - BABYLON.VertexBuffer.UV6Kind
* - BABYLON.VertexBuffer.ColorKind
* - BABYLON.VertexBuffer.MatricesIndicesKind
* - BABYLON.VertexBuffer.MatricesIndicesExtraKind
* - BABYLON.VertexBuffer.MatricesWeightsKind
* - BABYLON.VertexBuffer.MatricesWeightsExtraKind
*/
Mesh.prototype.isVerticesDataPresent = function (kind) {
if (!this._geometry) {
if (this._delayInfo) {
return this._delayInfo.indexOf(kind) !== -1;
}
return false;
}
return this._geometry.isVerticesDataPresent(kind);
};
/**
* Returns a string : the list of existing `kinds` of Vertex Data for this mesh.
* Possible `kind` values :
* - BABYLON.VertexBuffer.PositionKind
* - BABYLON.VertexBuffer.UVKind
* - BABYLON.VertexBuffer.UV2Kind
* - BABYLON.VertexBuffer.UV3Kind
* - BABYLON.VertexBuffer.UV4Kind
* - BABYLON.VertexBuffer.UV5Kind
* - BABYLON.VertexBuffer.UV6Kind
* - BABYLON.VertexBuffer.ColorKind
* - BABYLON.VertexBuffer.MatricesIndicesKind
* - BABYLON.VertexBuffer.MatricesIndicesExtraKind
* - BABYLON.VertexBuffer.MatricesWeightsKind
* - BABYLON.VertexBuffer.MatricesWeightsExtraKind
*/
Mesh.prototype.getVerticesDataKinds = function () {
if (!this._geometry) {
var result = [];
if (this._delayInfo) {
this._delayInfo.forEach(function (kind, index, array) {
result.push(kind);
});
}
return result;
}
return this._geometry.getVerticesDataKinds();
};
/**
* Returns a positive integer : the total number of indices in this mesh geometry.
* Returns zero if the mesh has no geometry.
*/
Mesh.prototype.getTotalIndices = function () {
if (!this._geometry) {
return 0;
}
return this._geometry.getTotalIndices();
};
/**
* Returns an array of integers or a Int32Array populated with the mesh indices.
* If the parameter `copyWhenShared` is true (default false) and and if the mesh geometry is shared among some other meshes, the returned array is a copy of the internal one.
* Returns an empty array if the mesh has no geometry.
*/
Mesh.prototype.getIndices = function (copyWhenShared) {
if (!this._geometry) {
return [];
}
return this._geometry.getIndices(copyWhenShared);
};
Object.defineProperty(Mesh.prototype, "isBlocked", {
get: function () {
return this._masterMesh !== null && this._masterMesh !== undefined;
},
enumerable: true,
configurable: true
});
/**
* Boolean : true once the mesh is ready after all the delayed process (loading, etc) are complete.
*/
Mesh.prototype.isReady = function () {
if (this.delayLoadState === BABYLON.Engine.DELAYLOADSTATE_LOADING) {
return false;
}
return _super.prototype.isReady.call(this);
};
/**
* Boolean : true if the mesh has been disposed.
*/
Mesh.prototype.isDisposed = function () {
return this._isDisposed;
};
Object.defineProperty(Mesh.prototype, "sideOrientation", {
get: function () {
return this._sideOrientation;
},
/**
* Sets the mesh side orientation : BABYLON.Mesh.FRONTSIDE, BABYLON.Mesh.BACKSIDE, BABYLON.Mesh.DOUBLESIDE or BABYLON.Mesh.DEFAULTSIDE
* tuto : http://doc.babylonjs.com/tutorials/Discover_Basic_Elements#side-orientation
*/
set: function (sideO) {
this._sideOrientation = sideO;
},
enumerable: true,
configurable: true
});
Object.defineProperty(Mesh.prototype, "areNormalsFrozen", {
/**
* Boolean : true if the normals aren't to be recomputed on next mesh `positions` array update.
* This property is pertinent only for updatable parametric shapes.
*/
get: function () {
return this._areNormalsFrozen;
},
enumerable: true,
configurable: true
});
/**
* This function affects parametric shapes on vertex position update only : ribbons, tubes, etc.
* It has no effect at all on other shapes.
* It prevents the mesh normals from being recomputed on next `positions` array update.
*/
Mesh.prototype.freezeNormals = function () {
this._areNormalsFrozen = true;
};
/**
* This function affects parametric shapes on vertex position update only : ribbons, tubes, etc.
* It has no effect at all on other shapes.
* It reactivates the mesh normals computation if it was previously frozen.
*/
Mesh.prototype.unfreezeNormals = function () {
this._areNormalsFrozen = false;
};
Object.defineProperty(Mesh.prototype, "overridenInstanceCount", {
/**
* Overrides instance count. Only applicable when custom instanced InterleavedVertexBuffer are used rather than InstancedMeshs
*/
set: function (count) {
this._overridenInstanceCount = count;
},
enumerable: true,
configurable: true
});
// Methods
Mesh.prototype._preActivate = function () {
var sceneRenderId = this.getScene().getRenderId();
if (this._preActivateId === sceneRenderId) {
return;
}
this._preActivateId = sceneRenderId;
this._visibleInstances = null;
};
Mesh.prototype._preActivateForIntermediateRendering = function (renderId) {
if (this._visibleInstances) {
this._visibleInstances.intermediateDefaultRenderId = renderId;
}
};
Mesh.prototype._registerInstanceForRenderId = function (instance, renderId) {
if (!this._visibleInstances) {
this._visibleInstances = {};
this._visibleInstances.defaultRenderId = renderId;
this._visibleInstances.selfDefaultRenderId = this._renderId;
}
if (!this._visibleInstances[renderId]) {
this._visibleInstances[renderId] = new Array();
}
this._visibleInstances[renderId].push(instance);
};
/**
* This method recomputes and sets a new BoundingInfo to the mesh unless it is locked.
* This means the mesh underlying bounding box and sphere are recomputed.
*/
Mesh.prototype.refreshBoundingInfo = function () {
if (this._boundingInfo.isLocked) {
return;
}
var data = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
if (data) {
var extend = BABYLON.Tools.ExtractMinAndMax(data, 0, this.getTotalVertices());
this._boundingInfo = new BABYLON.BoundingInfo(extend.minimum, extend.maximum);
}
if (this.subMeshes) {
for (var index = 0; index < this.subMeshes.length; index++) {
this.subMeshes[index].refreshBoundingInfo();
}
}
this._updateBoundingInfo();
};
Mesh.prototype._createGlobalSubMesh = function () {
var totalVertices = this.getTotalVertices();
if (!totalVertices || !this.getIndices()) {
return null;
}
this.releaseSubMeshes();
return new BABYLON.SubMesh(0, 0, totalVertices, 0, this.getTotalIndices(), this);
};
Mesh.prototype.subdivide = function (count) {
if (count < 1) {
return;
}
var totalIndices = this.getTotalIndices();
var subdivisionSize = (totalIndices / count) | 0;
var offset = 0;
// Ensure that subdivisionSize is a multiple of 3
while (subdivisionSize % 3 !== 0) {
subdivisionSize++;
}
this.releaseSubMeshes();
for (var index = 0; index < count; index++) {
if (offset >= totalIndices) {
break;
}
BABYLON.SubMesh.CreateFromIndices(0, offset, Math.min(subdivisionSize, totalIndices - offset), this);
offset += subdivisionSize;
}
this.synchronizeInstances();
};
/**
* Sets the vertex data of the mesh geometry for the requested `kind`.
* If the mesh has no geometry, a new Geometry object is set to the mesh and then passed this vertex data.
* The `data` are either a numeric array either a Float32Array.
* The parameter `updatable` is passed as is to the underlying Geometry object constructor (if initianilly none) or updater.
* The parameter `stride` is an optional positive integer, it is usually automatically deducted from the `kind` (3 for positions or normals, 2 for UV, etc).
* Note that a new underlying VertexBuffer object is created each call.
* If the `kind` is the `PositionKind`, the mesh BoundingInfo is renewed, so the bounding box and sphere, and the mesh World Matrix is recomputed.
*
* Possible `kind` values :
* - BABYLON.VertexBuffer.PositionKind
* - BABYLON.VertexBuffer.UVKind
* - BABYLON.VertexBuffer.UV2Kind
* - BABYLON.VertexBuffer.UV3Kind
* - BABYLON.VertexBuffer.UV4Kind
* - BABYLON.VertexBuffer.UV5Kind
* - BABYLON.VertexBuffer.UV6Kind
* - BABYLON.VertexBuffer.ColorKind
* - BABYLON.VertexBuffer.MatricesIndicesKind
* - BABYLON.VertexBuffer.MatricesIndicesExtraKind
* - BABYLON.VertexBuffer.MatricesWeightsKind
* - BABYLON.VertexBuffer.MatricesWeightsExtraKind
*/
Mesh.prototype.setVerticesData = function (kind, data, updatable, stride) {
if (!this._geometry) {
var vertexData = new BABYLON.VertexData();
vertexData.set(data, kind);
var scene = this.getScene();
new BABYLON.Geometry(BABYLON.Geometry.RandomId(), scene, vertexData, updatable, this);
}
else {
this._geometry.setVerticesData(kind, data, updatable, stride);
}
};
Mesh.prototype.setVerticesBuffer = function (buffer) {
if (!this._geometry) {
var scene = this.getScene();
new BABYLON.Geometry(BABYLON.Geometry.RandomId(), scene).applyToMesh(this);
}
this._geometry.setVerticesBuffer(buffer);
};
/**
* Updates the existing vertex data of the mesh geometry for the requested `kind`.
* If the mesh has no geometry, it is simply returned as it is.
* The `data` are either a numeric array either a Float32Array.
* No new underlying VertexBuffer object is created.
* If the `kind` is the `PositionKind` and if `updateExtends` is true, the mesh BoundingInfo is renewed, so the bounding box and sphere, and the mesh World Matrix is recomputed.
* If the parameter `makeItUnique` is true, a new global geometry is created from this positions and is set to the mesh.
*
* Possible `kind` values :
* - BABYLON.VertexBuffer.PositionKind
* - BABYLON.VertexBuffer.UVKind
* - BABYLON.VertexBuffer.UV2Kind
* - BABYLON.VertexBuffer.UV3Kind
* - BABYLON.VertexBuffer.UV4Kind
* - BABYLON.VertexBuffer.UV5Kind
* - BABYLON.VertexBuffer.UV6Kind
* - BABYLON.VertexBuffer.ColorKind
* - BABYLON.VertexBuffer.MatricesIndicesKind
* - BABYLON.VertexBuffer.MatricesIndicesExtraKind
* - BABYLON.VertexBuffer.MatricesWeightsKind
* - BABYLON.VertexBuffer.MatricesWeightsExtraKind
*/
Mesh.prototype.updateVerticesData = function (kind, data, updateExtends, makeItUnique) {
if (!this._geometry) {
return;
}
if (!makeItUnique) {
this._geometry.updateVerticesData(kind, data, updateExtends);
}
else {
this.makeGeometryUnique();
this.updateVerticesData(kind, data, updateExtends, false);
}
};
/**
* Deprecated since BabylonJS v2.3
*/
Mesh.prototype.updateVerticesDataDirectly = function (kind, data, offset, makeItUnique) {
BABYLON.Tools.Warn("Mesh.updateVerticesDataDirectly deprecated since 2.3.");
if (!this._geometry) {
return;
}
if (!makeItUnique) {
this._geometry.updateVerticesDataDirectly(kind, data, offset);
}
else {
this.makeGeometryUnique();
this.updateVerticesDataDirectly(kind, data, offset, false);
}
};
/**
* This method updates the vertex positions of an updatable mesh according to the `positionFunction` returned values.
* tuto : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#other-shapes-updatemeshpositions
* The parameter `positionFunction` is a simple JS function what is passed the mesh `positions` array. It doesn't need to return anything.
* The parameter `computeNormals` is a boolean (default true) to enable/disable the mesh normal recomputation after the vertex position update.
*/
Mesh.prototype.updateMeshPositions = function (positionFunction, computeNormals) {
if (computeNormals === void 0) { computeNormals = true; }
var positions = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
positionFunction(positions);
this.updateVerticesData(BABYLON.VertexBuffer.PositionKind, positions, false, false);
if (computeNormals) {
var indices = this.getIndices();
var normals = this.getVerticesData(BABYLON.VertexBuffer.NormalKind);
BABYLON.VertexData.ComputeNormals(positions, indices, normals);
this.updateVerticesData(BABYLON.VertexBuffer.NormalKind, normals, false, false);
}
};
Mesh.prototype.makeGeometryUnique = function () {
if (!this._geometry) {
return;
}
var oldGeometry = this._geometry;
var geometry = this._geometry.copy(BABYLON.Geometry.RandomId());
oldGeometry.releaseForMesh(this, true);
geometry.applyToMesh(this);
};
/**
* Sets the mesh indices.
* Expects an array populated with integers or a Int32Array.
* If the mesh has no geometry, a new Geometry object is created and set to the mesh.
* This method creates a new index buffer each call.
*/
Mesh.prototype.setIndices = function (indices, totalVertices) {
if (!this._geometry) {
var vertexData = new BABYLON.VertexData();
vertexData.indices = indices;
var scene = this.getScene();
new BABYLON.Geometry(BABYLON.Geometry.RandomId(), scene, vertexData, false, this);
}
else {
this._geometry.setIndices(indices, totalVertices);
}
};
/**
* Invert the geometry to move from a right handed system to a left handed one.
*/
Mesh.prototype.toLeftHanded = function () {
if (!this._geometry) {
return;
}
this._geometry.toLeftHanded();
};
Mesh.prototype._bind = function (subMesh, effect, fillMode) {
var engine = this.getScene().getEngine();
// Wireframe
var indexToBind;
if (this._unIndexed) {
indexToBind = null;
}
else {
switch (fillMode) {
case BABYLON.Material.PointFillMode:
indexToBind = null;
break;
case BABYLON.Material.WireFrameFillMode:
indexToBind = subMesh.getLinesIndexBuffer(this.getIndices(), engine);
break;
default:
case BABYLON.Material.TriangleFillMode:
indexToBind = this._unIndexed ? null : this._geometry.getIndexBuffer();
break;
}
}
// VBOs
engine.bindBuffers(this._geometry.getVertexBuffers(), indexToBind, effect);
};
Mesh.prototype._draw = function (subMesh, fillMode, instancesCount) {
if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) {
return;
}
this.onBeforeDrawObservable.notifyObservers(this);
var engine = this.getScene().getEngine();
// Draw order
switch (fillMode) {
case BABYLON.Material.PointFillMode:
engine.drawPointClouds(subMesh.verticesStart, subMesh.verticesCount, instancesCount);
break;
case BABYLON.Material.WireFrameFillMode:
if (this._unIndexed) {
engine.drawUnIndexed(false, subMesh.verticesStart, subMesh.verticesCount, instancesCount);
}
else {
engine.draw(false, 0, instancesCount > 0 ? subMesh.linesIndexCount / 2 : subMesh.linesIndexCount, instancesCount);
}
break;
default:
if (this._unIndexed) {
engine.drawUnIndexed(true, subMesh.verticesStart, subMesh.verticesCount, instancesCount);
}
else {
engine.draw(true, subMesh.indexStart, subMesh.indexCount, instancesCount);
}
}
};
/**
* Registers for this mesh a javascript function called just before the rendering process.
* This function is passed the current mesh and doesn't return anything.
*/
Mesh.prototype.registerBeforeRender = function (func) {
this.onBeforeRenderObservable.add(func);
};
/**
* Disposes a previously registered javascript function called before the rendering.
* This function is passed the current mesh and doesn't return anything.
*/
Mesh.prototype.unregisterBeforeRender = function (func) {
this.onBeforeRenderObservable.removeCallback(func);
};
/**
* Registers for this mesh a javascript function called just after the rendering is complete.
* This function is passed the current mesh and doesn't return anything.
*/
Mesh.prototype.registerAfterRender = function (func) {
this.onAfterRenderObservable.add(func);
};
/**
* Disposes a previously registered javascript function called after the rendering.
* This function is passed the current mesh and doesn't return anything.
*/
Mesh.prototype.unregisterAfterRender = function (func) {
this.onAfterRenderObservable.removeCallback(func);
};
Mesh.prototype._getInstancesRenderList = function (subMeshId) {
var scene = this.getScene();
this._batchCache.mustReturn = false;
this._batchCache.renderSelf[subMeshId] = this.isEnabled() && this.isVisible;
this._batchCache.visibleInstances[subMeshId] = null;
if (this._visibleInstances) {
var currentRenderId = scene.getRenderId();
var defaultRenderId = (scene._isInIntermediateRendering() ? this._visibleInstances.intermediateDefaultRenderId : this._visibleInstances.defaultRenderId);
this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[currentRenderId];
var selfRenderId = this._renderId;
if (!this._batchCache.visibleInstances[subMeshId] && defaultRenderId) {
this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[defaultRenderId];
currentRenderId = Math.max(defaultRenderId, currentRenderId);
selfRenderId = Math.max(this._visibleInstances.selfDefaultRenderId, currentRenderId);
}
if (this._batchCache.visibleInstances[subMeshId] && this._batchCache.visibleInstances[subMeshId].length) {
if (this._renderIdForInstances[subMeshId] === currentRenderId) {
this._batchCache.mustReturn = true;
return this._batchCache;
}
if (currentRenderId !== selfRenderId) {
this._batchCache.renderSelf[subMeshId] = false;
}
}
this._renderIdForInstances[subMeshId] = currentRenderId;
}
return this._batchCache;
};
Mesh.prototype._renderWithInstances = function (subMesh, fillMode, batch, effect, engine) {
var visibleInstances = batch.visibleInstances[subMesh._id];
var matricesCount = visibleInstances.length + 1;
var bufferSize = matricesCount * 16 * 4;
var currentInstancesBufferSize = this._instancesBufferSize;
var instancesBuffer = this._instancesBuffer;
while (this._instancesBufferSize < bufferSize) {
this._instancesBufferSize *= 2;
}
if (!this._instancesData || currentInstancesBufferSize != this._instancesBufferSize) {
this._instancesData = new Float32Array(this._instancesBufferSize / 4);
}
var offset = 0;
var instancesCount = 0;
var world = this.getWorldMatrix();
if (batch.renderSelf[subMesh._id]) {
world.copyToArray(this._instancesData, offset);
offset += 16;
instancesCount++;
}
if (visibleInstances) {
for (var instanceIndex = 0; instanceIndex < visibleInstances.length; instanceIndex++) {
var instance = visibleInstances[instanceIndex];
instance.getWorldMatrix().copyToArray(this._instancesData, offset);
offset += 16;
instancesCount++;
}
}
if (!instancesBuffer || currentInstancesBufferSize != this._instancesBufferSize) {
if (instancesBuffer) {
instancesBuffer.dispose();
}
instancesBuffer = new BABYLON.Buffer(engine, this._instancesData, true, 16, false, true);
this._instancesBuffer = instancesBuffer;
this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world0", 0, 4));
this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world1", 4, 4));
this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world2", 8, 4));
this.setVerticesBuffer(instancesBuffer.createVertexBuffer("world3", 12, 4));
}
else {
instancesBuffer.updateDirectly(this._instancesData, 0, instancesCount);
}
engine.bindBuffers(this.geometry.getVertexBuffers(), this.geometry.getIndexBuffer(), effect);
this._draw(subMesh, fillMode, instancesCount);
engine.unbindInstanceAttributes();
};
Mesh.prototype._processRendering = function (subMesh, effect, fillMode, batch, hardwareInstancedRendering, onBeforeDraw, effectiveMaterial) {
var scene = this.getScene();
var engine = scene.getEngine();
if (hardwareInstancedRendering) {
this._renderWithInstances(subMesh, fillMode, batch, effect, engine);
}
else {
if (batch.renderSelf[subMesh._id]) {
// Draw
if (onBeforeDraw) {
onBeforeDraw(false, this.getWorldMatrix(), effectiveMaterial);
}
this._draw(subMesh, fillMode, this._overridenInstanceCount);
}
if (batch.visibleInstances[subMesh._id]) {
for (var instanceIndex = 0; instanceIndex < batch.visibleInstances[subMesh._id].length; instanceIndex++) {
var instance = batch.visibleInstances[subMesh._id][instanceIndex];
// World
var world = instance.getWorldMatrix();
if (onBeforeDraw) {
onBeforeDraw(true, world, effectiveMaterial);
}
// Draw
this._draw(subMesh, fillMode);
}
}
}
};
/**
* Triggers the draw call for the mesh.
* Usually, you don't need to call this method by your own because the mesh rendering is handled by the scene rendering manager.
*/
Mesh.prototype.render = function (subMesh, enableAlphaMode) {
var scene = this.getScene();
// Managing instances
var batch = this._getInstancesRenderList(subMesh._id);
if (batch.mustReturn) {
return;
}
// Checking geometry state
if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) {
return;
}
var callbackIndex;
this.onBeforeRenderObservable.notifyObservers(this);
var engine = scene.getEngine();
var hardwareInstancedRendering = (engine.getCaps().instancedArrays !== null) && (batch.visibleInstances[subMesh._id] !== null) && (batch.visibleInstances[subMesh._id] !== undefined);
// Material
var effectiveMaterial = subMesh.getMaterial();
if (!effectiveMaterial || !effectiveMaterial.isReady(this, hardwareInstancedRendering)) {
return;
}
// Outline - step 1
var savedDepthWrite = engine.getDepthWrite();
if (this.renderOutline) {
engine.setDepthWrite(false);
scene.getOutlineRenderer().render(subMesh, batch);
engine.setDepthWrite(savedDepthWrite);
}
effectiveMaterial._preBind();
var effect = effectiveMaterial.getEffect();
// Bind
var fillMode = scene.forcePointsCloud ? BABYLON.Material.PointFillMode : (scene.forceWireframe ? BABYLON.Material.WireFrameFillMode : effectiveMaterial.fillMode);
this._bind(subMesh, effect, fillMode);
var world = this.getWorldMatrix();
effectiveMaterial.bind(world, this);
// Alpha mode
if (enableAlphaMode) {
engine.setAlphaMode(effectiveMaterial.alphaMode);
}
// Draw
this._processRendering(subMesh, effect, fillMode, batch, hardwareInstancedRendering, this._onBeforeDraw, effectiveMaterial);
// Unbind
effectiveMaterial.unbind();
// Outline - step 2
if (this.renderOutline && savedDepthWrite) {
engine.setDepthWrite(true);
engine.setColorWrite(false);
scene.getOutlineRenderer().render(subMesh, batch);
engine.setColorWrite(true);
}
// Overlay
if (this.renderOverlay) {
var currentMode = engine.getAlphaMode();
engine.setAlphaMode(BABYLON.Engine.ALPHA_COMBINE);
scene.getOutlineRenderer().render(subMesh, batch, true);
engine.setAlphaMode(currentMode);
}
this.onAfterRenderObservable.notifyObservers(this);
};
Mesh.prototype._onBeforeDraw = function (isInstance, world, effectiveMaterial) {
if (isInstance) {
effectiveMaterial.bindOnlyWorldMatrix(world);
}
};
/**
* Returns an array populated with ParticleSystem objects whose the mesh is the emitter.
*/
Mesh.prototype.getEmittedParticleSystems = function () {
var results = new Array();
for (var index = 0; index < this.getScene().particleSystems.length; index++) {
var particleSystem = this.getScene().particleSystems[index];
if (particleSystem.emitter === this) {
results.push(particleSystem);
}
}
return results;
};
/**
* Returns an array populated with ParticleSystem objects whose the mesh or its children are the emitter.
*/
Mesh.prototype.getHierarchyEmittedParticleSystems = function () {
var results = new Array();
var descendants = this.getDescendants();
descendants.push(this);
for (var index = 0; index < this.getScene().particleSystems.length; index++) {
var particleSystem = this.getScene().particleSystems[index];
if (descendants.indexOf(particleSystem.emitter) !== -1) {
results.push(particleSystem);
}
}
return results;
};
Mesh.prototype._checkDelayState = function () {
var scene = this.getScene();
if (this._geometry) {
this._geometry.load(scene);
}
else if (this.delayLoadState === BABYLON.Engine.DELAYLOADSTATE_NOTLOADED) {
this.delayLoadState = BABYLON.Engine.DELAYLOADSTATE_LOADING;
this._queueLoad(this, scene);
}
};
Mesh.prototype._queueLoad = function (mesh, scene) {
var _this = this;
scene._addPendingData(mesh);
var getBinaryData = (this.delayLoadingFile.indexOf(".babylonbinarymeshdata") !== -1);
BABYLON.Tools.LoadFile(this.delayLoadingFile, function (data) {
if (data instanceof ArrayBuffer) {
_this._delayLoadingFunction(data, _this);
}
else {
_this._delayLoadingFunction(JSON.parse(data), _this);
}
_this.delayLoadState = BABYLON.Engine.DELAYLOADSTATE_LOADED;
scene._removePendingData(_this);
}, function () { }, scene.database, getBinaryData);
};
/**
* Boolean, true is the mesh in the frustum defined by the Plane objects from the `frustumPlanes` array parameter.
*/
Mesh.prototype.isInFrustum = function (frustumPlanes) {
if (this.delayLoadState === BABYLON.Engine.DELAYLOADSTATE_LOADING) {
return false;
}
if (!_super.prototype.isInFrustum.call(this, frustumPlanes)) {
return false;
}
this._checkDelayState();
return true;
};
/**
* Sets the mesh material by the material or multiMaterial `id` property.
* The material `id` is a string identifying the material or the multiMaterial.
* This method returns nothing.
*/
Mesh.prototype.setMaterialByID = function (id) {
var materials = this.getScene().materials;
var index;
for (index = 0; index < materials.length; index++) {
if (materials[index].id === id) {
this.material = materials[index];
return;
}
}
// Multi
var multiMaterials = this.getScene().multiMaterials;
for (index = 0; index < multiMaterials.length; index++) {
if (multiMaterials[index].id === id) {
this.material = multiMaterials[index];
return;
}
}
};
/**
* Returns as a new array populated with the mesh material and/or skeleton, if any.
*/
Mesh.prototype.getAnimatables = function () {
var results = [];
if (this.material) {
results.push(this.material);
}
if (this.skeleton) {
results.push(this.skeleton);
}
return results;
};
/**
* Modifies the mesh geometry according to the passed transformation matrix.
* This method returns nothing but it really modifies the mesh even if it's originally not set as updatable.
* The mesh normals are modified accordingly the same transformation.
* tuto : http://doc.babylonjs.com/tutorials/How_Rotations_and_Translations_Work#baking-transform
* Note that, under the hood, this method sets a new VertexBuffer each call.
*/
Mesh.prototype.bakeTransformIntoVertices = function (transform) {
// Position
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.PositionKind)) {
return;
}
var submeshes = this.subMeshes.splice(0);
this._resetPointsArrayCache();
var data = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
var temp = [];
var index;
for (index = 0; index < data.length; index += 3) {
BABYLON.Vector3.TransformCoordinates(BABYLON.Vector3.FromArray(data, index), transform).toArray(temp, index);
}
this.setVerticesData(BABYLON.VertexBuffer.PositionKind, temp, this.getVertexBuffer(BABYLON.VertexBuffer.PositionKind).isUpdatable());
// Normals
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) {
return;
}
data = this.getVerticesData(BABYLON.VertexBuffer.NormalKind);
temp = [];
for (index = 0; index < data.length; index += 3) {
BABYLON.Vector3.TransformNormal(BABYLON.Vector3.FromArray(data, index), transform).normalize().toArray(temp, index);
}
this.setVerticesData(BABYLON.VertexBuffer.NormalKind, temp, this.getVertexBuffer(BABYLON.VertexBuffer.NormalKind).isUpdatable());
// flip faces?
if (transform.m[0] * transform.m[5] * transform.m[10] < 0) {
this.flipFaces();
}
// Restore submeshes
this.releaseSubMeshes();
this.subMeshes = submeshes;
};
/**
* Modifies the mesh geometry according to its own current World Matrix.
* The mesh World Matrix is then reset.
* This method returns nothing but really modifies the mesh even if it's originally not set as updatable.
* tuto : tuto : http://doc.babylonjs.com/tutorials/How_Rotations_and_Translations_Work#baking-transform
* Note that, under the hood, this method sets a new VertexBuffer each call.
*/
Mesh.prototype.bakeCurrentTransformIntoVertices = function () {
this.bakeTransformIntoVertices(this.computeWorldMatrix(true));
this.scaling.copyFromFloats(1, 1, 1);
this.position.copyFromFloats(0, 0, 0);
this.rotation.copyFromFloats(0, 0, 0);
//only if quaternion is already set
if (this.rotationQuaternion) {
this.rotationQuaternion = BABYLON.Quaternion.Identity();
}
this._worldMatrix = BABYLON.Matrix.Identity();
};
// Cache
Mesh.prototype._resetPointsArrayCache = function () {
this._positions = null;
};
Mesh.prototype._generatePointsArray = function () {
if (this._positions)
return true;
this._positions = [];
var data = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
if (!data) {
return false;
}
for (var index = 0; index < data.length; index += 3) {
this._positions.push(BABYLON.Vector3.FromArray(data, index));
}
return true;
};
/**
* Returns a new Mesh object generated from the current mesh properties.
* This method must not get confused with createInstance().
* The parameter `name` is a string, the name given to the new mesh.
* The optional parameter `newParent` can be any Node object (default `null`).
* The optional parameter `doNotCloneChildren` (default `false`) allows/denies the recursive cloning of the original mesh children if any.
* The parameter `clonePhysicsImpostor` (default `true`) allows/denies the cloning in the same time of the original mesh `body` used by the physics engine, if any.
*/
Mesh.prototype.clone = function (name, newParent, doNotCloneChildren, clonePhysicsImpostor) {
if (clonePhysicsImpostor === void 0) { clonePhysicsImpostor = true; }
return new Mesh(name, this.getScene(), newParent, this, doNotCloneChildren, clonePhysicsImpostor);
};
/**
* Disposes the mesh.
* This also frees the memory allocated under the hood to all the buffers used by WebGL.
*/
Mesh.prototype.dispose = function (doNotRecurse) {
if (this._geometry) {
this._geometry.releaseForMesh(this, true);
}
// Instances
if (this._instancesBuffer) {
this._instancesBuffer.dispose();
this._instancesBuffer = null;
}
while (this.instances.length) {
this.instances[0].dispose();
}
// Highlight layers.
var highlightLayers = this.getScene().highlightLayers;
for (var i = 0; i < highlightLayers.length; i++) {
var highlightLayer = highlightLayers[i];
if (highlightLayer) {
highlightLayer.removeMesh(this);
highlightLayer.removeExcludedMesh(this);
}
}
_super.prototype.dispose.call(this, doNotRecurse);
};
/**
* Modifies the mesh geometry according to a displacement map.
* A displacement map is a colored image. Each pixel color value (actually a gradient computed from red, green, blue values) will give the displacement to apply to each mesh vertex.
* The mesh must be set as updatable. Its internal geometry is directly modified, no new buffer are allocated.
* This method returns nothing.
* The parameter `url` is a string, the URL from the image file is to be downloaded.
* The parameters `minHeight` and `maxHeight` are the lower and upper limits of the displacement.
* The parameter `onSuccess` is an optional Javascript function to be called just after the mesh is modified. It is passed the modified mesh and must return nothing.
*/
Mesh.prototype.applyDisplacementMap = function (url, minHeight, maxHeight, onSuccess) {
var _this = this;
var scene = this.getScene();
var onload = function (img) {
// Getting height map data
var canvas = document.createElement("canvas");
var context = canvas.getContext("2d");
var heightMapWidth = img.width;
var heightMapHeight = img.height;
canvas.width = heightMapWidth;
canvas.height = heightMapHeight;
context.drawImage(img, 0, 0);
// Create VertexData from map data
//Cast is due to wrong definition in lib.d.ts from ts 1.3 - https://github.com/Microsoft/TypeScript/issues/949
var buffer = context.getImageData(0, 0, heightMapWidth, heightMapHeight).data;
_this.applyDisplacementMapFromBuffer(buffer, heightMapWidth, heightMapHeight, minHeight, maxHeight);
//execute success callback, if set
if (onSuccess) {
onSuccess(_this);
}
};
BABYLON.Tools.LoadImage(url, onload, function () { }, scene.database);
};
/**
* Modifies the mesh geometry according to a displacementMap buffer.
* A displacement map is a colored image. Each pixel color value (actually a gradient computed from red, green, blue values) will give the displacement to apply to each mesh vertex.
* The mesh must be set as updatable. Its internal geometry is directly modified, no new buffer are allocated.
* This method returns nothing.
* The parameter `buffer` is a `Uint8Array` buffer containing series of `Uint8` lower than 255, the red, green, blue and alpha values of each successive pixel.
* The parameters `heightMapWidth` and `heightMapHeight` are positive integers to set the width and height of the buffer image.
* The parameters `minHeight` and `maxHeight` are the lower and upper limits of the displacement.
*/
Mesh.prototype.applyDisplacementMapFromBuffer = function (buffer, heightMapWidth, heightMapHeight, minHeight, maxHeight) {
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.PositionKind)
|| !this.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)
|| !this.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) {
BABYLON.Tools.Warn("Cannot call applyDisplacementMap: Given mesh is not complete. Position, Normal or UV are missing");
return;
}
var positions = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
var normals = this.getVerticesData(BABYLON.VertexBuffer.NormalKind);
var uvs = this.getVerticesData(BABYLON.VertexBuffer.UVKind);
var position = BABYLON.Vector3.Zero();
var normal = BABYLON.Vector3.Zero();
var uv = BABYLON.Vector2.Zero();
for (var index = 0; index < positions.length; index += 3) {
BABYLON.Vector3.FromArrayToRef(positions, index, position);
BABYLON.Vector3.FromArrayToRef(normals, index, normal);
BABYLON.Vector2.FromArrayToRef(uvs, (index / 3) * 2, uv);
// Compute height
var u = ((Math.abs(uv.x) * heightMapWidth) % heightMapWidth) | 0;
var v = ((Math.abs(uv.y) * heightMapHeight) % heightMapHeight) | 0;
var pos = (u + v * heightMapWidth) * 4;
var r = buffer[pos] / 255.0;
var g = buffer[pos + 1] / 255.0;
var b = buffer[pos + 2] / 255.0;
var gradient = r * 0.3 + g * 0.59 + b * 0.11;
normal.normalize();
normal.scaleInPlace(minHeight + (maxHeight - minHeight) * gradient);
position = position.add(normal);
position.toArray(positions, index);
}
BABYLON.VertexData.ComputeNormals(positions, this.getIndices(), normals);
this.updateVerticesData(BABYLON.VertexBuffer.PositionKind, positions);
this.updateVerticesData(BABYLON.VertexBuffer.NormalKind, normals);
};
/**
* Modify the mesh to get a flat shading rendering.
* This means each mesh facet will then have its own normals. Usually new vertices are added in the mesh geometry to get this result.
* This method returns nothing.
* Warning : the mesh is really modified even if not set originally as updatable and, under the hood, a new VertexBuffer is allocated.
*/
Mesh.prototype.convertToFlatShadedMesh = function () {
/// Update normals and vertices to get a flat shading rendering.
/// Warning: This may imply adding vertices to the mesh in order to get exactly 3 vertices per face
var kinds = this.getVerticesDataKinds();
var vbs = [];
var data = [];
var newdata = [];
var updatableNormals = false;
var kindIndex;
var kind;
for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) {
kind = kinds[kindIndex];
var vertexBuffer = this.getVertexBuffer(kind);
if (kind === BABYLON.VertexBuffer.NormalKind) {
updatableNormals = vertexBuffer.isUpdatable();
kinds.splice(kindIndex, 1);
kindIndex--;
continue;
}
vbs[kind] = vertexBuffer;
data[kind] = vbs[kind].getData();
newdata[kind] = [];
}
// Save previous submeshes
var previousSubmeshes = this.subMeshes.slice(0);
var indices = this.getIndices();
var totalIndices = this.getTotalIndices();
// Generating unique vertices per face
var index;
for (index = 0; index < totalIndices; index++) {
var vertexIndex = indices[index];
for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) {
kind = kinds[kindIndex];
var stride = vbs[kind].getStrideSize();
for (var offset = 0; offset < stride; offset++) {
newdata[kind].push(data[kind][vertexIndex * stride + offset]);
}
}
}
// Updating faces & normal
var normals = [];
var positions = newdata[BABYLON.VertexBuffer.PositionKind];
for (index = 0; index < totalIndices; index += 3) {
indices[index] = index;
indices[index + 1] = index + 1;
indices[index + 2] = index + 2;
var p1 = BABYLON.Vector3.FromArray(positions, index * 3);
var p2 = BABYLON.Vector3.FromArray(positions, (index + 1) * 3);
var p3 = BABYLON.Vector3.FromArray(positions, (index + 2) * 3);
var p1p2 = p1.subtract(p2);
var p3p2 = p3.subtract(p2);
var normal = BABYLON.Vector3.Normalize(BABYLON.Vector3.Cross(p1p2, p3p2));
// Store same normals for every vertex
for (var localIndex = 0; localIndex < 3; localIndex++) {
normals.push(normal.x);
normals.push(normal.y);
normals.push(normal.z);
}
}
this.setIndices(indices);
this.setVerticesData(BABYLON.VertexBuffer.NormalKind, normals, updatableNormals);
// Updating vertex buffers
for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) {
kind = kinds[kindIndex];
this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable());
}
// Updating submeshes
this.releaseSubMeshes();
for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) {
var previousOne = previousSubmeshes[submeshIndex];
var subMesh = new BABYLON.SubMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this);
}
this.synchronizeInstances();
};
/**
* This method removes all the mesh indices and add new vertices (duplication) in order to unfold facets into buffers.
* In other words, more vertices, no more indices and a single bigger VBO.
* This method returns nothing.
* The mesh is really modified even if not set originally as updatable. Under the hood, a new VertexBuffer is allocated.
*
*/
Mesh.prototype.convertToUnIndexedMesh = function () {
/// Remove indices by unfolding faces into buffers
/// Warning: This implies adding vertices to the mesh in order to get exactly 3 vertices per face
var kinds = this.getVerticesDataKinds();
var vbs = [];
var data = [];
var newdata = [];
var updatableNormals = false;
var kindIndex;
var kind;
for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) {
kind = kinds[kindIndex];
var vertexBuffer = this.getVertexBuffer(kind);
vbs[kind] = vertexBuffer;
data[kind] = vbs[kind].getData();
newdata[kind] = [];
}
// Save previous submeshes
var previousSubmeshes = this.subMeshes.slice(0);
var indices = this.getIndices();
var totalIndices = this.getTotalIndices();
// Generating unique vertices per face
var index;
for (index = 0; index < totalIndices; index++) {
var vertexIndex = indices[index];
for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) {
kind = kinds[kindIndex];
var stride = vbs[kind].getStrideSize();
for (var offset = 0; offset < stride; offset++) {
newdata[kind].push(data[kind][vertexIndex * stride + offset]);
}
}
}
// Updating indices
for (index = 0; index < totalIndices; index += 3) {
indices[index] = index;
indices[index + 1] = index + 1;
indices[index + 2] = index + 2;
}
this.setIndices(indices);
// Updating vertex buffers
for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) {
kind = kinds[kindIndex];
this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable());
}
// Updating submeshes
this.releaseSubMeshes();
for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) {
var previousOne = previousSubmeshes[submeshIndex];
var subMesh = new BABYLON.SubMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this);
}
this._unIndexed = true;
this.synchronizeInstances();
};
/**
* Inverses facet orientations and inverts also the normals with `flipNormals` (default `false`) if true.
* This method returns nothing.
* Warning : the mesh is really modified even if not set originally as updatable. A new VertexBuffer is created under the hood each call.
*/
Mesh.prototype.flipFaces = function (flipNormals) {
if (flipNormals === void 0) { flipNormals = false; }
var vertex_data = BABYLON.VertexData.ExtractFromMesh(this);
var i;
if (flipNormals && this.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) {
for (i = 0; i < vertex_data.normals.length; i++) {
vertex_data.normals[i] *= -1;
}
}
var temp;
for (i = 0; i < vertex_data.indices.length; i += 3) {
// reassign indices
temp = vertex_data.indices[i + 1];
vertex_data.indices[i + 1] = vertex_data.indices[i + 2];
vertex_data.indices[i + 2] = temp;
}
vertex_data.applyToMesh(this);
};
// Instances
/**
* Creates a new InstancedMesh object from the mesh model.
* An instance shares the same properties and the same material than its model.
* Only these properties of each instance can then be set individually :
* - position
* - rotation
* - rotationQuaternion
* - setPivotMatrix
* - scaling
* tuto : http://doc.babylonjs.com/tutorials/How_to_use_Instances
* Warning : this method is not supported for Line mesh and LineSystem
*/
Mesh.prototype.createInstance = function (name) {
return new BABYLON.InstancedMesh(name, this);
};
/**
* Synchronises all the mesh instance submeshes to the current mesh submeshes, if any.
* After this call, all the mesh instances have the same submeshes than the current mesh.
* This method returns nothing.
*/
Mesh.prototype.synchronizeInstances = function () {
for (var instanceIndex = 0; instanceIndex < this.instances.length; instanceIndex++) {
var instance = this.instances[instanceIndex];
instance._syncSubMeshes();
}
};
/**
* Simplify the mesh according to the given array of settings.
* Function will return immediately and will simplify async. It returns nothing.
* @param settings a collection of simplification settings.
* @param parallelProcessing should all levels calculate parallel or one after the other.
* @param type the type of simplification to run.
* @param successCallback optional success callback to be called after the simplification finished processing all settings.
*/
Mesh.prototype.simplify = function (settings, parallelProcessing, simplificationType, successCallback) {
if (parallelProcessing === void 0) { parallelProcessing = true; }
if (simplificationType === void 0) { simplificationType = BABYLON.SimplificationType.QUADRATIC; }
this.getScene().simplificationQueue.addTask({
settings: settings,
parallelProcessing: parallelProcessing,
mesh: this,
simplificationType: simplificationType,
successCallback: successCallback
});
};
/**
* Optimization of the mesh's indices, in case a mesh has duplicated vertices.
* The function will only reorder the indices and will not remove unused vertices to avoid problems with submeshes.
* This should be used together with the simplification to avoid disappearing triangles.
* @param successCallback an optional success callback to be called after the optimization finished.
*/
Mesh.prototype.optimizeIndices = function (successCallback) {
var _this = this;
var indices = this.getIndices();
var positions = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
var vectorPositions = [];
for (var pos = 0; pos < positions.length; pos = pos + 3) {
vectorPositions.push(BABYLON.Vector3.FromArray(positions, pos));
}
var dupes = [];
BABYLON.AsyncLoop.SyncAsyncForLoop(vectorPositions.length, 40, function (iteration) {
var realPos = vectorPositions.length - 1 - iteration;
var testedPosition = vectorPositions[realPos];
for (var j = 0; j < realPos; ++j) {
var againstPosition = vectorPositions[j];
if (testedPosition.equals(againstPosition)) {
dupes[realPos] = j;
break;
}
}
}, function () {
for (var i = 0; i < indices.length; ++i) {
indices[i] = dupes[indices[i]] || indices[i];
}
//indices are now reordered
var originalSubMeshes = _this.subMeshes.slice(0);
_this.setIndices(indices);
_this.subMeshes = originalSubMeshes;
if (successCallback) {
successCallback(_this);
}
});
};
// Statics
/**
* Returns a new Mesh object what is a deep copy of the passed mesh.
* The parameter `parsedMesh` is the mesh to be copied.
* The parameter `rootUrl` is a string, it's the root URL to prefix the `delayLoadingFile` property with
*/
Mesh.Parse = function (parsedMesh, scene, rootUrl) {
var mesh = new Mesh(parsedMesh.name, scene);
mesh.id = parsedMesh.id;
BABYLON.Tags.AddTagsTo(mesh, parsedMesh.tags);
mesh.position = BABYLON.Vector3.FromArray(parsedMesh.position);
if (parsedMesh.metadata !== undefined) {
mesh.metadata = parsedMesh.metadata;
}
if (parsedMesh.rotationQuaternion) {
mesh.rotationQuaternion = BABYLON.Quaternion.FromArray(parsedMesh.rotationQuaternion);
}
else if (parsedMesh.rotation) {
mesh.rotation = BABYLON.Vector3.FromArray(parsedMesh.rotation);
}
mesh.scaling = BABYLON.Vector3.FromArray(parsedMesh.scaling);
if (parsedMesh.localMatrix) {
mesh.setPivotMatrix(BABYLON.Matrix.FromArray(parsedMesh.localMatrix));
}
else if (parsedMesh.pivotMatrix) {
mesh.setPivotMatrix(BABYLON.Matrix.FromArray(parsedMesh.pivotMatrix));
}
mesh.setEnabled(parsedMesh.isEnabled);
mesh.isVisible = parsedMesh.isVisible;
mesh.infiniteDistance = parsedMesh.infiniteDistance;
mesh.showBoundingBox = parsedMesh.showBoundingBox;
mesh.showSubMeshesBoundingBox = parsedMesh.showSubMeshesBoundingBox;
if (parsedMesh.applyFog !== undefined) {
mesh.applyFog = parsedMesh.applyFog;
}
if (parsedMesh.pickable !== undefined) {
mesh.isPickable = parsedMesh.pickable;
}
if (parsedMesh.alphaIndex !== undefined) {
mesh.alphaIndex = parsedMesh.alphaIndex;
}
mesh.receiveShadows = parsedMesh.receiveShadows;
mesh.billboardMode = parsedMesh.billboardMode;
if (parsedMesh.visibility !== undefined) {
mesh.visibility = parsedMesh.visibility;
}
mesh.checkCollisions = parsedMesh.checkCollisions;
mesh._shouldGenerateFlatShading = parsedMesh.useFlatShading;
// freezeWorldMatrix
if (parsedMesh.freezeWorldMatrix) {
mesh._waitingFreezeWorldMatrix = parsedMesh.freezeWorldMatrix;
}
// Parent
if (parsedMesh.parentId) {
mesh._waitingParentId = parsedMesh.parentId;
}
// Actions
if (parsedMesh.actions !== undefined) {
mesh._waitingActions = parsedMesh.actions;
}
// Geometry
mesh.hasVertexAlpha = parsedMesh.hasVertexAlpha;
if (parsedMesh.delayLoadingFile) {
mesh.delayLoadState = BABYLON.Engine.DELAYLOADSTATE_NOTLOADED;
mesh.delayLoadingFile = rootUrl + parsedMesh.delayLoadingFile;
mesh._boundingInfo = new BABYLON.BoundingInfo(BABYLON.Vector3.FromArray(parsedMesh.boundingBoxMinimum), BABYLON.Vector3.FromArray(parsedMesh.boundingBoxMaximum));
if (parsedMesh._binaryInfo) {
mesh._binaryInfo = parsedMesh._binaryInfo;
}
mesh._delayInfo = [];
if (parsedMesh.hasUVs) {
mesh._delayInfo.push(BABYLON.VertexBuffer.UVKind);
}
if (parsedMesh.hasUVs2) {
mesh._delayInfo.push(BABYLON.VertexBuffer.UV2Kind);
}
if (parsedMesh.hasUVs3) {
mesh._delayInfo.push(BABYLON.VertexBuffer.UV3Kind);
}
if (parsedMesh.hasUVs4) {
mesh._delayInfo.push(BABYLON.VertexBuffer.UV4Kind);
}
if (parsedMesh.hasUVs5) {
mesh._delayInfo.push(BABYLON.VertexBuffer.UV5Kind);
}
if (parsedMesh.hasUVs6) {
mesh._delayInfo.push(BABYLON.VertexBuffer.UV6Kind);
}
if (parsedMesh.hasColors) {
mesh._delayInfo.push(BABYLON.VertexBuffer.ColorKind);
}
if (parsedMesh.hasMatricesIndices) {
mesh._delayInfo.push(BABYLON.VertexBuffer.MatricesIndicesKind);
}
if (parsedMesh.hasMatricesWeights) {
mesh._delayInfo.push(BABYLON.VertexBuffer.MatricesWeightsKind);
}
mesh._delayLoadingFunction = BABYLON.Geometry.ImportGeometry;
if (BABYLON.SceneLoader.ForceFullSceneLoadingForIncremental) {
mesh._checkDelayState();
}
}
else {
BABYLON.Geometry.ImportGeometry(parsedMesh, mesh);
}
// Material
if (parsedMesh.materialId) {
mesh.setMaterialByID(parsedMesh.materialId);
}
else {
mesh.material = null;
}
// Skeleton
if (parsedMesh.skeletonId > -1) {
mesh.skeleton = scene.getLastSkeletonByID(parsedMesh.skeletonId);
if (parsedMesh.numBoneInfluencers) {
mesh.numBoneInfluencers = parsedMesh.numBoneInfluencers;
}
}
// Animations
if (parsedMesh.animations) {
for (var animationIndex = 0; animationIndex < parsedMesh.animations.length; animationIndex++) {
var parsedAnimation = parsedMesh.animations[animationIndex];
mesh.animations.push(BABYLON.Animation.Parse(parsedAnimation));
}
BABYLON.Node.ParseAnimationRanges(mesh, parsedMesh, scene);
}
if (parsedMesh.autoAnimate) {
scene.beginAnimation(mesh, parsedMesh.autoAnimateFrom, parsedMesh.autoAnimateTo, parsedMesh.autoAnimateLoop, parsedMesh.autoAnimateSpeed || 1.0);
}
// Layer Mask
if (parsedMesh.layerMask && (!isNaN(parsedMesh.layerMask))) {
mesh.layerMask = Math.abs(parseInt(parsedMesh.layerMask));
}
else {
mesh.layerMask = 0x0FFFFFFF;
}
//(Deprecated) physics
if (parsedMesh.physicsImpostor) {
mesh.physicsImpostor = new BABYLON.PhysicsImpostor(mesh, parsedMesh.physicsImpostor, {
mass: parsedMesh.physicsMass,
friction: parsedMesh.physicsFriction,
restitution: parsedMesh.physicsRestitution
}, scene);
}
// Instances
if (parsedMesh.instances) {
for (var index = 0; index < parsedMesh.instances.length; index++) {
var parsedInstance = parsedMesh.instances[index];
var instance = mesh.createInstance(parsedInstance.name);
BABYLON.Tags.AddTagsTo(instance, parsedInstance.tags);
instance.position = BABYLON.Vector3.FromArray(parsedInstance.position);
if (parsedInstance.parentId) {
instance._waitingParentId = parsedInstance.parentId;
}
if (parsedInstance.rotationQuaternion) {
instance.rotationQuaternion = BABYLON.Quaternion.FromArray(parsedInstance.rotationQuaternion);
}
else if (parsedInstance.rotation) {
instance.rotation = BABYLON.Vector3.FromArray(parsedInstance.rotation);
}
instance.scaling = BABYLON.Vector3.FromArray(parsedInstance.scaling);
instance.checkCollisions = mesh.checkCollisions;
if (parsedMesh.animations) {
for (animationIndex = 0; animationIndex < parsedMesh.animations.length; animationIndex++) {
parsedAnimation = parsedMesh.animations[animationIndex];
instance.animations.push(BABYLON.Animation.Parse(parsedAnimation));
}
BABYLON.Node.ParseAnimationRanges(instance, parsedMesh, scene);
}
}
}
return mesh;
};
/**
* Creates a ribbon mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The ribbon is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters.
*
* Please read this full tutorial to understand how to design a ribbon : http://doc.babylonjs.com/tutorials/Ribbon_Tutorial
* The parameter `pathArray` is a required array of paths, what are each an array of successive Vector3. The pathArray parameter depicts the ribbon geometry.
* The parameter `closeArray` (boolean, default false) creates a seam between the first and the last paths of the path array.
* The parameter `closePath` (boolean, default false) creates a seam between the first and the last points of each path of the path array.
* The parameter `offset` (positive integer, default : rounded half size of the pathArray length), is taken in account only if the `pathArray` is containing a single path.
* It's the offset to join together the points from the same path. Ex : offset = 10 means the point 1 is joined to the point 11.
* The optional parameter `instance` is an instance of an existing Ribbon object to be updated with the passed `pathArray` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#ribbon
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateRibbon = function (name, pathArray, closeArray, closePath, offset, scene, updatable, sideOrientation, instance) {
return BABYLON.MeshBuilder.CreateRibbon(name, {
pathArray: pathArray,
closeArray: closeArray,
closePath: closePath,
offset: offset,
updatable: updatable,
sideOrientation: sideOrientation,
instance: instance
}, scene);
};
/**
* Creates a plane polygonal mesh. By default, this is a disc.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `radius` sets the radius size (float) of the polygon (default 0.5).
* The parameter `tessellation` sets the number of polygon sides (positive integer, default 64). So a tessellation valued to 3 will build a triangle, to 4 a square, etc.
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateDisc = function (name, radius, tessellation, scene, updatable, sideOrientation) {
var options = {
radius: radius,
tessellation: tessellation,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateDisc(name, options, scene);
};
/**
* Creates a box mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `size` sets the size (float) of each box side (default 1).
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateBox = function (name, size, scene, updatable, sideOrientation) {
var options = {
size: size,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateBox(name, options, scene);
};
/**
* Creates a sphere mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `diameter` sets the diameter size (float) of the sphere (default 1).
* The parameter `segments` sets the sphere number of horizontal stripes (positive integer, default 32).
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateSphere = function (name, segments, diameter, scene, updatable, sideOrientation) {
var options = {
segments: segments,
diameterX: diameter,
diameterY: diameter,
diameterZ: diameter,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateSphere(name, options, scene);
};
/**
* Creates a cylinder or a cone mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `height` sets the height size (float) of the cylinder/cone (float, default 2).
* The parameter `diameter` sets the diameter of the top and bottom cap at once (float, default 1).
* The parameters `diameterTop` and `diameterBottom` overwrite the parameter `diameter` and set respectively the top cap and bottom cap diameter (floats, default 1). The parameter "diameterBottom" can't be zero.
* The parameter `tessellation` sets the number of cylinder sides (positive integer, default 24). Set it to 3 to get a prism for instance.
* The parameter `subdivisions` sets the number of rings along the cylinder height (positive integer, default 1).
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateCylinder = function (name, height, diameterTop, diameterBottom, tessellation, subdivisions, scene, updatable, sideOrientation) {
if (scene === undefined || !(scene instanceof BABYLON.Scene)) {
if (scene !== undefined) {
sideOrientation = updatable || Mesh.DEFAULTSIDE;
updatable = scene;
}
scene = subdivisions;
subdivisions = 1;
}
var options = {
height: height,
diameterTop: diameterTop,
diameterBottom: diameterBottom,
tessellation: tessellation,
subdivisions: subdivisions,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateCylinder(name, options, scene);
};
// Torus (Code from SharpDX.org)
/**
* Creates a torus mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `diameter` sets the diameter size (float) of the torus (default 1).
* The parameter `thickness` sets the diameter size of the tube of the torus (float, default 0.5).
* The parameter `tessellation` sets the number of torus sides (postive integer, default 16).
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateTorus = function (name, diameter, thickness, tessellation, scene, updatable, sideOrientation) {
var options = {
diameter: diameter,
thickness: thickness,
tessellation: tessellation,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateTorus(name, options, scene);
};
/**
* Creates a torus knot mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `radius` sets the global radius size (float) of the torus knot (default 2).
* The parameter `radialSegments` sets the number of sides on each tube segments (positive integer, default 32).
* The parameter `tubularSegments` sets the number of tubes to decompose the knot into (positive integer, default 32).
* The parameters `p` and `q` are the number of windings on each axis (positive integers, default 2 and 3).
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateTorusKnot = function (name, radius, tube, radialSegments, tubularSegments, p, q, scene, updatable, sideOrientation) {
var options = {
radius: radius,
tube: tube,
radialSegments: radialSegments,
tubularSegments: tubularSegments,
p: p,
q: q,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateTorusKnot(name, options, scene);
};
/**
* Creates a line mesh.
* Please consider using the same method from the MeshBuilder class instead.
* A line mesh is considered as a parametric shape since it has no predefined original shape. Its shape is determined by the passed array of points as an input parameter.
* Like every other parametric shape, it is dynamically updatable by passing an existing instance of LineMesh to this static function.
* The parameter `points` is an array successive Vector3.
* The optional parameter `instance` is an instance of an existing LineMesh object to be updated with the passed `points` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#lines-and-dashedlines
* When updating an instance, remember that only point positions can change, not the number of points.
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateLines = function (name, points, scene, updatable, instance) {
var options = {
points: points,
updatable: updatable,
instance: instance
};
return BABYLON.MeshBuilder.CreateLines(name, options, scene);
};
/**
* Creates a dashed line mesh.
* Please consider using the same method from the MeshBuilder class instead.
* A dashed line mesh is considered as a parametric shape since it has no predefined original shape. Its shape is determined by the passed array of points as an input parameter.
* Like every other parametric shape, it is dynamically updatable by passing an existing instance of LineMesh to this static function.
* The parameter `points` is an array successive Vector3.
* The parameter `dashNb` is the intended total number of dashes (positive integer, default 200).
* The parameter `dashSize` is the size of the dashes relatively the dash number (positive float, default 3).
* The parameter `gapSize` is the size of the gap between two successive dashes relatively the dash number (positive float, default 1).
* The optional parameter `instance` is an instance of an existing LineMesh object to be updated with the passed `points` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#lines-and-dashedlines
* When updating an instance, remember that only point positions can change, not the number of points.
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateDashedLines = function (name, points, dashSize, gapSize, dashNb, scene, updatable, instance) {
var options = {
points: points,
dashSize: dashSize,
gapSize: gapSize,
dashNb: dashNb,
updatable: updatable,
instance: instance
};
return BABYLON.MeshBuilder.CreateDashedLines(name, options, scene);
};
/**
* Creates an extruded shape mesh.
* The extrusion is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters.
* Please consider using the same method from the MeshBuilder class instead.
*
* Please read this full tutorial to understand how to design an extruded shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes#extrusion
* The parameter `shape` is a required array of successive Vector3. This array depicts the shape to be extruded in its local space : the shape must be designed in the xOy plane and will be
* extruded along the Z axis.
* The parameter `path` is a required array of successive Vector3. This is the axis curve the shape is extruded along.
* The parameter `rotation` (float, default 0 radians) is the angle value to rotate the shape each step (each path point), from the former step (so rotation added each step) along the curve.
* The parameter `scale` (float, default 1) is the value to scale the shape.
* The parameter `cap` sets the way the extruded shape is capped. Possible values : BABYLON.Mesh.NO_CAP (default), BABYLON.Mesh.CAP_START, BABYLON.Mesh.CAP_END, BABYLON.Mesh.CAP_ALL
* The optional parameter `instance` is an instance of an existing ExtrudedShape object to be updated with the passed `shape`, `path`, `scale` or `rotation` parameters : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#extruded-shape
* Remember you can only change the shape or path point positions, not their number when updating an extruded shape.
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.ExtrudeShape = function (name, shape, path, scale, rotation, cap, scene, updatable, sideOrientation, instance) {
var options = {
shape: shape,
path: path,
scale: scale,
rotation: rotation,
cap: (cap === 0) ? 0 : cap || Mesh.NO_CAP,
sideOrientation: sideOrientation,
instance: instance,
updatable: updatable
};
return BABYLON.MeshBuilder.ExtrudeShape(name, options, scene);
};
/**
* Creates an custom extruded shape mesh.
* The custom extrusion is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters.
* Please consider using the same method from the MeshBuilder class instead.
*
* Please read this full tutorial to understand how to design a custom extruded shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes#extrusion
* The parameter `shape` is a required array of successive Vector3. This array depicts the shape to be extruded in its local space : the shape must be designed in the xOy plane and will be
* extruded along the Z axis.
* The parameter `path` is a required array of successive Vector3. This is the axis curve the shape is extruded along.
* The parameter `rotationFunction` (JS function) is a custom Javascript function called on each path point. This function is passed the position i of the point in the path
* and the distance of this point from the begining of the path :
* ```javascript
* var rotationFunction = function(i, distance) {
* // do things
* return rotationValue; }
* ```
* It must returns a float value that will be the rotation in radians applied to the shape on each path point.
* The parameter `scaleFunction` (JS function) is a custom Javascript function called on each path point. This function is passed the position i of the point in the path
* and the distance of this point from the begining of the path :
* ```javascript
* var scaleFunction = function(i, distance) {
* // do things
* return scaleValue;}
* ```
* It must returns a float value that will be the scale value applied to the shape on each path point.
* The parameter `ribbonClosePath` (boolean, default false) forces the extrusion underlying ribbon to close all the paths in its `pathArray`.
* The parameter `ribbonCloseArray` (boolean, default false) forces the extrusion underlying ribbon to close its `pathArray`.
* The parameter `cap` sets the way the extruded shape is capped. Possible values : BABYLON.Mesh.NO_CAP (default), BABYLON.Mesh.CAP_START, BABYLON.Mesh.CAP_END, BABYLON.Mesh.CAP_ALL
* The optional parameter `instance` is an instance of an existing ExtrudedShape object to be updated with the passed `shape`, `path`, `scale` or `rotation` parameters : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#extruded-shape
* Remember you can only change the shape or path point positions, not their number when updating an extruded shape.
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.ExtrudeShapeCustom = function (name, shape, path, scaleFunction, rotationFunction, ribbonCloseArray, ribbonClosePath, cap, scene, updatable, sideOrientation, instance) {
var options = {
shape: shape,
path: path,
scaleFunction: scaleFunction,
rotationFunction: rotationFunction,
ribbonCloseArray: ribbonCloseArray,
ribbonClosePath: ribbonClosePath,
cap: (cap === 0) ? 0 : cap || Mesh.NO_CAP,
sideOrientation: sideOrientation,
instance: instance,
updatable: updatable
};
return BABYLON.MeshBuilder.ExtrudeShapeCustom(name, options, scene);
};
/**
* Creates lathe mesh.
* The lathe is a shape with a symetry axis : a 2D model shape is rotated around this axis to design the lathe.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `shape` is a required array of successive Vector3. This array depicts the shape to be rotated in its local space : the shape must be designed in the xOy plane and will be
* rotated around the Y axis. It's usually a 2D shape, so the Vector3 z coordinates are often set to zero.
* The parameter `radius` (positive float, default 1) is the radius value of the lathe.
* The parameter `tessellation` (positive integer, default 64) is the side number of the lathe.
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateLathe = function (name, shape, radius, tessellation, scene, updatable, sideOrientation) {
var options = {
shape: shape,
radius: radius,
tessellation: tessellation,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateLathe(name, options, scene);
};
/**
* Creates a plane mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `size` sets the size (float) of both sides of the plane at once (default 1).
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreatePlane = function (name, size, scene, updatable, sideOrientation) {
var options = {
size: size,
width: size,
height: size,
sideOrientation: sideOrientation,
updatable: updatable
};
return BABYLON.MeshBuilder.CreatePlane(name, options, scene);
};
/**
* Creates a ground mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameters `width` and `height` (floats, default 1) set the width and height sizes of the ground.
* The parameter `subdivisions` (positive integer) sets the number of subdivisions per side.
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateGround = function (name, width, height, subdivisions, scene, updatable) {
var options = {
width: width,
height: height,
subdivisions: subdivisions,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateGround(name, options, scene);
};
/**
* Creates a tiled ground mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameters `xmin` and `xmax` (floats, default -1 and 1) set the ground minimum and maximum X coordinates.
* The parameters `zmin` and `zmax` (floats, default -1 and 1) set the ground minimum and maximum Z coordinates.
* The parameter `subdivisions` is a javascript object `{w: positive integer, h: positive integer}` (default `{w: 6, h: 6}`). `w` and `h` are the
* numbers of subdivisions on the ground width and height. Each subdivision is called a tile.
* The parameter `precision` is a javascript object `{w: positive integer, h: positive integer}` (default `{w: 2, h: 2}`). `w` and `h` are the
* numbers of subdivisions on the ground width and height of each tile.
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateTiledGround = function (name, xmin, zmin, xmax, zmax, subdivisions, precision, scene, updatable) {
var options = {
xmin: xmin,
zmin: zmin,
xmax: xmax,
zmax: zmax,
subdivisions: subdivisions,
precision: precision,
updatable: updatable
};
return BABYLON.MeshBuilder.CreateTiledGround(name, options, scene);
};
/**
* Creates a ground mesh from a height map.
* tuto : http://doc.babylonjs.com/tutorials/14._Height_Map
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `url` sets the URL of the height map image resource.
* The parameters `width` and `height` (positive floats, default 10) set the ground width and height sizes.
* The parameter `subdivisions` (positive integer, default 1) sets the number of subdivision per side.
* The parameter `minHeight` (float, default 0) is the minimum altitude on the ground.
* The parameter `maxHeight` (float, default 1) is the maximum altitude on the ground.
* The parameter `onReady` is a javascript callback function that will be called once the mesh is just built (the height map download can last some time).
* This function is passed the newly built mesh :
* ```javascript
* function(mesh) { // do things
* return; }
* ```
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateGroundFromHeightMap = function (name, url, width, height, subdivisions, minHeight, maxHeight, scene, updatable, onReady) {
var options = {
width: width,
height: height,
subdivisions: subdivisions,
minHeight: minHeight,
maxHeight: maxHeight,
updatable: updatable,
onReady: onReady
};
return BABYLON.MeshBuilder.CreateGroundFromHeightMap(name, url, options, scene);
};
/**
* Creates a tube mesh.
* The tube is a parametric shape : http://doc.babylonjs.com/tutorials/Parametric_Shapes. It has no predefined shape. Its final shape will depend on the input parameters.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `path` is a required array of successive Vector3. It is the curve used as the axis of the tube.
* The parameter `radius` (positive float, default 1) sets the tube radius size.
* The parameter `tessellation` (positive float, default 64) is the number of sides on the tubular surface.
* The parameter `radiusFunction` (javascript function, default null) is a vanilla javascript function. If it is not null, it overwrittes the parameter `radius`.
* This function is called on each point of the tube path and is passed the index `i` of the i-th point and the distance of this point from the first point of the path.
* It must return a radius value (positive float) :
* ```javascript
* var radiusFunction = function(i, distance) {
* // do things
* return radius; }
* ```
* The parameter `cap` sets the way the extruded shape is capped. Possible values : BABYLON.Mesh.NO_CAP (default), BABYLON.Mesh.CAP_START, BABYLON.Mesh.CAP_END, BABYLON.Mesh.CAP_ALL
* The optional parameter `instance` is an instance of an existing Tube object to be updated with the passed `pathArray` parameter : http://doc.babylonjs.com/tutorials/How_to_dynamically_morph_a_mesh#tube
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateTube = function (name, path, radius, tessellation, radiusFunction, cap, scene, updatable, sideOrientation, instance) {
var options = {
path: path,
radius: radius,
tessellation: tessellation,
radiusFunction: radiusFunction,
arc: 1,
cap: cap,
updatable: updatable,
sideOrientation: sideOrientation,
instance: instance
};
return BABYLON.MeshBuilder.CreateTube(name, options, scene);
};
/**
* Creates a polyhedron mesh.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `type` (positive integer, max 14, default 0) sets the polyhedron type to build among the 15 embbeded types. Please refer to the type sheet in the tutorial
* to choose the wanted type.
* The parameter `size` (positive float, default 1) sets the polygon size.
* You can overwrite the `size` on each dimension bu using the parameters `sizeX`, `sizeY` or `sizeZ` (positive floats, default to `size` value).
* You can build other polyhedron types than the 15 embbeded ones by setting the parameter `custom` (`polyhedronObject`, default null). If you set the parameter `custom`, this overwrittes the parameter `type`.
* A `polyhedronObject` is a formatted javascript object. You'll find a full file with pre-set polyhedra here : https://github.com/BabylonJS/Extensions/tree/master/Polyhedron
* You can set the color and the UV of each side of the polyhedron with the parameters `faceColors` (Color4, default `(1, 1, 1, 1)`) and faceUV (Vector4, default `(0, 0, 1, 1)`).
* To understand how to set `faceUV` or `faceColors`, please read this by considering the right number of faces of your polyhedron, instead of only 6 for the box : http://doc.babylonjs.com/tutorials/CreateBox_Per_Face_Textures_And_Colors
* The parameter `flat` (boolean, default true). If set to false, it gives the polyhedron a single global face, so less vertices and shared normals. In this case, `faceColors` and `faceUV` are ignored.
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreatePolyhedron = function (name, options, scene) {
return BABYLON.MeshBuilder.CreatePolyhedron(name, options, scene);
};
/**
* Creates a sphere based upon an icosahedron with 20 triangular faces which can be subdivided.
* Please consider using the same method from the MeshBuilder class instead.
* The parameter `radius` sets the radius size (float) of the icosphere (default 1).
* You can set some different icosphere dimensions, for instance to build an ellipsoid, by using the parameters `radiusX`, `radiusY` and `radiusZ` (all by default have the same value than `radius`).
* The parameter `subdivisions` sets the number of subdivisions (postive integer, default 4). The more subdivisions, the more faces on the icosphere whatever its size.
* The parameter `flat` (boolean, default true) gives each side its own normals. Set it to false to get a smooth continuous light reflection on the surface.
* You can also set the mesh side orientation with the values : BABYLON.Mesh.FRONTSIDE (default), BABYLON.Mesh.BACKSIDE or BABYLON.Mesh.DOUBLESIDE
* Detail here : http://doc.babylonjs.com/tutorials/02._Discover_Basic_Elements#side-orientation
* The mesh can be set to updatable with the boolean parameter `updatable` (default false) if its internal geometry is supposed to change once created.
*/
Mesh.CreateIcoSphere = function (name, options, scene) {
return BABYLON.MeshBuilder.CreateIcoSphere(name, options, scene);
};
/**
* Creates a decal mesh.
* Please consider using the same method from the MeshBuilder class instead.
* A decal is a mesh usually applied as a model onto the surface of another mesh. So don't forget the parameter `sourceMesh` depicting the decal.
* The parameter `position` (Vector3, default `(0, 0, 0)`) sets the position of the decal in World coordinates.
* The parameter `normal` (Vector3, default Vector3.Up) sets the normal of the mesh where the decal is applied onto in World coordinates.
* The parameter `size` (Vector3, default `(1, 1, 1)`) sets the decal scaling.
* The parameter `angle` (float in radian, default 0) sets the angle to rotate the decal.
*/
Mesh.CreateDecal = function (name, sourceMesh, position, normal, size, angle) {
var options = {
position: position,
normal: normal,
size: size,
angle: angle
};
return BABYLON.MeshBuilder.CreateDecal(name, sourceMesh, options);
};
// Skeletons
/**
* @returns original positions used for CPU skinning. Useful for integrating Morphing with skeletons in same mesh.
*/
Mesh.prototype.setPositionsForCPUSkinning = function () {
var source;
if (!this._sourcePositions) {
source = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
this._sourcePositions = new Float32Array(source);
if (!this.getVertexBuffer(BABYLON.VertexBuffer.PositionKind).isUpdatable()) {
this.setVerticesData(BABYLON.VertexBuffer.PositionKind, source, true);
}
}
return this._sourcePositions;
};
/**
* @returns original normals used for CPU skinning. Useful for integrating Morphing with skeletons in same mesh.
*/
Mesh.prototype.setNormalsForCPUSkinning = function () {
var source;
if (!this._sourceNormals) {
source = this.getVerticesData(BABYLON.VertexBuffer.NormalKind);
this._sourceNormals = new Float32Array(source);
if (!this.getVertexBuffer(BABYLON.VertexBuffer.NormalKind).isUpdatable()) {
this.setVerticesData(BABYLON.VertexBuffer.NormalKind, source, true);
}
}
return this._sourceNormals;
};
/**
* Update the vertex buffers by applying transformation from the bones
* @param {skeleton} skeleton to apply
*/
Mesh.prototype.applySkeleton = function (skeleton) {
if (!this.geometry) {
return;
}
if (this.geometry._softwareSkinningRenderId == this.getScene().getRenderId()) {
return;
}
this.geometry._softwareSkinningRenderId = this.getScene().getRenderId();
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.PositionKind)) {
return this;
}
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) {
return this;
}
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.MatricesIndicesKind)) {
return this;
}
if (!this.isVerticesDataPresent(BABYLON.VertexBuffer.MatricesWeightsKind)) {
return this;
}
if (!this._sourcePositions) {
var submeshes = this.subMeshes.slice();
this.setPositionsForCPUSkinning();
this.subMeshes = submeshes;
}
if (!this._sourceNormals) {
this.setNormalsForCPUSkinning();
}
// positionsData checks for not being Float32Array will only pass at most once
var positionsData = this.getVerticesData(BABYLON.VertexBuffer.PositionKind);
if (!(positionsData instanceof Float32Array)) {
positionsData = new Float32Array(positionsData);
}
// normalsData checks for not being Float32Array will only pass at most once
var normalsData = this.getVerticesData(BABYLON.VertexBuffer.NormalKind);
if (!(normalsData instanceof Float32Array)) {
normalsData = new Float32Array(normalsData);
}
var matricesIndicesData = this.getVerticesData(BABYLON.VertexBuffer.MatricesIndicesKind);
var matricesWeightsData = this.getVerticesData(BABYLON.VertexBuffer.MatricesWeightsKind);
var needExtras = this.numBoneInfluencers > 4;
var matricesIndicesExtraData = needExtras ? this.getVerticesData(BABYLON.VertexBuffer.MatricesIndicesExtraKind) : null;
var matricesWeightsExtraData = needExtras ? this.getVerticesData(BABYLON.VertexBuffer.MatricesWeightsExtraKind) : null;
var skeletonMatrices = skeleton.getTransformMatrices(this);
var tempVector3 = BABYLON.Vector3.Zero();
var finalMatrix = new BABYLON.Matrix();
var tempMatrix = new BABYLON.Matrix();
var matWeightIdx = 0;
var inf;
for (var index = 0; index < positionsData.length; index += 3, matWeightIdx += 4) {
var weight;
for (inf = 0; inf < 4; inf++) {
weight = matricesWeightsData[matWeightIdx + inf];
if (weight > 0) {
BABYLON.Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesData[matWeightIdx + inf] * 16, weight, tempMatrix);
finalMatrix.addToSelf(tempMatrix);
}
else
break;
}
if (needExtras) {
for (inf = 0; inf < 4; inf++) {
weight = matricesWeightsExtraData[matWeightIdx + inf];
if (weight > 0) {
BABYLON.Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesExtraData[matWeightIdx + inf] * 16, weight, tempMatrix);
finalMatrix.addToSelf(tempMatrix);
}
else
break;
}
}
BABYLON.Vector3.TransformCoordinatesFromFloatsToRef(this._sourcePositions[index], this._sourcePositions[index + 1], this._sourcePositions[index + 2], finalMatrix, tempVector3);
tempVector3.toArray(positionsData, index);
BABYLON.Vector3.TransformNormalFromFloatsToRef(this._sourceNormals[index], this._sourceNormals[index + 1], this._sourceNormals[index + 2], finalMatrix, tempVector3);
tempVector3.toArray(normalsData, index);
finalMatrix.reset();
}
this.updateVerticesData(BABYLON.VertexBuffer.PositionKind, positionsData);
this.updateVerticesData(BABYLON.VertexBuffer.NormalKind, normalsData);
return this;
};
// Tools
/**
* Returns an object `{min:` Vector3`, max:` Vector3`}`
* This min and max Vector3 are the minimum and maximum vectors of each mesh bounding box from the passed array, in the World system
*/
Mesh.MinMax = function (meshes) {
var minVector = null;
var maxVector = null;
meshes.forEach(function (mesh, index, array) {
var boundingBox = mesh.getBoundingInfo().boundingBox;
if (!minVector) {
minVector = boundingBox.minimumWorld;
maxVector = boundingBox.maximumWorld;
}
else {
minVector.MinimizeInPlace(boundingBox.minimumWorld);
maxVector.MaximizeInPlace(boundingBox.maximumWorld);
}
});
return {
min: minVector,
max: maxVector
};
};
/**
* Returns a Vector3, the center of the `{min:` Vector3`, max:` Vector3`}` or the center of MinMax vector3 computed from a mesh array.
*/
Mesh.Center = function (meshesOrMinMaxVector) {
var minMaxVector = (meshesOrMinMaxVector instanceof Array) ? BABYLON.Mesh.MinMax(meshesOrMinMaxVector) : meshesOrMinMaxVector;
return BABYLON.Vector3.Center(minMaxVector.min, minMaxVector.max);
};
/**
* Merge the array of meshes into a single mesh for performance reasons.
* @param {Array} meshes - The vertices source. They should all be of the same material. Entries can empty
* @param {boolean} disposeSource - When true (default), dispose of the vertices from the source meshes
* @param {boolean} allow32BitsIndices - When the sum of the vertices > 64k, this must be set to true.
* @param {Mesh} meshSubclass - When set, vertices inserted into this Mesh. Meshes can then be merged into a Mesh sub-class.
*/
Mesh.MergeMeshes = function (meshes, disposeSource, allow32BitsIndices, meshSubclass) {
if (disposeSource === void 0) { disposeSource = true; }
var index;
if (!allow32BitsIndices) {
var totalVertices = 0;
// Counting vertices
for (index = 0; index < meshes.length; index++) {
if (meshes[index]) {
totalVertices += meshes[index].getTotalVertices();
if (totalVertices > 65536) {
BABYLON.Tools.Warn("Cannot merge meshes because resulting mesh will have more than 65536 vertices. Please use allow32BitsIndices = true to use 32 bits indices");
return null;
}
}
}
}
// Merge
var vertexData;
var otherVertexData;
var source;
for (index = 0; index < meshes.length; index++) {
if (meshes[index]) {
meshes[index].computeWorldMatrix(true);
otherVertexData = BABYLON.VertexData.ExtractFromMesh(meshes[index], true);
otherVertexData.transform(meshes[index].getWorldMatrix());
if (vertexData) {
vertexData.merge(otherVertexData);
}
else {
vertexData = otherVertexData;
source = meshes[index];
}
}
}
if (!meshSubclass) {
meshSubclass = new Mesh(source.name + "_merged", source.getScene());
}
vertexData.applyToMesh(meshSubclass);
// Setting properties
meshSubclass.material = source.material;
meshSubclass.checkCollisions = source.checkCollisions;
// Cleaning
if (disposeSource) {
for (index = 0; index < meshes.length; index++) {
if (meshes[index]) {
meshes[index].dispose();
}
}
}
return meshSubclass;
};
// Consts
Mesh._FRONTSIDE = 0;
Mesh._BACKSIDE = 1;
Mesh._DOUBLESIDE = 2;
Mesh._DEFAULTSIDE = 0;
Mesh._NO_CAP = 0;
Mesh._CAP_START = 1;
Mesh._CAP_END = 2;
Mesh._CAP_ALL = 3;
return Mesh;
}(BABYLON.AbstractMesh));
BABYLON.Mesh = Mesh;
})(BABYLON || (BABYLON = {}));