import { Nullable, IndicesArray, FloatArray } from "../types"; import { Vector3, Matrix, TmpVectors, Quaternion } from "../Maths/math.vector"; import { Color4 } from '../Maths/math.color'; import { VertexBuffer } from "../Meshes/buffer"; import { VertexData } from "../Meshes/mesh.vertexData"; import { Mesh } from "../Meshes/mesh"; import { DiscBuilder } from "../Meshes/Builders/discBuilder"; import { EngineStore } from "../Engines/engineStore"; import { Scene, IDisposable } from "../scene"; import { DepthSortedParticle, SolidParticle, ModelShape } from "./solidParticle"; import { TargetCamera } from "../Cameras/targetCamera"; import { BoundingInfo } from "../Culling/boundingInfo"; import { Axis } from '../Maths/math.axis'; const depthSortFunction = (p1: DepthSortedParticle, p2: DepthSortedParticle) => p2.sqDistance - p1.sqDistance; /** * The SPS is a single updatable mesh. The solid particles are simply separate parts or faces fo this big mesh. *As it is just a mesh, the SPS has all the same properties than any other BJS mesh : not more, not less. It can be scaled, rotated, translated, enlighted, textured, moved, etc. * The SPS is also a particle system. It provides some methods to manage the particles. * However it is behavior agnostic. This means it has no emitter, no particle physics, no particle recycler. You have to implement your own behavior. * * Full documentation here : http://doc.babylonjs.com/how_to/Solid_Particle_System */ export class SolidParticleSystem implements IDisposable { /** * The SPS array of Solid Particle objects. Just access each particle as with any classic array. * Example : var p = SPS.particles[i]; */ public particles: SolidParticle[] = new Array(); /** * The SPS total number of particles. Read only. Use SPS.counter instead if you need to set your own value. */ public nbParticles: number = 0; /** * If the particles must ever face the camera (default false). Useful for planar particles. */ public billboard: boolean = false; /** * Recompute normals when adding a shape */ public recomputeNormals: boolean = true; /** * This a counter ofr your own usage. It's not set by any SPS functions. */ public counter: number = 0; /** * The SPS name. This name is also given to the underlying mesh. */ public name: string; /** * The SPS mesh. It's a standard BJS Mesh, so all the methods from the Mesh class are avalaible. */ public mesh: Mesh; /** * This empty object is intended to store some SPS specific or temporary values in order to lower the Garbage Collector activity. * Please read : http://doc.babylonjs.com/how_to/Solid_Particle_System#garbage-collector-concerns */ public vars: any = {}; /** * This array is populated when the SPS is set as 'pickable'. * Each key of this array is a `faceId` value that you can get from a pickResult object. * Each element of this array is an object `{idx: int, faceId: int}`. * `idx` is the picked particle index in the `SPS.particles` array * `faceId` is the picked face index counted within this particle. * Please read : http://doc.babylonjs.com/how_to/Solid_Particle_System#pickable-particles */ public pickedParticles: { idx: number; faceId: number }[]; /** * This array is populated when `enableDepthSort` is set to true. * Each element of this array is an instance of the class DepthSortedParticle. */ public depthSortedParticles: DepthSortedParticle[]; /** * If the particle intersection must be computed only with the bounding sphere (no bounding box computation, so faster). (Internal use only) * @hidden */ public _bSphereOnly: boolean = false; /** * A number to multiply the boundind sphere radius by in order to reduce it for instance. (Internal use only) * @hidden */ public _bSphereRadiusFactor: number = 1.0; private _scene: Scene; private _positions: number[] = new Array(); private _indices: number[] = new Array(); private _normals: number[] = new Array(); private _colors: number[] = new Array(); private _uvs: number[] = new Array(); private _indices32: IndicesArray; // used as depth sorted array if depth sort enabled, else used as typed indices private _positions32: Float32Array; // updated positions for the VBO private _normals32: Float32Array; // updated normals for the VBO private _fixedNormal32: Float32Array; // initial normal references private _colors32: Float32Array; private _uvs32: Float32Array; private _index: number = 0; // indices index private _updatable: boolean = true; private _pickable: boolean = false; private _isVisibilityBoxLocked = false; private _alwaysVisible: boolean = false; private _depthSort: boolean = false; private _expandable: boolean = false; private _shapeCounter: number = 0; private _copy: SolidParticle = new SolidParticle(0, 0, 0, null, 0, 0, this); private _color: Color4 = new Color4(0, 0, 0, 0); private _computeParticleColor: boolean = true; private _computeParticleTexture: boolean = true; private _computeParticleRotation: boolean = true; private _computeParticleVertex: boolean = false; private _computeBoundingBox: boolean = false; private _depthSortParticles: boolean = true; private _camera: TargetCamera; private _mustUnrotateFixedNormals = false; private _particlesIntersect: boolean = false; private _needs32Bits: boolean = false; private _isNotBuilt: boolean = true; /** * Creates a SPS (Solid Particle System) object. * @param name (String) is the SPS name, this will be the underlying mesh name. * @param scene (Scene) is the scene in which the SPS is added. * @param options defines the options of the sps e.g. * * updatable (optional boolean, default true) : if the SPS must be updatable or immutable. * * isPickable (optional boolean, default false) : if the solid particles must be pickable. * * enableDepthSort (optional boolean, default false) : if the solid particles must be sorted in the geometry according to their distance to the camera. * * expandable (optional boolean, default false) : if particles can still be added after the initial SPS mesh creation. * * particleIntersection (optional boolean, default false) : if the solid particle intersections must be computed. * * boundingSphereOnly (optional boolean, default false) : if the particle intersection must be computed only with the bounding sphere (no bounding box computation, so faster). * * bSphereRadiusFactor (optional float, default 1.0) : a number to multiply the boundind sphere radius by in order to reduce it for instance. * @example bSphereRadiusFactor = 1.0 / Math.sqrt(3.0) => the bounding sphere exactly matches a spherical mesh. */ constructor(name: string, scene: Scene, options?: { updatable?: boolean; isPickable?: boolean; enableDepthSort?: boolean; particleIntersection?: boolean; boundingSphereOnly?: boolean; bSphereRadiusFactor?: number; expandable?: boolean }) { this.name = name; this._scene = scene || EngineStore.LastCreatedScene; this._camera = scene.activeCamera; this._pickable = options ? options.isPickable : false; this._depthSort = options ? options.enableDepthSort : false; this._expandable = options ? options.expandable : false; this._particlesIntersect = options ? options.particleIntersection : false; this._bSphereOnly = options ? options.boundingSphereOnly : false; this._bSphereRadiusFactor = (options && options.bSphereRadiusFactor) ? options.bSphereRadiusFactor : 1.0; if (options && options.updatable !== undefined) { this._updatable = options.updatable; } else { this._updatable = true; } if (this._pickable) { this.pickedParticles = []; } if (this._depthSort) { this.depthSortedParticles = []; } } /** * Builds the SPS underlying mesh. Returns a standard Mesh. * If no model shape was added to the SPS, the returned mesh is just a single triangular plane. * @returns the created mesh */ public buildMesh(): Mesh { if (!this._isNotBuilt && this.mesh) { return this.mesh; } if (this.nbParticles === 0 && !this.mesh) { var triangle = DiscBuilder.CreateDisc("", { radius: 1, tessellation: 3 }, this._scene); this.addShape(triangle, 1); triangle.dispose(); } this._indices32 = (this._needs32Bits) ? new Uint32Array(this._indices) : new Uint16Array(this._indices); this._positions32 = new Float32Array(this._positions); this._uvs32 = new Float32Array(this._uvs); this._colors32 = new Float32Array(this._colors); if (this.recomputeNormals) { VertexData.ComputeNormals(this._positions32, this._indices32, this._normals); } this._normals32 = new Float32Array(this._normals); this._fixedNormal32 = new Float32Array(this._normals); if (this._mustUnrotateFixedNormals) { // the particles could be created already rotated in the mesh with a positionFunction this._unrotateFixedNormals(); } var vertexData = new VertexData(); vertexData.indices = (this._depthSort) ? this._indices : this._indices32; vertexData.set(this._positions32, VertexBuffer.PositionKind); vertexData.set(this._normals32, VertexBuffer.NormalKind); if (this._uvs32.length > 0) { vertexData.set(this._uvs32, VertexBuffer.UVKind); } if (this._colors32.length > 0) { vertexData.set(this._colors32, VertexBuffer.ColorKind); } if (!this.mesh) { // in case it's already expanded var mesh = new Mesh(this.name, this._scene); this.mesh = mesh; } vertexData.applyToMesh(this.mesh, this._updatable); this.mesh.isPickable = this._pickable; if (!this._expandable) { // free memory if (!this._depthSort) { (this._indices) = null; } (this._positions) = null; (this._normals) = null; (this._uvs) = null; (this._colors) = null; if (!this._updatable) { this.particles.length = 0; } } this._isNotBuilt = false; return this.mesh; } /** * Digests the mesh and generates as many solid particles in the system as wanted. Returns the SPS. * These particles will have the same geometry than the mesh parts and will be positioned at the same localisation than the mesh original places. * Thus the particles generated from `digest()` have their property `position` set yet. * @param mesh ( Mesh ) is the mesh to be digested * @param options {facetNb} (optional integer, default 1) is the number of mesh facets per particle, this parameter is overriden by the parameter `number` if any * {delta} (optional integer, default 0) is the random extra number of facets per particle , each particle will have between `facetNb` and `facetNb + delta` facets * {number} (optional positive integer) is the wanted number of particles : each particle is built with `mesh_total_facets / number` facets * @returns the current SPS */ public digest(mesh: Mesh, options?: { facetNb?: number; number?: number; delta?: number }): SolidParticleSystem { var size: number = (options && options.facetNb) || 1; var number: number = (options && options.number) || 0; var delta: number = (options && options.delta) || 0; var meshPos = mesh.getVerticesData(VertexBuffer.PositionKind); var meshInd = mesh.getIndices(); var meshUV = mesh.getVerticesData(VertexBuffer.UVKind); var meshCol = mesh.getVerticesData(VertexBuffer.ColorKind); var meshNor = mesh.getVerticesData(VertexBuffer.NormalKind); var f: number = 0; // facet counter var totalFacets: number = meshInd.length / 3; // a facet is a triangle, so 3 indices // compute size from number if (number) { number = (number > totalFacets) ? totalFacets : number; size = Math.round(totalFacets / number); delta = 0; } else { size = (size > totalFacets) ? totalFacets : size; } var facetPos: number[] = []; // submesh positions var facetNor: number[] = []; var facetInd: number[] = []; // submesh indices var facetUV: number[] = []; // submesh UV var facetCol: number[] = []; // submesh colors var barycenter: Vector3 = Vector3.Zero(); var sizeO: number = size; while (f < totalFacets) { size = sizeO + Math.floor((1 + delta) * Math.random()); if (f > totalFacets - size) { size = totalFacets - f; } // reset temp arrays facetPos.length = 0; facetNor.length = 0; facetInd.length = 0; facetUV.length = 0; facetCol.length = 0; // iterate over "size" facets var fi: number = 0; for (var j = f * 3; j < (f + size) * 3; j++) { facetInd.push(fi); var i: number = meshInd[j]; var i3: number = i * 3; facetPos.push(meshPos[i3], meshPos[i3 + 1], meshPos[i3 + 2]); facetNor.push(meshNor[i3], meshNor[i3 + 1], meshNor[i3 + 2]); if (meshUV) { var i2: number = i * 2; facetUV.push(meshUV[i2], meshUV[i2 + 1]); } if (meshCol) { var i4: number = i * 4; facetCol.push(meshCol[i4], meshCol[i4 + 1], meshCol[i4 + 2], meshCol[i4 + 3]); } fi++; } // create a model shape for each single particle var idx: number = this.nbParticles; var shape: Vector3[] = this._posToShape(facetPos); var shapeUV: number[] = this._uvsToShapeUV(facetUV); var shapeInd = Array.from(facetInd); var shapeCol = Array.from(facetCol); var shapeNor = Array.from(facetNor); // compute the barycenter of the shape barycenter.copyFromFloats(0, 0, 0); var v: number; for (v = 0; v < shape.length; v++) { barycenter.addInPlace(shape[v]); } barycenter.scaleInPlace(1 / shape.length); // shift the shape from its barycenter to the origin // and compute the BBox required for intersection. var minimum: Vector3 = new Vector3(Infinity, Infinity, Infinity); var maximum: Vector3 = new Vector3(-Infinity, -Infinity, -Infinity); for (v = 0; v < shape.length; v++) { shape[v].subtractInPlace(barycenter); minimum.minimizeInPlaceFromFloats(shape[v].x, shape[v].y, shape[v].z); maximum.maximizeInPlaceFromFloats(shape[v].x, shape[v].y, shape[v].z); } var bInfo; if (this._particlesIntersect) { bInfo = new BoundingInfo(minimum, maximum); } var modelShape = new ModelShape(this._shapeCounter, shape, shapeInd, shapeNor, shapeCol, shapeUV, null, null); // add the particle in the SPS var currentPos = this._positions.length; var currentInd = this._indices.length; this._meshBuilder(this._index, shape, this._positions, shapeInd, this._indices, facetUV, this._uvs, shapeCol, this._colors, shapeNor, this._normals, idx, 0, null); this._addParticle(idx, currentPos, currentInd, modelShape, this._shapeCounter, 0, bInfo); // initialize the particle position this.particles[this.nbParticles].position.addInPlace(barycenter); this._index += shape.length; idx++; this.nbParticles++; this._shapeCounter++; f += size; } this._isNotBuilt = true; // buildMesh() is now expected for setParticles() to work return this; } // unrotate the fixed normals in case the mesh was built with pre-rotated particles, ex : use of positionFunction in addShape() private _unrotateFixedNormals() { var index = 0; var idx = 0; const tmpNormal = TmpVectors.Vector3[0]; const quaternion = TmpVectors.Quaternion[0]; const invertedRotMatrix = TmpVectors.Matrix[0]; for (var p = 0; p < this.particles.length; p++) { const particle = this.particles[p]; const shape = particle._model._shape; // computing the inverse of the rotation matrix from the quaternion // is equivalent to computing the matrix of the inverse quaternion, i.e of the conjugate quaternion if (particle.rotationQuaternion) { particle.rotationQuaternion.conjugateToRef(quaternion); } else { const rotation = particle.rotation; Quaternion.RotationYawPitchRollToRef(rotation.y, rotation.x, rotation.z, quaternion); quaternion.conjugateInPlace(); } quaternion.toRotationMatrix(invertedRotMatrix); for (var pt = 0; pt < shape.length; pt++) { idx = index + pt * 3; Vector3.TransformNormalFromFloatsToRef(this._normals32[idx], this._normals32[idx + 1], this._normals32[idx + 2], invertedRotMatrix, tmpNormal); tmpNormal.toArray(this._fixedNormal32, idx); } index = idx + 3; } } //reset copy private _resetCopy() { const copy = this._copy; copy.position.setAll(0); copy.rotation.setAll(0); copy.rotationQuaternion = null; copy.scaling.setAll(1); copy.uvs.copyFromFloats(0.0, 0.0, 1.0, 1.0); copy.color = null; copy.translateFromPivot = false; } // _meshBuilder : inserts the shape model in the global SPS mesh private _meshBuilder(p: number, shape: Vector3[], positions: number[], meshInd: IndicesArray, indices: number[], meshUV: number[] | Float32Array, uvs: number[], meshCol: number[] | Float32Array, colors: number[], meshNor: number[] | Float32Array, normals: number[], idx: number, idxInShape: number, options: any): SolidParticle { var i; var u = 0; var c = 0; var n = 0; this._resetCopy(); const copy = this._copy; copy.idx = idx; copy.idxInShape = idxInShape; if (options && options.positionFunction) { // call to custom positionFunction options.positionFunction(copy, idx, idxInShape); this._mustUnrotateFixedNormals = true; } const rotMatrix = TmpVectors.Matrix[0]; const tmpVertex = TmpVectors.Vector3[0]; const tmpRotated = TmpVectors.Vector3[1]; const pivotBackTranslation = TmpVectors.Vector3[2]; const scaledPivot = TmpVectors.Vector3[3]; copy.getRotationMatrix(rotMatrix); copy.pivot.multiplyToRef(copy.scaling, scaledPivot); if (copy.translateFromPivot) { pivotBackTranslation.setAll(0.0); } else { pivotBackTranslation.copyFrom(scaledPivot); } for (i = 0; i < shape.length; i++) { tmpVertex.copyFrom(shape[i]); if (options && options.vertexFunction) { options.vertexFunction(copy, tmpVertex, i); } tmpVertex.multiplyInPlace(copy.scaling).subtractInPlace(scaledPivot); Vector3.TransformCoordinatesToRef(tmpVertex, rotMatrix, tmpRotated); tmpRotated.addInPlace(pivotBackTranslation).addInPlace(copy.position); positions.push(tmpRotated.x, tmpRotated.y, tmpRotated.z); if (meshUV) { const copyUvs = copy.uvs; uvs.push((copyUvs.z - copyUvs.x) * meshUV[u] + copyUvs.x, (copyUvs.w - copyUvs.y) * meshUV[u + 1] + copyUvs.y); u += 2; } if (copy.color) { this._color = copy.color; } else { const color = this._color; if (meshCol && meshCol[c] !== undefined) { color.r = meshCol[c]; color.g = meshCol[c + 1]; color.b = meshCol[c + 2]; color.a = meshCol[c + 3]; } else { color.r = 1.0; color.g = 1.0; color.b = 1.0; color.a = 1.0; } } colors.push(this._color.r, this._color.g, this._color.b, this._color.a); c += 4; if (!this.recomputeNormals && meshNor) { tmpVertex.x = meshNor[n]; tmpVertex.y = meshNor[n + 1]; tmpVertex.z = meshNor[n + 2]; Vector3.TransformNormalToRef(tmpVertex, rotMatrix, tmpVertex); normals.push(tmpVertex.x, tmpVertex.y, tmpVertex.z); n += 3; } } for (i = 0; i < meshInd.length; i++) { var current_ind = p + meshInd[i]; indices.push(current_ind); if (current_ind > 65535) { this._needs32Bits = true; } } if (this._pickable) { var nbfaces = meshInd.length / 3; for (i = 0; i < nbfaces; i++) { this.pickedParticles.push({ idx: idx, faceId: i }); } } if (this._depthSort) { this.depthSortedParticles.push(new DepthSortedParticle()); } return copy; } // returns a shape array from positions array private _posToShape(positions: number[] | Float32Array): Vector3[] { var shape = []; for (var i = 0; i < positions.length; i += 3) { shape.push(Vector3.FromArray(positions, i)); } return shape; } // returns a shapeUV array from a Vector4 uvs private _uvsToShapeUV(uvs: number[] | Float32Array): number[] { var shapeUV = []; if (uvs) { for (var i = 0; i < uvs.length; i++) { shapeUV.push(uvs[i]); } } return shapeUV; } // adds a new particle object in the particles array private _addParticle(idx: number, idxpos: number, idxind: number, model: ModelShape, shapeId: number, idxInShape: number, bInfo: Nullable = null): SolidParticle { var sp = new SolidParticle(idx, idxpos, idxind, model, shapeId, idxInShape, this, bInfo); this.particles.push(sp); return sp; } /** * Adds some particles to the SPS from the model shape. Returns the shape id. * Please read the doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#create-an-immutable-sps * @param mesh is any Mesh object that will be used as a model for the solid particles. * @param nb (positive integer) the number of particles to be created from this model * @param options {positionFunction} is an optional javascript function to called for each particle on SPS creation. * {vertexFunction} is an optional javascript function to called for each vertex of each particle on SPS creation * @returns the number of shapes in the system */ public addShape(mesh: Mesh, nb: number, options?: { positionFunction?: any; vertexFunction?: any }): number { var meshPos = mesh.getVerticesData(VertexBuffer.PositionKind); var meshInd = mesh.getIndices(); var meshUV = mesh.getVerticesData(VertexBuffer.UVKind); var meshCol = mesh.getVerticesData(VertexBuffer.ColorKind); var meshNor = mesh.getVerticesData(VertexBuffer.NormalKind); var indices = Array.from(meshInd); var shapeNormals = Array.from(meshNor); var shapeColors = (meshCol) ? Array.from(meshCol) : []; var bbInfo; if (this._particlesIntersect) { bbInfo = mesh.getBoundingInfo(); } var shape = this._posToShape(meshPos); var shapeUV = this._uvsToShapeUV(meshUV); var posfunc = options ? options.positionFunction : null; var vtxfunc = options ? options.vertexFunction : null; var modelShape = new ModelShape(this._shapeCounter, shape, indices, shapeNormals, shapeColors, shapeUV, posfunc, vtxfunc); // particles var sp; var currentCopy; var idx = this.nbParticles; for (var i = 0; i < nb; i++) { var currentPos = this._positions.length; var currentInd = this._indices.length; currentCopy = this._meshBuilder(this._index, shape, this._positions, meshInd, this._indices, meshUV, this._uvs, meshCol, this._colors, meshNor, this._normals, idx, i, options); if (this._updatable) { sp = this._addParticle(idx, currentPos, currentInd, modelShape, this._shapeCounter, i, bbInfo); sp.position.copyFrom(currentCopy.position); sp.rotation.copyFrom(currentCopy.rotation); if (currentCopy.rotationQuaternion && sp.rotationQuaternion) { sp.rotationQuaternion.copyFrom(currentCopy.rotationQuaternion); } if (currentCopy.color && sp.color) { sp.color.copyFrom(currentCopy.color); } sp.scaling.copyFrom(currentCopy.scaling); sp.uvs.copyFrom(currentCopy.uvs); } this._index += shape.length; idx++; } this.nbParticles += nb; this._shapeCounter++; this._isNotBuilt = true; // buildMesh() is now expected for setParticles() to work return this._shapeCounter - 1; } // rebuilds a particle back to its just built status : if needed, recomputes the custom positions and vertices private _rebuildParticle(particle: SolidParticle, reset: boolean = false): void { this._resetCopy(); const copy = this._copy; if (particle._model._positionFunction) { // recall to stored custom positionFunction particle._model._positionFunction(copy, particle.idx, particle.idxInShape); } const rotMatrix = TmpVectors.Matrix[0]; const tmpVertex = TmpVectors.Vector3[0]; const tmpRotated = TmpVectors.Vector3[1]; const pivotBackTranslation = TmpVectors.Vector3[2]; const scaledPivot = TmpVectors.Vector3[3]; copy.getRotationMatrix(rotMatrix); particle.pivot.multiplyToRef(particle.scaling, scaledPivot); if (copy.translateFromPivot) { pivotBackTranslation.copyFromFloats(0.0, 0.0, 0.0); } else { pivotBackTranslation.copyFrom(scaledPivot); } const shape = particle._model._shape; for (var pt = 0; pt < shape.length; pt++) { tmpVertex.copyFrom(shape[pt]); if (particle._model._vertexFunction) { particle._model._vertexFunction(copy, tmpVertex, pt); // recall to stored vertexFunction } tmpVertex.multiplyInPlace(copy.scaling).subtractInPlace(scaledPivot); Vector3.TransformCoordinatesToRef(tmpVertex, rotMatrix, tmpRotated); tmpRotated.addInPlace(pivotBackTranslation).addInPlace(copy.position).toArray(this._positions32, particle._pos + pt * 3); } if (reset) { particle.position.setAll(0.0); particle.rotation.setAll(0.0); particle.rotationQuaternion = null; particle.scaling.setAll(1.0); particle.uvs.setAll(0.0); particle.pivot.setAll(0.0); particle.translateFromPivot = false; particle.parentId = null; } } /** * Rebuilds the whole mesh and updates the VBO : custom positions and vertices are recomputed if needed. * @param reset boolean, default false : if the particles must be reset at position and rotation zero, scaling 1, color white, initial UVs and not parented. * @returns the SPS. */ public rebuildMesh(reset: boolean = false): SolidParticleSystem { for (var p = 0; p < this.particles.length; p++) { this._rebuildParticle(this.particles[p], reset); } this.mesh.updateVerticesData(VertexBuffer.PositionKind, this._positions32, false, false); return this; } /** Removes the particles from the start-th to the end-th included from an expandable SPS (required). * Returns an array with the removed particles. * If the number of particles to remove is lower than zero or greater than the global remaining particle number, then an empty array is returned. * The SPS can't be empty so at least one particle needs to remain in place. * Under the hood, the VertexData array, so the VBO buffer, is recreated each call. * @param start index of the first particle to remove * @param end index of the last particle to remove (included) * @returns an array populated with the removed particles */ public removeParticles(start: number, end: number): SolidParticle[] { var nb = end - start + 1; if (!this._expandable || nb <= 0 || nb >= this.nbParticles) { return []; } const particles = this.particles; const currentNb = this.nbParticles; if (end < currentNb - 1) { // update the particle indexes in the positions array in case they're remaining particles after the last removed var startPositionIndex = particles[start]._pos; var firstRemaining = end + 1; var shift = particles[firstRemaining]._pos - startPositionIndex; for (var i = firstRemaining; i < currentNb; i++) { particles[i]._pos -= shift; } } var removed = particles.splice(start, nb); this._positions.length = 0; this._indices.length = 0; this._colors.length = 0; this._uvs.length = 0; this._normals.length = 0; this._index = 0; const particlesLength = particles.length; for (var p = 0; p < particlesLength; p++) { var particle = particles[p]; var model = particle._model; var shape = model._shape; var modelIndices = model._indices; var modelNormals = model._normals; var modelColors = model._shapeColors; var modelUVs = model._shapeUV; this._meshBuilder(this._index, shape, this._positions, modelIndices, this._indices, modelUVs, this._uvs, modelColors, this._colors, modelNormals, this._normals, particle.idx, particle.idxInShape, null); this._index += shape.length; } this.nbParticles -= nb; this._isNotBuilt = true; // buildMesh() is now expected for setParticles() to work return removed; } /** * Sets all the particles : this method actually really updates the mesh according to the particle positions, rotations, colors, textures, etc. * This method calls `updateParticle()` for each particle of the SPS. * For an animated SPS, it is usually called within the render loop. * This methods does nothing if called on a non updatable or not yet built SPS. Example : buildMesh() not called after having added or removed particles from an expandable SPS. * @param start The particle index in the particle array where to start to compute the particle property values _(default 0)_ * @param end The particle index in the particle array where to stop to compute the particle property values _(default nbParticle - 1)_ * @param update If the mesh must be finally updated on this call after all the particle computations _(default true)_ * @returns the SPS. */ public setParticles(start: number = 0, end: number = this.nbParticles - 1, update: boolean = true): SolidParticleSystem { if (!this._updatable || this._isNotBuilt) { return this; } // custom beforeUpdate this.beforeUpdateParticles(start, end, update); const rotMatrix = TmpVectors.Matrix[0]; const invertedMatrix = TmpVectors.Matrix[1]; const mesh = this.mesh; const colors32 = this._colors32; const positions32 = this._positions32; const normals32 = this._normals32; const uvs32 = this._uvs32; const indices32 = this._indices32; const indices = this._indices; const fixedNormal32 = this._fixedNormal32; const tempVectors = TmpVectors.Vector3; const camAxisX = tempVectors[5].copyFromFloats(1.0, 0.0, 0.0); const camAxisY = tempVectors[6].copyFromFloats(0.0, 1.0, 0.0); const camAxisZ = tempVectors[7].copyFromFloats(0.0, 0.0, 1.0); const minimum = tempVectors[8].setAll(Number.MAX_VALUE); const maximum = tempVectors[9].setAll(-Number.MAX_VALUE); const camInvertedPosition = tempVectors[10].setAll(0); // cases when the World Matrix is to be computed first if (this.billboard || this._depthSort) { this.mesh.computeWorldMatrix(true); this.mesh._worldMatrix.invertToRef(invertedMatrix); } // if the particles will always face the camera if (this.billboard) { // compute the camera position and un-rotate it by the current mesh rotation const tmpVertex = tempVectors[0]; this._camera.getDirectionToRef(Axis.Z, tmpVertex); Vector3.TransformNormalToRef(tmpVertex, invertedMatrix, camAxisZ); camAxisZ.normalize(); // same for camera up vector extracted from the cam view matrix var view = this._camera.getViewMatrix(true); Vector3.TransformNormalFromFloatsToRef(view.m[1], view.m[5], view.m[9], invertedMatrix, camAxisY); Vector3.CrossToRef(camAxisY, camAxisZ, camAxisX); camAxisY.normalize(); camAxisX.normalize(); } // if depthSort, compute the camera global position in the mesh local system if (this._depthSort) { Vector3.TransformCoordinatesToRef(this._camera.globalPosition, invertedMatrix, camInvertedPosition); // then un-rotate the camera } Matrix.IdentityToRef(rotMatrix); var idx = 0; // current position index in the global array positions32 var index = 0; // position start index in the global array positions32 of the current particle var colidx = 0; // current color index in the global array colors32 var colorIndex = 0; // color start index in the global array colors32 of the current particle var uvidx = 0; // current uv index in the global array uvs32 var uvIndex = 0; // uv start index in the global array uvs32 of the current particle var pt = 0; // current index in the particle model shape if (this.mesh.isFacetDataEnabled) { this._computeBoundingBox = true; } end = (end >= this.nbParticles) ? this.nbParticles - 1 : end; if (this._computeBoundingBox) { if (start != 0 || end != this.nbParticles - 1) { // only some particles are updated, then use the current existing BBox basis. Note : it can only increase. const boundingInfo = this.mesh._boundingInfo; if (boundingInfo) { minimum.copyFrom(boundingInfo.minimum); maximum.copyFrom(boundingInfo.maximum); } } } // particle loop index = this.particles[start]._pos; const vpos = (index / 3) | 0; colorIndex = vpos * 4; uvIndex = vpos * 2; for (var p = start; p <= end; p++) { const particle = this.particles[p]; // call to custom user function to update the particle properties this.updateParticle(particle); const shape = particle._model._shape; const shapeUV = particle._model._shapeUV; const particleRotationMatrix = particle._rotationMatrix; const particlePosition = particle.position; const particleRotation = particle.rotation; const particleScaling = particle.scaling; const particleGlobalPosition = particle._globalPosition; // camera-particle distance for depth sorting if (this._depthSort && this._depthSortParticles) { var dsp = this.depthSortedParticles[p]; dsp.ind = particle._ind; dsp.indicesLength = particle._model._indicesLength; dsp.sqDistance = Vector3.DistanceSquared(particle.position, camInvertedPosition); } // skip the computations for inactive or already invisible particles if (!particle.alive || (particle._stillInvisible && !particle.isVisible)) { // increment indexes for the next particle pt = shape.length; index += pt * 3; colorIndex += pt * 4; uvIndex += pt * 2; continue; } if (particle.isVisible) { particle._stillInvisible = false; // un-mark permanent invisibility const scaledPivot = tempVectors[12]; particle.pivot.multiplyToRef(particleScaling, scaledPivot); // particle rotation matrix if (this.billboard) { particleRotation.x = 0.0; particleRotation.y = 0.0; } if (this._computeParticleRotation || this.billboard) { particle.getRotationMatrix(rotMatrix); } const particleHasParent = (particle.parentId !== null); if (particleHasParent) { const parent = this.particles[particle.parentId!]; const parentRotationMatrix = parent._rotationMatrix; const parentGlobalPosition = parent._globalPosition; const rotatedY = particlePosition.x * parentRotationMatrix[1] + particlePosition.y * parentRotationMatrix[4] + particlePosition.z * parentRotationMatrix[7]; const rotatedX = particlePosition.x * parentRotationMatrix[0] + particlePosition.y * parentRotationMatrix[3] + particlePosition.z * parentRotationMatrix[6]; const rotatedZ = particlePosition.x * parentRotationMatrix[2] + particlePosition.y * parentRotationMatrix[5] + particlePosition.z * parentRotationMatrix[8]; particleGlobalPosition.x = parentGlobalPosition.x + rotatedX; particleGlobalPosition.y = parentGlobalPosition.y + rotatedY; particleGlobalPosition.z = parentGlobalPosition.z + rotatedZ; if (this._computeParticleRotation || this.billboard) { const rotMatrixValues = rotMatrix.m; particleRotationMatrix[0] = rotMatrixValues[0] * parentRotationMatrix[0] + rotMatrixValues[1] * parentRotationMatrix[3] + rotMatrixValues[2] * parentRotationMatrix[6]; particleRotationMatrix[1] = rotMatrixValues[0] * parentRotationMatrix[1] + rotMatrixValues[1] * parentRotationMatrix[4] + rotMatrixValues[2] * parentRotationMatrix[7]; particleRotationMatrix[2] = rotMatrixValues[0] * parentRotationMatrix[2] + rotMatrixValues[1] * parentRotationMatrix[5] + rotMatrixValues[2] * parentRotationMatrix[8]; particleRotationMatrix[3] = rotMatrixValues[4] * parentRotationMatrix[0] + rotMatrixValues[5] * parentRotationMatrix[3] + rotMatrixValues[6] * parentRotationMatrix[6]; particleRotationMatrix[4] = rotMatrixValues[4] * parentRotationMatrix[1] + rotMatrixValues[5] * parentRotationMatrix[4] + rotMatrixValues[6] * parentRotationMatrix[7]; particleRotationMatrix[5] = rotMatrixValues[4] * parentRotationMatrix[2] + rotMatrixValues[5] * parentRotationMatrix[5] + rotMatrixValues[6] * parentRotationMatrix[8]; particleRotationMatrix[6] = rotMatrixValues[8] * parentRotationMatrix[0] + rotMatrixValues[9] * parentRotationMatrix[3] + rotMatrixValues[10] * parentRotationMatrix[6]; particleRotationMatrix[7] = rotMatrixValues[8] * parentRotationMatrix[1] + rotMatrixValues[9] * parentRotationMatrix[4] + rotMatrixValues[10] * parentRotationMatrix[7]; particleRotationMatrix[8] = rotMatrixValues[8] * parentRotationMatrix[2] + rotMatrixValues[9] * parentRotationMatrix[5] + rotMatrixValues[10] * parentRotationMatrix[8]; } } else { particleGlobalPosition.x = particlePosition.x; particleGlobalPosition.y = particlePosition.y; particleGlobalPosition.z = particlePosition.z; if (this._computeParticleRotation || this.billboard) { const rotMatrixValues = rotMatrix.m; particleRotationMatrix[0] = rotMatrixValues[0]; particleRotationMatrix[1] = rotMatrixValues[1]; particleRotationMatrix[2] = rotMatrixValues[2]; particleRotationMatrix[3] = rotMatrixValues[4]; particleRotationMatrix[4] = rotMatrixValues[5]; particleRotationMatrix[5] = rotMatrixValues[6]; particleRotationMatrix[6] = rotMatrixValues[8]; particleRotationMatrix[7] = rotMatrixValues[9]; particleRotationMatrix[8] = rotMatrixValues[10]; } } const pivotBackTranslation = tempVectors[11]; if (particle.translateFromPivot) { pivotBackTranslation.setAll(0.0); } else { pivotBackTranslation.copyFrom(scaledPivot); } // particle vertex loop for (pt = 0; pt < shape.length; pt++) { idx = index + pt * 3; colidx = colorIndex + pt * 4; uvidx = uvIndex + pt * 2; const tmpVertex = tempVectors[0]; tmpVertex.copyFrom(shape[pt]); if (this._computeParticleVertex) { this.updateParticleVertex(particle, tmpVertex, pt); } // positions const vertexX = tmpVertex.x * particleScaling.x - scaledPivot.x; const vertexY = tmpVertex.y * particleScaling.y - scaledPivot.y; const vertexZ = tmpVertex.z * particleScaling.z - scaledPivot.z; let rotatedX = vertexX * particleRotationMatrix[0] + vertexY * particleRotationMatrix[3] + vertexZ * particleRotationMatrix[6]; let rotatedY = vertexX * particleRotationMatrix[1] + vertexY * particleRotationMatrix[4] + vertexZ * particleRotationMatrix[7]; let rotatedZ = vertexX * particleRotationMatrix[2] + vertexY * particleRotationMatrix[5] + vertexZ * particleRotationMatrix[8]; rotatedX += pivotBackTranslation.x; rotatedY += pivotBackTranslation.y; rotatedZ += pivotBackTranslation.z; const px = positions32[idx] = particleGlobalPosition.x + camAxisX.x * rotatedX + camAxisY.x * rotatedY + camAxisZ.x * rotatedZ; const py = positions32[idx + 1] = particleGlobalPosition.y + camAxisX.y * rotatedX + camAxisY.y * rotatedY + camAxisZ.y * rotatedZ; const pz = positions32[idx + 2] = particleGlobalPosition.z + camAxisX.z * rotatedX + camAxisY.z * rotatedY + camAxisZ.z * rotatedZ; if (this._computeBoundingBox) { minimum.minimizeInPlaceFromFloats(px, py, pz); maximum.maximizeInPlaceFromFloats(px, py, pz); } // normals : if the particles can't be morphed then just rotate the normals, what is much more faster than ComputeNormals() if (!this._computeParticleVertex) { const normalx = fixedNormal32[idx]; const normaly = fixedNormal32[idx + 1]; const normalz = fixedNormal32[idx + 2]; const rotatedx = normalx * particleRotationMatrix[0] + normaly * particleRotationMatrix[3] + normalz * particleRotationMatrix[6]; const rotatedy = normalx * particleRotationMatrix[1] + normaly * particleRotationMatrix[4] + normalz * particleRotationMatrix[7]; const rotatedz = normalx * particleRotationMatrix[2] + normaly * particleRotationMatrix[5] + normalz * particleRotationMatrix[8]; normals32[idx] = camAxisX.x * rotatedx + camAxisY.x * rotatedy + camAxisZ.x * rotatedz; normals32[idx + 1] = camAxisX.y * rotatedx + camAxisY.y * rotatedy + camAxisZ.y * rotatedz; normals32[idx + 2] = camAxisX.z * rotatedx + camAxisY.z * rotatedy + camAxisZ.z * rotatedz; } if (this._computeParticleColor && particle.color) { const color = particle.color; const colors32 = this._colors32; colors32[colidx] = color.r; colors32[colidx + 1] = color.g; colors32[colidx + 2] = color.b; colors32[colidx + 3] = color.a; } if (this._computeParticleTexture) { const uvs = particle.uvs; uvs32[uvidx] = shapeUV[pt * 2] * (uvs.z - uvs.x) + uvs.x; uvs32[uvidx + 1] = shapeUV[pt * 2 + 1] * (uvs.w - uvs.y) + uvs.y; } } } // particle just set invisible : scaled to zero and positioned at the origin else { particle._stillInvisible = true; // mark the particle as invisible for (pt = 0; pt < shape.length; pt++) { idx = index + pt * 3; colidx = colorIndex + pt * 4; uvidx = uvIndex + pt * 2; positions32[idx] = positions32[idx + 1] = positions32[idx + 2] = 0; normals32[idx] = normals32[idx + 1] = normals32[idx + 2] = 0; if (this._computeParticleColor && particle.color) { const color = particle.color; colors32[colidx] = color.r; colors32[colidx + 1] = color.g; colors32[colidx + 2] = color.b; colors32[colidx + 3] = color.a; } if (this._computeParticleTexture) { const uvs = particle.uvs; uvs32[uvidx] = shapeUV[pt * 2] * (uvs.z - uvs.x) + uvs.x; uvs32[uvidx + 1] = shapeUV[pt * 2 + 1] * (uvs.w - uvs.y) + uvs.y; } } } // if the particle intersections must be computed : update the bbInfo if (this._particlesIntersect) { const bInfo = particle._boundingInfo; const bBox = bInfo.boundingBox; const bSphere = bInfo.boundingSphere; const modelBoundingInfo = particle._modelBoundingInfo; if (!this._bSphereOnly) { // place, scale and rotate the particle bbox within the SPS local system, then update it const modelBoundingInfoVectors = modelBoundingInfo.boundingBox.vectors; const tempMin = tempVectors[1]; const tempMax = tempVectors[2]; tempMin.setAll(Number.MAX_VALUE); tempMax.setAll(-Number.MAX_VALUE); for (var b = 0; b < 8; b++) { const scaledX = modelBoundingInfoVectors[b].x * particleScaling.x; const scaledY = modelBoundingInfoVectors[b].y * particleScaling.y; const scaledZ = modelBoundingInfoVectors[b].z * particleScaling.z; const rotatedX = scaledX * particleRotationMatrix[0] + scaledY * particleRotationMatrix[3] + scaledZ * particleRotationMatrix[6]; const rotatedY = scaledX * particleRotationMatrix[1] + scaledY * particleRotationMatrix[4] + scaledZ * particleRotationMatrix[7]; const rotatedZ = scaledX * particleRotationMatrix[2] + scaledY * particleRotationMatrix[5] + scaledZ * particleRotationMatrix[8]; const x = particlePosition.x + camAxisX.x * rotatedX + camAxisY.x * rotatedY + camAxisZ.x * rotatedZ; const y = particlePosition.y + camAxisX.y * rotatedX + camAxisY.y * rotatedY + camAxisZ.y * rotatedZ; const z = particlePosition.z + camAxisX.z * rotatedX + camAxisY.z * rotatedY + camAxisZ.z * rotatedZ; tempMin.minimizeInPlaceFromFloats(x, y, z); tempMax.maximizeInPlaceFromFloats(x, y, z); } bBox.reConstruct(tempMin, tempMax, mesh._worldMatrix); } // place and scale the particle bouding sphere in the SPS local system, then update it const minBbox = modelBoundingInfo.minimum.multiplyToRef(particleScaling, tempVectors[1]); const maxBbox = modelBoundingInfo.maximum.multiplyToRef(particleScaling, tempVectors[2]); const bSphereCenter = maxBbox.addToRef(minBbox, tempVectors[3]).scaleInPlace(0.5).addInPlace(particleGlobalPosition); const halfDiag = maxBbox.subtractToRef(minBbox, tempVectors[4]).scaleInPlace(0.5 * this._bSphereRadiusFactor); const bSphereMinBbox = bSphereCenter.subtractToRef(halfDiag, tempVectors[1]); const bSphereMaxBbox = bSphereCenter.addToRef(halfDiag, tempVectors[2]); bSphere.reConstruct(bSphereMinBbox, bSphereMaxBbox, mesh._worldMatrix); } // increment indexes for the next particle index = idx + 3; colorIndex = colidx + 4; uvIndex = uvidx + 2; } // if the VBO must be updated if (update) { if (this._computeParticleColor) { mesh.updateVerticesData(VertexBuffer.ColorKind, colors32, false, false); } if (this._computeParticleTexture) { mesh.updateVerticesData(VertexBuffer.UVKind, uvs32, false, false); } mesh.updateVerticesData(VertexBuffer.PositionKind, positions32, false, false); if (!mesh.areNormalsFrozen || mesh.isFacetDataEnabled) { if (this._computeParticleVertex || mesh.isFacetDataEnabled) { // recompute the normals only if the particles can be morphed, update then also the normal reference array _fixedNormal32[] var params = mesh.isFacetDataEnabled ? mesh.getFacetDataParameters() : null; VertexData.ComputeNormals(positions32, indices32, normals32, params); for (var i = 0; i < normals32.length; i++) { fixedNormal32[i] = normals32[i]; } } if (!mesh.areNormalsFrozen) { mesh.updateVerticesData(VertexBuffer.NormalKind, normals32, false, false); } } if (this._depthSort && this._depthSortParticles) { const depthSortedParticles = this.depthSortedParticles; depthSortedParticles.sort(depthSortFunction); const dspl = depthSortedParticles.length; let sid = 0; for (let sorted = 0; sorted < dspl; sorted++) { const lind = depthSortedParticles[sorted].indicesLength; const sind = depthSortedParticles[sorted].ind; for (var i = 0; i < lind; i++) { indices32[sid] = indices[sind + i]; sid++; } } mesh.updateIndices(indices32); } } if (this._computeBoundingBox) { if (mesh._boundingInfo) { mesh._boundingInfo.reConstruct(minimum, maximum, mesh._worldMatrix); } else { mesh._boundingInfo = new BoundingInfo(minimum, maximum, mesh._worldMatrix); } } this.afterUpdateParticles(start, end, update); return this; } /** * Disposes the SPS. */ public dispose(): void { this.mesh.dispose(); this.vars = null; // drop references to internal big arrays for the GC (this._positions) = null; (this._indices) = null; (this._normals) = null; (this._uvs) = null; (this._colors) = null; (this._indices32) = null; (this._positions32) = null; (this._normals32) = null; (this._fixedNormal32) = null; (this._uvs32) = null; (this._colors32) = null; (this.pickedParticles) = null; } /** * Visibilty helper : Recomputes the visible size according to the mesh bounding box * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#sps-visibility * @returns the SPS. */ public refreshVisibleSize(): SolidParticleSystem { if (!this._isVisibilityBoxLocked) { this.mesh.refreshBoundingInfo(); } return this; } /** * Visibility helper : Sets the size of a visibility box, this sets the underlying mesh bounding box. * @param size the size (float) of the visibility box * note : this doesn't lock the SPS mesh bounding box. * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#sps-visibility */ public setVisibilityBox(size: number): void { var vis = size / 2; this.mesh._boundingInfo = new BoundingInfo(new Vector3(-vis, -vis, -vis), new Vector3(vis, vis, vis)); } /** * Gets whether the SPS as always visible or not * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#sps-visibility */ public get isAlwaysVisible(): boolean { return this._alwaysVisible; } /** * Sets the SPS as always visible or not * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#sps-visibility */ public set isAlwaysVisible(val: boolean) { this._alwaysVisible = val; this.mesh.alwaysSelectAsActiveMesh = val; } /** * Sets the SPS visibility box as locked or not. This enables/disables the underlying mesh bounding box updates. * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#sps-visibility */ public set isVisibilityBoxLocked(val: boolean) { this._isVisibilityBoxLocked = val; let boundingInfo = this.mesh.getBoundingInfo(); boundingInfo.isLocked = val; } /** * Gets if the SPS visibility box as locked or not. This enables/disables the underlying mesh bounding box updates. * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#sps-visibility */ public get isVisibilityBoxLocked(): boolean { return this._isVisibilityBoxLocked; } /** * Tells to `setParticles()` to compute the particle rotations or not. * Default value : true. The SPS is faster when it's set to false. * Note : the particle rotations aren't stored values, so setting `computeParticleRotation` to false will prevents the particle to rotate. */ public set computeParticleRotation(val: boolean) { this._computeParticleRotation = val; } /** * Tells to `setParticles()` to compute the particle colors or not. * Default value : true. The SPS is faster when it's set to false. * Note : the particle colors are stored values, so setting `computeParticleColor` to false will keep yet the last colors set. */ public set computeParticleColor(val: boolean) { this._computeParticleColor = val; } public set computeParticleTexture(val: boolean) { this._computeParticleTexture = val; } /** * Tells to `setParticles()` to call the vertex function for each vertex of each particle, or not. * Default value : false. The SPS is faster when it's set to false. * Note : the particle custom vertex positions aren't stored values. */ public set computeParticleVertex(val: boolean) { this._computeParticleVertex = val; } /** * Tells to `setParticles()` to compute or not the mesh bounding box when computing the particle positions. */ public set computeBoundingBox(val: boolean) { this._computeBoundingBox = val; } /** * Tells to `setParticles()` to sort or not the distance between each particle and the camera. * Skipped when `enableDepthSort` is set to `false` (default) at construction time. * Default : `true` */ public set depthSortParticles(val: boolean) { this._depthSortParticles = val; } /** * Gets if `setParticles()` computes the particle rotations or not. * Default value : true. The SPS is faster when it's set to false. * Note : the particle rotations aren't stored values, so setting `computeParticleRotation` to false will prevents the particle to rotate. */ public get computeParticleRotation(): boolean { return this._computeParticleRotation; } /** * Gets if `setParticles()` computes the particle colors or not. * Default value : true. The SPS is faster when it's set to false. * Note : the particle colors are stored values, so setting `computeParticleColor` to false will keep yet the last colors set. */ public get computeParticleColor(): boolean { return this._computeParticleColor; } /** * Gets if `setParticles()` computes the particle textures or not. * Default value : true. The SPS is faster when it's set to false. * Note : the particle textures are stored values, so setting `computeParticleTexture` to false will keep yet the last colors set. */ public get computeParticleTexture(): boolean { return this._computeParticleTexture; } /** * Gets if `setParticles()` calls the vertex function for each vertex of each particle, or not. * Default value : false. The SPS is faster when it's set to false. * Note : the particle custom vertex positions aren't stored values. */ public get computeParticleVertex(): boolean { return this._computeParticleVertex; } /** * Gets if `setParticles()` computes or not the mesh bounding box when computing the particle positions. */ public get computeBoundingBox(): boolean { return this._computeBoundingBox; } /** * Gets if `setParticles()` sorts or not the distance between each particle and the camera. * Skipped when `enableDepthSort` is set to `false` (default) at construction time. * Default : `true` */ public get depthSortParticles(): boolean { return this._depthSortParticles; } /** * Gets if the SPS is created as expandable at construction time. * Default : `false` */ public get expandable(): boolean { return this._expandable; } // ======================================================================= // Particle behavior logic // these following methods may be overwritten by the user to fit his needs /** * This function does nothing. It may be overwritten to set all the particle first values. * The SPS doesn't call this function, you may have to call it by your own. * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#particle-management */ public initParticles(): void { } /** * This function does nothing. It may be overwritten to recycle a particle. * The SPS doesn't call this function, you may have to call it by your own. * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#particle-management * @param particle The particle to recycle * @returns the recycled particle */ public recycleParticle(particle: SolidParticle): SolidParticle { return particle; } /** * Updates a particle : this function should be overwritten by the user. * It is called on each particle by `setParticles()`. This is the place to code each particle behavior. * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#particle-management * @example : just set a particle position or velocity and recycle conditions * @param particle The particle to update * @returns the updated particle */ public updateParticle(particle: SolidParticle): SolidParticle { return particle; } /** * Updates a vertex of a particle : it can be overwritten by the user. * This will be called on each vertex particle by `setParticles()` if `computeParticleVertex` is set to true only. * @param particle the current particle * @param vertex the current index of the current particle * @param pt the index of the current vertex in the particle shape * doc : http://doc.babylonjs.com/how_to/Solid_Particle_System#update-each-particle-shape * @example : just set a vertex particle position * @returns the updated vertex */ public updateParticleVertex(particle: SolidParticle, vertex: Vector3, pt: number): Vector3 { return vertex; } /** * This will be called before any other treatment by `setParticles()` and will be passed three parameters. * This does nothing and may be overwritten by the user. * @param start the particle index in the particle array where to stop to iterate, same than the value passed to setParticle() * @param stop the particle index in the particle array where to stop to iterate, same than the value passed to setParticle() * @param update the boolean update value actually passed to setParticles() */ public beforeUpdateParticles(start?: number, stop?: number, update?: boolean): void { } /** * This will be called by `setParticles()` after all the other treatments and just before the actual mesh update. * This will be passed three parameters. * This does nothing and may be overwritten by the user. * @param start the particle index in the particle array where to stop to iterate, same than the value passed to setParticle() * @param stop the particle index in the particle array where to stop to iterate, same than the value passed to setParticle() * @param update the boolean update value actually passed to setParticles() */ public afterUpdateParticles(start?: number, stop?: number, update?: boolean): void { } }