#ifdef BUMP #extension GL_OES_standard_derivatives : enable #endif #ifdef LOGARITHMICDEPTH #extension GL_EXT_frag_depth : enable #endif precision highp float; // Constants #define RECIPROCAL_PI2 0.15915494 #define FRESNEL_MAXIMUM_ON_ROUGH 0.25 uniform vec3 vEyePosition; uniform vec3 vAmbientColor; uniform vec3 vReflectionColor; uniform vec4 vAlbedoColor; // CUSTOM CONTROLS uniform vec4 vLightingIntensity; uniform vec4 vCameraInfos; #ifdef OVERLOADEDVALUES uniform vec4 vOverloadedIntensity; uniform vec3 vOverloadedAmbient; uniform vec3 vOverloadedAlbedo; uniform vec3 vOverloadedReflectivity; uniform vec3 vOverloadedEmissive; uniform vec3 vOverloadedReflection; uniform vec3 vOverloadedMicroSurface; #endif #ifdef OVERLOADEDSHADOWVALUES uniform vec4 vOverloadedShadowIntensity; #endif #ifdef USESPHERICALFROMREFLECTIONMAP uniform vec3 vSphericalX; uniform vec3 vSphericalY; uniform vec3 vSphericalZ; uniform vec3 vSphericalXX; uniform vec3 vSphericalYY; uniform vec3 vSphericalZZ; uniform vec3 vSphericalXY; uniform vec3 vSphericalYZ; uniform vec3 vSphericalZX; vec3 EnvironmentIrradiance(vec3 normal) { // Note: 'normal' is assumed to be normalised (or near normalised) // This isn't as critical as it is with other calculations (e.g. specular highlight), but the result will be incorrect nonetheless. // TODO: switch to optimal implementation vec3 result = vSphericalX * normal.x + vSphericalY * normal.y + vSphericalZ * normal.z + vSphericalXX * normal.x * normal.x + vSphericalYY * normal.y * normal.y + vSphericalZZ * normal.z * normal.z + vSphericalYZ * normal.y * normal.z + vSphericalZX * normal.z * normal.x + vSphericalXY * normal.x * normal.y; return result.rgb; } #endif // PBR CUSTOM CONSTANTS const float kPi = 3.1415926535897932384626433832795; #ifdef PoissonSamplingEnvironment const int poissonSphereSamplersCount = 32; vec3 poissonSphereSamplers[poissonSphereSamplersCount]; void initSamplers() { poissonSphereSamplers[0] = vec3( -0.552198926093, 0.801049753814, -0.0322487480415 ); poissonSphereSamplers[1] = vec3( 0.344874796559, -0.650989584719, 0.283038477033 ); poissonSphereSamplers[2] = vec3( -0.0710183703467, 0.163770497767, -0.95022416734 ); poissonSphereSamplers[3] = vec3( 0.422221832073, 0.576613638193, 0.519157625948 ); poissonSphereSamplers[4] = vec3( -0.561872200916, -0.665581249881, -0.131630473211 ); poissonSphereSamplers[5] = vec3( -0.409905973809, 0.0250731510778, 0.674676954809 ); poissonSphereSamplers[6] = vec3( 0.206829570551, -0.190199352704, 0.919073906156 ); poissonSphereSamplers[7] = vec3( -0.857514664463, 0.0274425010091, -0.475068738967 ); poissonSphereSamplers[8] = vec3( -0.816275009951, -0.0432916479141, 0.40394579291 ); poissonSphereSamplers[9] = vec3( 0.397976181928, -0.633227519667, -0.617794410447 ); poissonSphereSamplers[10] = vec3( -0.181484199014, 0.0155418272003, -0.34675720703 ); poissonSphereSamplers[11] = vec3( 0.591734926919, 0.489930882201, -0.51675303188 ); poissonSphereSamplers[12] = vec3( -0.264514973057, 0.834248662136, 0.464624235985 ); poissonSphereSamplers[13] = vec3( -0.125845223505, 0.812029586099, -0.46213797731 ); poissonSphereSamplers[14] = vec3( 0.0345715424639, 0.349983742938, 0.855109899027 ); poissonSphereSamplers[15] = vec3( 0.694340492749, -0.281052190209, -0.379600605543 ); poissonSphereSamplers[16] = vec3( -0.241055518078, -0.580199280578, 0.435381168431 ); poissonSphereSamplers[17] = vec3( 0.126313722289, 0.715113642744, 0.124385788055 ); poissonSphereSamplers[18] = vec3( 0.752862552387, 0.277075021888, 0.275059597549 ); poissonSphereSamplers[19] = vec3( -0.400896300918, -0.309374534321, -0.74285782627 ); poissonSphereSamplers[20] = vec3( 0.121843331941, -0.00381197918195, 0.322441835258 ); poissonSphereSamplers[21] = vec3( 0.741656771351, -0.472083016745, 0.14589173819 ); poissonSphereSamplers[22] = vec3( -0.120347565985, -0.397252703556, -0.00153836114051 ); poissonSphereSamplers[23] = vec3( -0.846258835203, -0.433763808754, 0.168732209784 ); poissonSphereSamplers[24] = vec3( 0.257765618362, -0.546470581239, -0.242234375624 ); poissonSphereSamplers[25] = vec3( -0.640343473361, 0.51920903395, 0.549310644325 ); poissonSphereSamplers[26] = vec3( -0.894309984621, 0.297394061018, 0.0884583225292 ); poissonSphereSamplers[27] = vec3( -0.126241933628, -0.535151016335, -0.440093659672 ); poissonSphereSamplers[28] = vec3( -0.158176440297, -0.393125021578, 0.890727226039 ); poissonSphereSamplers[29] = vec3( 0.896024272938, 0.203068725821, -0.11198597748 ); poissonSphereSamplers[30] = vec3( 0.568671758933, -0.314144243629, 0.509070768816 ); poissonSphereSamplers[31] = vec3( 0.289665332178, 0.104356977462, -0.348379247171 ); } vec3 environmentSampler(samplerCube cubeMapSampler, vec3 centralDirection, float microsurfaceAverageSlope) { vec3 result = vec3(0., 0., 0.); for(int i = 0; i < poissonSphereSamplersCount; i++) { vec3 offset = poissonSphereSamplers[i]; vec3 direction = centralDirection + microsurfaceAverageSlope * offset; result += textureCube(cubeMapSampler, direction, 0.).rgb; } result /= 32.0; return result; } #endif // PBR HELPER METHODS float Square(float value) { return value * value; } float getLuminance(vec3 color) { return clamp(dot(color, vec3(0.2126, 0.7152, 0.0722)), 0., 1.); } float convertRoughnessToAverageSlope(float roughness) { // Calculate AlphaG as square of roughness; add epsilon to avoid numerical issues const float kMinimumVariance = 0.0005; float alphaG = Square(roughness) + kMinimumVariance; return alphaG; } // From Microfacet Models for Refraction through Rough Surfaces, Walter et al. 2007 float smithVisibilityG1_TrowbridgeReitzGGX(float dot, float alphaG) { float tanSquared = (1.0 - dot * dot) / (dot * dot); return 2.0 / (1.0 + sqrt(1.0 + alphaG * alphaG * tanSquared)); } float smithVisibilityG_TrowbridgeReitzGGX_Walter(float NdotL, float NdotV, float alphaG) { return smithVisibilityG1_TrowbridgeReitzGGX(NdotL, alphaG) * smithVisibilityG1_TrowbridgeReitzGGX(NdotV, alphaG); } // Trowbridge-Reitz (GGX) // Generalised Trowbridge-Reitz with gamma power=2.0 float normalDistributionFunction_TrowbridgeReitzGGX(float NdotH, float alphaG) { // Note: alphaG is average slope (gradient) of the normals in slope-space. // It is also the (trigonometric) tangent of the median distribution value, i.e. 50% of normals have // a tangent (gradient) closer to the macrosurface than this slope. float a2 = Square(alphaG); float d = NdotH * NdotH * (a2 - 1.0) + 1.0; return a2 / (kPi * d * d); } vec3 fresnelSchlickGGX(float VdotH, vec3 reflectance0, vec3 reflectance90) { return reflectance0 + (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotH, 0., 1.), 5.0); } vec3 FresnelSchlickEnvironmentGGX(float VdotN, vec3 reflectance0, vec3 reflectance90, float smoothness) { // Schlick fresnel approximation, extended with basic smoothness term so that rough surfaces do not approach reflectance90 at grazing angle float weight = mix(FRESNEL_MAXIMUM_ON_ROUGH, 1.0, smoothness); return reflectance0 + weight * (reflectance90 - reflectance0) * pow(clamp(1.0 - VdotN, 0., 1.), 5.0); } // Cook Torance Specular computation. vec3 computeSpecularTerm(float NdotH, float NdotL, float NdotV, float VdotH, float roughness, vec3 specularColor) { float alphaG = convertRoughnessToAverageSlope(roughness); float distribution = normalDistributionFunction_TrowbridgeReitzGGX(NdotH, alphaG); float visibility = smithVisibilityG_TrowbridgeReitzGGX_Walter(NdotL, NdotV, alphaG); visibility /= (4.0 * NdotL * NdotV); // Cook Torance Denominator integated in viibility to avoid issues when visibility function changes. vec3 fresnel = fresnelSchlickGGX(VdotH, specularColor, vec3(1., 1., 1.)); float specTerm = max(0., visibility * distribution) * NdotL; return fresnel * specTerm * kPi; // TODO: audit pi constants } float computeDiffuseTerm(float NdotL, float NdotV, float VdotH, float roughness) { // Diffuse fresnel falloff as per Disney principled BRDF, and in the spirit of // of general coupled diffuse/specular models e.g. Ashikhmin Shirley. float diffuseFresnelNV = pow(clamp(1.0 - NdotL, 0.000001, 1.), 5.0); float diffuseFresnelNL = pow(clamp(1.0 - NdotV, 0.000001, 1.), 5.0); float diffuseFresnel90 = 0.5 + 2.0 * VdotH * VdotH * roughness; float diffuseFresnelTerm = (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNL) * (1.0 + (diffuseFresnel90 - 1.0) * diffuseFresnelNV); return diffuseFresnelTerm * NdotL; // PI Test // diffuseFresnelTerm /= kPi; } float computeDefaultMicroSurface(float microSurface, vec3 reflectivityColor) { float kReflectivityNoAlphaWorkflow_SmoothnessMax = 0.95; float reflectivityLuminance = getLuminance(reflectivityColor); float reflectivityLuma = sqrt(reflectivityLuminance); microSurface = reflectivityLuma * kReflectivityNoAlphaWorkflow_SmoothnessMax; return microSurface; } vec3 toLinearSpace(vec3 color) { return vec3(pow(color.r, 2.2), pow(color.g, 2.2), pow(color.b, 2.2)); } vec3 toGammaSpace(vec3 color) { return vec3(pow(color.r, 1.0 / 2.2), pow(color.g, 1.0 / 2.2), pow(color.b, 1.0 / 2.2)); } #ifdef CAMERATONEMAP vec3 toneMaps(vec3 color) { color = max(color, 0.0); // TONE MAPPING / EXPOSURE color.rgb = color.rgb * vCameraInfos.x; float tuning = 1.5; // TODO: sync up so e.g. 18% greys are matched to exposure appropriately // PI Test // tuning *= kPi; vec3 tonemapped = 1.0 - exp2(-color.rgb * tuning); // simple local photographic tonemapper color.rgb = mix(color.rgb, tonemapped, 1.0); return color; } #endif #ifdef CAMERACONTRAST vec4 contrasts(vec4 color) { color = clamp(color, 0.0, 1.0); vec3 resultHighContrast = color.rgb * color.rgb * (3.0 - 2.0 * color.rgb); float contrast = vCameraInfos.y; if (contrast < 1.0) { // Decrease contrast: interpolate towards zero-contrast image (flat grey) color.rgb = mix(vec3(0.5, 0.5, 0.5), color.rgb, contrast); } else { // Increase contrast: apply simple shoulder-toe high contrast curve color.rgb = mix(color.rgb, resultHighContrast, contrast - 1.0); } return color; } #endif // END PBR HELPER METHODS uniform vec4 vReflectivityColor; uniform vec3 vEmissiveColor; // Input varying vec3 vPositionW; #ifdef NORMAL varying vec3 vNormalW; #endif #ifdef VERTEXCOLOR varying vec4 vColor; #endif // Lights #ifdef LIGHT0 uniform vec4 vLightData0; uniform vec4 vLightDiffuse0; #ifdef SPECULARTERM uniform vec3 vLightSpecular0; #endif #ifdef SHADOW0 #if defined(SPOTLIGHT0) || defined(DIRLIGHT0) varying vec4 vPositionFromLight0; uniform sampler2D shadowSampler0; #else uniform samplerCube shadowSampler0; #endif uniform vec3 shadowsInfo0; #endif #ifdef SPOTLIGHT0 uniform vec4 vLightDirection0; #endif #ifdef HEMILIGHT0 uniform vec3 vLightGround0; #endif #endif #ifdef LIGHT1 uniform vec4 vLightData1; uniform vec4 vLightDiffuse1; #ifdef SPECULARTERM uniform vec3 vLightSpecular1; #endif #ifdef SHADOW1 #if defined(SPOTLIGHT1) || defined(DIRLIGHT1) varying vec4 vPositionFromLight1; uniform sampler2D shadowSampler1; #else uniform samplerCube shadowSampler1; #endif uniform vec3 shadowsInfo1; #endif #ifdef SPOTLIGHT1 uniform vec4 vLightDirection1; #endif #ifdef HEMILIGHT1 uniform vec3 vLightGround1; #endif #endif #ifdef LIGHT2 uniform vec4 vLightData2; uniform vec4 vLightDiffuse2; #ifdef SPECULARTERM uniform vec3 vLightSpecular2; #endif #ifdef SHADOW2 #if defined(SPOTLIGHT2) || defined(DIRLIGHT2) varying vec4 vPositionFromLight2; uniform sampler2D shadowSampler2; #else uniform samplerCube shadowSampler2; #endif uniform vec3 shadowsInfo2; #endif #ifdef SPOTLIGHT2 uniform vec4 vLightDirection2; #endif #ifdef HEMILIGHT2 uniform vec3 vLightGround2; #endif #endif #ifdef LIGHT3 uniform vec4 vLightData3; uniform vec4 vLightDiffuse3; #ifdef SPECULARTERM uniform vec3 vLightSpecular3; #endif #ifdef SHADOW3 #if defined(SPOTLIGHT3) || defined(DIRLIGHT3) varying vec4 vPositionFromLight3; uniform sampler2D shadowSampler3; #else uniform samplerCube shadowSampler3; #endif uniform vec3 shadowsInfo3; #endif #ifdef SPOTLIGHT3 uniform vec4 vLightDirection3; #endif #ifdef HEMILIGHT3 uniform vec3 vLightGround3; #endif #endif // Samplers #ifdef ALBEDO varying vec2 vAlbedoUV; uniform sampler2D albedoSampler; uniform vec2 vAlbedoInfos; #endif #ifdef AMBIENT varying vec2 vAmbientUV; uniform sampler2D ambientSampler; uniform vec2 vAmbientInfos; #endif #ifdef OPACITY varying vec2 vOpacityUV; uniform sampler2D opacitySampler; uniform vec2 vOpacityInfos; #endif #ifdef EMISSIVE varying vec2 vEmissiveUV; uniform vec2 vEmissiveInfos; uniform sampler2D emissiveSampler; #endif #ifdef LIGHTMAP varying vec2 vLightmapUV; uniform vec2 vLightmapInfos; uniform sampler2D lightmapSampler; #endif #if defined(REFLECTIVITY) varying vec2 vReflectivityUV; uniform vec2 vReflectivityInfos; uniform sampler2D reflectivitySampler; #endif // Fresnel #ifdef FRESNEL float computeFresnelTerm(vec3 viewDirection, vec3 worldNormal, float bias, float power) { float fresnelTerm = pow(bias + abs(dot(viewDirection, worldNormal)), power); return clamp(fresnelTerm, 0., 1.); } #endif #ifdef OPACITYFRESNEL uniform vec4 opacityParts; #endif #ifdef EMISSIVEFRESNEL uniform vec4 emissiveLeftColor; uniform vec4 emissiveRightColor; #endif // Refraction Reflection #if defined(REFLECTIONMAP_SPHERICAL) || defined(REFLECTIONMAP_PROJECTION) || defined(REFRACTION) uniform mat4 view; #endif // Refraction #ifdef REFRACTION uniform vec4 vRefractionInfos; #ifdef REFRACTIONMAP_3D uniform samplerCube refractionCubeSampler; #else uniform sampler2D refraction2DSampler; uniform mat4 refractionMatrix; #endif #endif // Reflection #ifdef REFLECTION uniform vec2 vReflectionInfos; #ifdef REFLECTIONMAP_3D uniform samplerCube reflectionCubeSampler; #else uniform sampler2D reflection2DSampler; #endif #ifdef REFLECTIONMAP_SKYBOX varying vec3 vPositionUVW; #else #ifdef REFLECTIONMAP_EQUIRECTANGULAR_FIXED varying vec3 vDirectionW; #endif #if defined(REFLECTIONMAP_PLANAR) || defined(REFLECTIONMAP_CUBIC) || defined(REFLECTIONMAP_PROJECTION) uniform mat4 reflectionMatrix; #endif #endif vec3 computeReflectionCoords(vec4 worldPos, vec3 worldNormal) { #ifdef REFLECTIONMAP_EQUIRECTANGULAR_FIXED vec3 direction = normalize(vDirectionW); float t = clamp(direction.y * -0.5 + 0.5, 0., 1.0); float s = atan(direction.z, direction.x) * RECIPROCAL_PI2 + 0.5; return vec3(s, t, 0); #endif #ifdef REFLECTIONMAP_EQUIRECTANGULAR vec3 cameraToVertex = normalize(worldPos.xyz - vEyePosition); vec3 r = reflect(cameraToVertex, worldNormal); float t = clamp(r.y * -0.5 + 0.5, 0., 1.0); float s = atan(r.z, r.x) * RECIPROCAL_PI2 + 0.5; return vec3(s, t, 0); #endif #ifdef REFLECTIONMAP_SPHERICAL vec3 viewDir = normalize(vec3(view * worldPos)); vec3 viewNormal = normalize(vec3(view * vec4(worldNormal, 0.0))); vec3 r = reflect(viewDir, viewNormal); r.z = r.z - 1.0; float m = 2.0 * length(r); return vec3(r.x / m + 0.5, 1.0 - r.y / m - 0.5, 0); #endif #ifdef REFLECTIONMAP_PLANAR vec3 viewDir = worldPos.xyz - vEyePosition; vec3 coords = normalize(reflect(viewDir, worldNormal)); return vec3(reflectionMatrix * vec4(coords, 1)); #endif #ifdef REFLECTIONMAP_CUBIC vec3 viewDir = worldPos.xyz - vEyePosition; vec3 coords = reflect(viewDir, worldNormal); #ifdef INVERTCUBICMAP coords.y = 1.0 - coords.y; #endif return vec3(reflectionMatrix * vec4(coords, 0)); #endif #ifdef REFLECTIONMAP_PROJECTION return vec3(reflectionMatrix * (view * worldPos)); #endif #ifdef REFLECTIONMAP_SKYBOX return vPositionUVW; #endif #ifdef REFLECTIONMAP_EXPLICIT return vec3(0, 0, 0); #endif } #endif // Shadows #ifdef SHADOWS float unpack(vec4 color) { const vec4 bit_shift = vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0); return dot(color, bit_shift); } #if defined(POINTLIGHT0) || defined(POINTLIGHT1) || defined(POINTLIGHT2) || defined(POINTLIGHT3) uniform vec2 depthValues; float computeShadowCube(vec3 lightPosition, samplerCube shadowSampler, float darkness, float bias) { vec3 directionToLight = vPositionW - lightPosition; float depth = length(directionToLight); depth = clamp(depth, 0., 1.0); directionToLight = normalize(directionToLight); directionToLight.y = - directionToLight.y; float shadow = unpack(textureCube(shadowSampler, directionToLight)) + bias; if (depth > shadow) { #ifdef OVERLOADEDSHADOWVALUES return mix(1.0, darkness, vOverloadedShadowIntensity.x); #else return darkness; #endif } return 1.0; } float computeShadowWithPCFCube(vec3 lightPosition, samplerCube shadowSampler, float mapSize, float bias, float darkness) { vec3 directionToLight = vPositionW - lightPosition; float depth = length(directionToLight); depth = clamp(depth, 0., 1.0); float diskScale = 2.0 / mapSize; directionToLight = normalize(directionToLight); directionToLight.y = -directionToLight.y; float visibility = 1.; vec3 poissonDisk[4]; poissonDisk[0] = vec3(-1.0, 1.0, -1.0); poissonDisk[1] = vec3(1.0, -1.0, -1.0); poissonDisk[2] = vec3(-1.0, -1.0, -1.0); poissonDisk[3] = vec3(1.0, -1.0, 1.0); // Poisson Sampling float biasedDepth = depth - bias; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[0] * diskScale)) < biasedDepth) visibility -= 0.25; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[1] * diskScale)) < biasedDepth) visibility -= 0.25; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[2] * diskScale)) < biasedDepth) visibility -= 0.25; if (unpack(textureCube(shadowSampler, directionToLight + poissonDisk[3] * diskScale)) < biasedDepth) visibility -= 0.25; #ifdef OVERLOADEDSHADOWVALUES return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x)); #else return min(1.0, visibility + darkness); #endif } #endif #if defined(SPOTLIGHT0) || defined(SPOTLIGHT1) || defined(SPOTLIGHT2) || defined(SPOTLIGHT3) || defined(DIRLIGHT0) || defined(DIRLIGHT1) || defined(DIRLIGHT2) || defined(DIRLIGHT3) float computeShadow(vec4 vPositionFromLight, sampler2D shadowSampler, float darkness, float bias) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0) { return 1.0; } float shadow = unpack(texture2D(shadowSampler, uv)) + bias; if (depth.z > shadow) { #ifdef OVERLOADEDSHADOWVALUES return mix(1.0, darkness, vOverloadedShadowIntensity.x); #else return darkness; #endif } return 1.; } float computeShadowWithPCF(vec4 vPositionFromLight, sampler2D shadowSampler, float mapSize, float bias, float darkness) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0) { return 1.0; } float visibility = 1.; vec2 poissonDisk[4]; poissonDisk[0] = vec2(-0.94201624, -0.39906216); poissonDisk[1] = vec2(0.94558609, -0.76890725); poissonDisk[2] = vec2(-0.094184101, -0.92938870); poissonDisk[3] = vec2(0.34495938, 0.29387760); // Poisson Sampling float biasedDepth = depth.z - bias; if (unpack(texture2D(shadowSampler, uv + poissonDisk[0] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[1] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[2] / mapSize)) < biasedDepth) visibility -= 0.25; if (unpack(texture2D(shadowSampler, uv + poissonDisk[3] / mapSize)) < biasedDepth) visibility -= 0.25; #ifdef OVERLOADEDSHADOWVALUES return min(1.0, mix(1.0, visibility + darkness, vOverloadedShadowIntensity.x)); #else return min(1.0, visibility + darkness); #endif } // Thanks to http://devmaster.net/ float unpackHalf(vec2 color) { return color.x + (color.y / 255.0); } float linstep(float low, float high, float v) { return clamp((v - low) / (high - low), 0.0, 1.0); } float ChebychevInequality(vec2 moments, float compare, float bias) { float p = smoothstep(compare - bias, compare, moments.x); float variance = max(moments.y - moments.x * moments.x, 0.02); float d = compare - moments.x; float p_max = linstep(0.2, 1.0, variance / (variance + d * d)); return clamp(max(p, p_max), 0.0, 1.0); } float computeShadowWithVSM(vec4 vPositionFromLight, sampler2D shadowSampler, float bias, float darkness) { vec3 depth = vPositionFromLight.xyz / vPositionFromLight.w; depth = 0.5 * depth + vec3(0.5); vec2 uv = depth.xy; if (uv.x < 0. || uv.x > 1.0 || uv.y < 0. || uv.y > 1.0 || depth.z >= 1.0) { return 1.0; } vec4 texel = texture2D(shadowSampler, uv); vec2 moments = vec2(unpackHalf(texel.xy), unpackHalf(texel.zw)); #ifdef OVERLOADEDSHADOWVALUES return min(1.0, mix(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness, vOverloadedShadowIntensity.x)); #else return min(1.0, 1.0 - ChebychevInequality(moments, depth.z, bias) + darkness); #endif } #endif #endif // Bump #ifdef BUMP varying vec2 vBumpUV; uniform vec2 vBumpInfos; uniform sampler2D bumpSampler; // Thanks to http://www.thetenthplanet.de/archives/1180 mat3 cotangent_frame(vec3 normal, vec3 p, vec2 uv) { // get edge vectors of the pixel triangle vec3 dp1 = dFdx(p); vec3 dp2 = dFdy(p); vec2 duv1 = dFdx(uv); vec2 duv2 = dFdy(uv); // solve the linear system vec3 dp2perp = cross(dp2, normal); vec3 dp1perp = cross(normal, dp1); vec3 tangent = dp2perp * duv1.x + dp1perp * duv2.x; vec3 binormal = dp2perp * duv1.y + dp1perp * duv2.y; // construct a scale-invariant frame float invmax = inversesqrt(max(dot(tangent, tangent), dot(binormal, binormal))); return mat3(tangent * invmax, binormal * invmax, normal); } vec3 perturbNormal(vec3 viewDir) { vec3 map = texture2D(bumpSampler, vBumpUV).xyz; map = map * 255. / 127. - 128. / 127.; mat3 TBN = cotangent_frame(vNormalW * vBumpInfos.y, -viewDir, vBumpUV); return normalize(TBN * map); } #endif #ifdef CLIPPLANE varying float fClipDistance; #endif #ifdef LOGARITHMICDEPTH uniform float logarithmicDepthConstant; varying float vFragmentDepth; #endif // Fog #ifdef FOG #define FOGMODE_NONE 0. #define FOGMODE_EXP 1. #define FOGMODE_EXP2 2. #define FOGMODE_LINEAR 3. #define E 2.71828 uniform vec4 vFogInfos; uniform vec3 vFogColor; varying float fFogDistance; float CalcFogFactor() { float fogCoeff = 1.0; float fogStart = vFogInfos.y; float fogEnd = vFogInfos.z; float fogDensity = vFogInfos.w; if (FOGMODE_LINEAR == vFogInfos.x) { fogCoeff = (fogEnd - fFogDistance) / (fogEnd - fogStart); } else if (FOGMODE_EXP == vFogInfos.x) { fogCoeff = 1.0 / pow(E, fFogDistance * fogDensity); } else if (FOGMODE_EXP2 == vFogInfos.x) { fogCoeff = 1.0 / pow(E, fFogDistance * fFogDistance * fogDensity * fogDensity); } return clamp(fogCoeff, 0.0, 1.0); } #endif // Light Computing struct lightingInfo { vec3 diffuse; #ifdef SPECULARTERM vec3 specular; #endif }; lightingInfo computeLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) { lightingInfo result; vec3 lightVectorW; float attenuation = 1.0; if (lightData.w == 0.) { vec3 direction = lightData.xyz - vPositionW; attenuation = max(0., 1.0 - length(direction) / range); lightVectorW = normalize(direction); } else { lightVectorW = normalize(-lightData.xyz); } // diffuse vec3 H = normalize(viewDirectionW + lightVectorW); float NdotL = max(0.00000000001, dot(vNormal, lightVectorW)); float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H)); float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness); result.diffuse = diffuseTerm * diffuseColor * attenuation; #ifdef SPECULARTERM // Specular float NdotH = max(0.00000000001, dot(vNormal, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * attenuation; #endif return result; } lightingInfo computeSpotLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec4 lightDirection, vec3 diffuseColor, vec3 specularColor, float range, float roughness, float NdotV) { lightingInfo result; vec3 direction = lightData.xyz - vPositionW; vec3 lightVectorW = normalize(direction); float attenuation = max(0., 1.0 - length(direction) / range); // diffuse float cosAngle = max(0.0000001, dot(-lightDirection.xyz, lightVectorW)); float spotAtten = 0.0; if (cosAngle >= lightDirection.w) { cosAngle = max(0., pow(cosAngle, lightData.w)); spotAtten = clamp((cosAngle - lightDirection.w) / (1. - cosAngle), 0.0, 1.0); // Diffuse vec3 H = normalize(viewDirectionW - lightDirection.xyz); float NdotL = max(0.00000000001, dot(vNormal, -lightDirection.xyz)); float VdotH = clamp(dot(viewDirectionW, H), 0.00000000001, 1.0); float diffuseTerm = computeDiffuseTerm(NdotL, NdotV, VdotH, roughness); result.diffuse = diffuseTerm * diffuseColor * attenuation * spotAtten; #ifdef SPECULARTERM // Specular float NdotH = max(0.00000000001, dot(vNormal, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm * attenuation * spotAtten; #endif return result; } result.diffuse = vec3(0.); #ifdef SPECULARTERM result.specular = vec3(0.); #endif return result; } lightingInfo computeHemisphericLighting(vec3 viewDirectionW, vec3 vNormal, vec4 lightData, vec3 diffuseColor, vec3 specularColor, vec3 groundColor, float roughness, float NdotV) { lightingInfo result; vec3 lightVectorW = normalize(lightData.xyz); // Diffuse float ndl = dot(vNormal, lightData.xyz) * 0.5 + 0.5; result.diffuse = mix(groundColor, diffuseColor, ndl); #ifdef SPECULARTERM // Specular vec3 H = normalize(viewDirectionW + lightVectorW); float NdotH = max(0.00000000001, dot(vNormal, H)); float NdotL = max(0.00000000001, ndl); float VdotH = clamp(0.00000000001, 1.0, dot(viewDirectionW, H)); vec3 specTerm = computeSpecularTerm(NdotH, NdotL, NdotV, VdotH, roughness, specularColor); result.specular = specTerm; #endif return result; } void main(void) { #ifdef PoissonSamplingEnvironment initSamplers(); #endif // Clip plane #ifdef CLIPPLANE if (fClipDistance > 0.0) discard; #endif vec3 viewDirectionW = normalize(vEyePosition - vPositionW); // Albedo vec4 surfaceAlbedo = vec4(1., 1., 1., 1.); vec3 surfaceAlbedoContribution = vAlbedoColor.rgb; // Alpha float alpha = vAlbedoColor.a; #ifdef ALBEDO surfaceAlbedo = texture2D(albedoSampler, vAlbedoUV); surfaceAlbedo = vec4(toLinearSpace(surfaceAlbedo.rgb), surfaceAlbedo.a); #ifndef LINKREFRACTIONTOTRANSPARENCY #ifdef ALPHATEST if (surfaceAlbedo.a < 0.4) discard; #endif #endif #ifdef ALPHAFROMALBEDO alpha *= surfaceAlbedo.a; #endif surfaceAlbedo.rgb *= vAlbedoInfos.y; #else // No Albedo texture. surfaceAlbedo.rgb = surfaceAlbedoContribution; surfaceAlbedoContribution = vec3(1., 1., 1.); #endif #ifdef VERTEXCOLOR surfaceAlbedo.rgb *= vColor.rgb; #endif #ifdef OVERLOADEDVALUES surfaceAlbedo.rgb = mix(surfaceAlbedo.rgb, vOverloadedAlbedo, vOverloadedIntensity.y); #endif // Bump #ifdef NORMAL vec3 normalW = normalize(vNormalW); #else vec3 normalW = vec3(1.0, 1.0, 1.0); #endif #ifdef BUMP normalW = perturbNormal(viewDirectionW); #endif // Ambient color vec3 ambientColor = vec3(1., 1., 1.); #ifdef AMBIENT ambientColor = texture2D(ambientSampler, vAmbientUV).rgb * vAmbientInfos.y; #ifdef OVERLOADEDVALUES ambientColor.rgb = mix(ambientColor.rgb, vOverloadedAmbient, vOverloadedIntensity.x); #endif #endif // Specular map float microSurface = vReflectivityColor.a; vec3 surfaceReflectivityColor = vReflectivityColor.rgb; #ifdef OVERLOADEDVALUES surfaceReflectivityColor.rgb = mix(surfaceReflectivityColor.rgb, vOverloadedReflectivity, vOverloadedIntensity.z); #endif #ifdef REFLECTIVITY vec4 surfaceReflectivityColorMap = texture2D(reflectivitySampler, vReflectivityUV); surfaceReflectivityColor = surfaceReflectivityColorMap.rgb; surfaceReflectivityColor = toLinearSpace(surfaceReflectivityColor); #ifdef OVERLOADEDVALUES surfaceReflectivityColor = mix(surfaceReflectivityColor, vOverloadedReflectivity, vOverloadedIntensity.z); #endif #ifdef MICROSURFACEFROMREFLECTIVITYMAP microSurface = surfaceReflectivityColorMap.a; #else microSurface = computeDefaultMicroSurface(microSurface, surfaceReflectivityColor); #endif #endif #ifdef OVERLOADEDVALUES microSurface = mix(microSurface, vOverloadedMicroSurface.x, vOverloadedMicroSurface.y); #endif // Compute N dot V. float NdotV = max(0.00000000001, dot(normalW, viewDirectionW)); // Adapt microSurface. microSurface = clamp(microSurface, 0., 1.) * 0.98; // Call rough to not conflict with previous one. float rough = clamp(1. - microSurface, 0.000001, 1.0); // Lighting vec3 lightDiffuseContribution = vec3(0., 0., 0.); #ifdef OVERLOADEDSHADOWVALUES vec3 shadowedOnlyLightDiffuseContribution = vec3(1., 1., 1.); #endif #ifdef SPECULARTERM vec3 lightSpecularContribution= vec3(0., 0., 0.); #endif float notShadowLevel = 1.; // 1 - shadowLevel #ifdef LIGHT0 #ifndef SPECULARTERM vec3 vLightSpecular0 = vec3(0.0); #endif #ifdef SPOTLIGHT0 lightingInfo info = computeSpotLighting(viewDirectionW, normalW, vLightData0, vLightDirection0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV); #endif #ifdef HEMILIGHT0 lightingInfo info = computeHemisphericLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightGround0, rough, NdotV); #endif #if defined(POINTLIGHT0) || defined(DIRLIGHT0) lightingInfo info = computeLighting(viewDirectionW, normalW, vLightData0, vLightDiffuse0.rgb, vLightSpecular0, vLightDiffuse0.a, rough, NdotV); #endif #ifdef SHADOW0 #ifdef SHADOWVSM0 notShadowLevel = computeShadowWithVSM(vPositionFromLight0, shadowSampler0, shadowsInfo0.z, shadowsInfo0.x); #else #ifdef SHADOWPCF0 #if defined(POINTLIGHT0) notShadowLevel = computeShadowWithPCFCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x); #else notShadowLevel = computeShadowWithPCF(vPositionFromLight0, shadowSampler0, shadowsInfo0.y, shadowsInfo0.z, shadowsInfo0.x); #endif #else #if defined(POINTLIGHT0) notShadowLevel = computeShadowCube(vLightData0.xyz, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z); #else notShadowLevel = computeShadow(vPositionFromLight0, shadowSampler0, shadowsInfo0.x, shadowsInfo0.z); #endif #endif #endif #else notShadowLevel = 1.; #endif lightDiffuseContribution += info.diffuse * notShadowLevel; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution *= notShadowLevel; #endif #ifdef SPECULARTERM lightSpecularContribution += info.specular * notShadowLevel; #endif #endif #ifdef LIGHT1 #ifndef SPECULARTERM vec3 vLightSpecular1 = vec3(0.0); #endif #ifdef SPOTLIGHT1 info = computeSpotLighting(viewDirectionW, normalW, vLightData1, vLightDirection1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV); #endif #ifdef HEMILIGHT1 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightGround1, rough, NdotV); #endif #if defined(POINTLIGHT1) || defined(DIRLIGHT1) info = computeLighting(viewDirectionW, normalW, vLightData1, vLightDiffuse1.rgb, vLightSpecular1, vLightDiffuse1.a, rough, NdotV); #endif #ifdef SHADOW1 #ifdef SHADOWVSM1 notShadowLevel = computeShadowWithVSM(vPositionFromLight1, shadowSampler1, shadowsInfo1.z, shadowsInfo1.x); #else #ifdef SHADOWPCF1 #if defined(POINTLIGHT1) notShadowLevel = computeShadowWithPCFCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x); #else notShadowLevel = computeShadowWithPCF(vPositionFromLight1, shadowSampler1, shadowsInfo1.y, shadowsInfo1.z, shadowsInfo1.x); #endif #else #if defined(POINTLIGHT1) notShadowLevel = computeShadowCube(vLightData1.xyz, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z); #else notShadowLevel = computeShadow(vPositionFromLight1, shadowSampler1, shadowsInfo1.x, shadowsInfo1.z); #endif #endif #endif #else notShadowLevel = 1.; #endif lightDiffuseContribution += info.diffuse * notShadowLevel; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution *= notShadowLevel; #endif #ifdef SPECULARTERM lightSpecularContribution += info.specular * notShadowLevel; #endif #endif #ifdef LIGHT2 #ifndef SPECULARTERM vec3 vLightSpecular2 = vec3(0.0); #endif #ifdef SPOTLIGHT2 info = computeSpotLighting(viewDirectionW, normalW, vLightData2, vLightDirection2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV); #endif #ifdef HEMILIGHT2 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightGround2, rough, NdotV); #endif #if defined(POINTLIGHT2) || defined(DIRLIGHT2) info = computeLighting(viewDirectionW, normalW, vLightData2, vLightDiffuse2.rgb, vLightSpecular2, vLightDiffuse2.a, rough, NdotV); #endif #ifdef SHADOW2 #ifdef SHADOWVSM2 notShadowLevel = computeShadowWithVSM(vPositionFromLight2, shadowSampler2, shadowsInfo2.z, shadowsInfo2.x); #else #ifdef SHADOWPCF2 #if defined(POINTLIGHT2) notShadowLevel = computeShadowWithPCFCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x); #else notShadowLevel = computeShadowWithPCF(vPositionFromLight2, shadowSampler2, shadowsInfo2.y, shadowsInfo2.z, shadowsInfo2.x); #endif #else #if defined(POINTLIGHT2) notShadowLevel = computeShadowCube(vLightData2.xyz, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z); #else notShadowLevel = computeShadow(vPositionFromLight2, shadowSampler2, shadowsInfo2.x, shadowsInfo2.z); #endif #endif #endif #else notShadowLevel = 1.; #endif lightDiffuseContribution += info.diffuse * notShadowLevel; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution *= notShadowLevel; #endif #ifdef SPECULARTERM lightSpecularContribution += info.specular * notShadowLevel; #endif #endif #ifdef LIGHT3 #ifndef SPECULARTERM vec3 vLightSpecular3 = vec3(0.0); #endif #ifdef SPOTLIGHT3 info = computeSpotLighting(viewDirectionW, normalW, vLightData3, vLightDirection3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV); #endif #ifdef HEMILIGHT3 info = computeHemisphericLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightGround3, rough, NdotV); #endif #if defined(POINTLIGHT3) || defined(DIRLIGHT3) info = computeLighting(viewDirectionW, normalW, vLightData3, vLightDiffuse3.rgb, vLightSpecular3, vLightDiffuse3.a, rough, NdotV); #endif #ifdef SHADOW3 #ifdef SHADOWVSM3 notShadowLevel = computeShadowWithVSM(vPositionFromLight3, shadowSampler3, shadowsInfo3.z, shadowsInfo3.x); #else #ifdef SHADOWPCF3 #if defined(POINTLIGHT3) notShadowLevel = computeShadowWithPCFCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x); #else notShadowLevel = computeShadowWithPCF(vPositionFromLight3, shadowSampler3, shadowsInfo3.y, shadowsInfo3.z, shadowsInfo3.x); #endif #else #if defined(POINTLIGHT3) notShadowLevel = computeShadowCube(vLightData3.xyz, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z); #else notShadowLevel = computeShadow(vPositionFromLight3, shadowSampler3, shadowsInfo3.x, shadowsInfo3.z); #endif #endif #endif #else notShadowLevel = 1.; #endif lightDiffuseContribution += info.diffuse * notShadowLevel; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution *= notShadowLevel; #endif #ifdef SPECULARTERM lightSpecularContribution += info.specular * notShadowLevel; #endif #endif #ifdef SPECULARTERM lightSpecularContribution *= vLightingIntensity.w; #endif #ifdef OPACITY vec4 opacityMap = texture2D(opacitySampler, vOpacityUV); #ifdef OPACITYRGB opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11); alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y; #else alpha *= opacityMap.a * vOpacityInfos.y; #endif #endif #ifdef VERTEXALPHA alpha *= vColor.a; #endif #ifdef OPACITYFRESNEL float opacityFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, opacityParts.z, opacityParts.w); alpha += opacityParts.x * (1.0 - opacityFresnelTerm) + opacityFresnelTerm * opacityParts.y; #endif // Refraction vec3 surfaceRefractionColor = vec3(0., 0., 0.); // Go mat -> blurry reflexion according to microSurface float bias = 20. * (1.0 - microSurface); #ifdef REFRACTION vec3 refractionVector = normalize(refract(-viewDirectionW, normalW, vRefractionInfos.y)); #ifdef REFRACTIONMAP_3D refractionVector.y = refractionVector.y * vRefractionInfos.w; if (dot(refractionVector, viewDirectionW) < 1.0) { surfaceRefractionColor = textureCube(refractionCubeSampler, refractionVector, bias).rgb * vRefractionInfos.x; } #ifndef REFRACTIONMAPINLINEARSPACE surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb); #endif #else vec3 vRefractionUVW = vec3(refractionMatrix * (view * vec4(vPositionW + refractionVector * vRefractionInfos.z, 1.0))); vec2 refractionCoords = vRefractionUVW.xy / vRefractionUVW.z; refractionCoords.y = 1.0 - refractionCoords.y; surfaceRefractionColor = texture2D(refraction2DSampler, refractionCoords).rgb * vRefractionInfos.x; surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb); #endif #endif // Reflection vec3 environmentRadiance = vReflectionColor.rgb; vec3 environmentIrradiance = vReflectionColor.rgb; #ifdef REFLECTION vec3 vReflectionUVW = computeReflectionCoords(vec4(vPositionW, 1.0), normalW); #ifdef REFLECTIONMAP_3D environmentRadiance = textureCube(reflectionCubeSampler, vReflectionUVW, bias).rgb * vReflectionInfos.x; #ifdef PoissonSamplingEnvironment float alphaG = convertRoughnessToAverageSlope(rough); environmentRadiance = environmentSampler(reflectionCubeSampler, vReflectionUVW, alphaG) * vReflectionInfos.x; #endif #ifdef USESPHERICALFROMREFLECTIONMAP #ifndef REFLECTIONMAP_SKYBOX vec3 normalEnvironmentSpace = (reflectionMatrix * vec4(normalW, 1)).xyz; environmentIrradiance = EnvironmentIrradiance(normalEnvironmentSpace); #endif #else environmentRadiance = toLinearSpace(environmentRadiance.rgb); environmentIrradiance = textureCube(reflectionCubeSampler, normalW, 20.).rgb * vReflectionInfos.x; environmentIrradiance = toLinearSpace(environmentIrradiance.rgb); environmentIrradiance *= 0.2; // Hack in case of no hdr cube map use for environment. #endif #else vec2 coords = vReflectionUVW.xy; #ifdef REFLECTIONMAP_PROJECTION coords /= vReflectionUVW.z; #endif coords.y = 1.0 - coords.y; environmentRadiance = texture2D(reflection2DSampler, coords).rgb * vReflectionInfos.x; environmentRadiance = toLinearSpace(environmentRadiance.rgb); environmentIrradiance = texture2D(reflection2DSampler, coords, 20.).rgb * vReflectionInfos.x; environmentIrradiance = toLinearSpace(environmentIrradiance.rgb); #endif #endif #ifdef OVERLOADEDVALUES environmentIrradiance = mix(environmentIrradiance, vOverloadedReflection, vOverloadedMicroSurface.z); environmentRadiance = mix(environmentRadiance, vOverloadedReflection, vOverloadedMicroSurface.z); #endif environmentRadiance *= vLightingIntensity.z; environmentIrradiance *= vLightingIntensity.z; // Compute reflection specular fresnel vec3 specularEnvironmentR0 = surfaceReflectivityColor.rgb; vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0); vec3 specularEnvironmentReflectance = FresnelSchlickEnvironmentGGX(clamp(NdotV, 0., 1.), specularEnvironmentR0, specularEnvironmentR90, sqrt(microSurface)); // Compute refractance vec3 refractance = vec3(0.0 , 0.0, 0.0); #ifdef REFRACTION vec3 transmission = vec3(1.0 , 1.0, 1.0); #ifdef LINKREFRACTIONTOTRANSPARENCY // Transmission based on alpha. transmission *= (1.0 - alpha); // Tint the material with albedo. // TODO. PBR Tinting. vec3 mixedAlbedo = surfaceAlbedoContribution.rgb * surfaceAlbedo.rgb; float maxChannel = max(max(mixedAlbedo.r, mixedAlbedo.g), mixedAlbedo.b); vec3 tint = clamp(maxChannel * mixedAlbedo, 0.0, 1.0); // Decrease Albedo Contribution surfaceAlbedoContribution *= alpha; // Decrease irradiance Contribution environmentIrradiance *= alpha; // Tint reflectance surfaceRefractionColor *= tint; // Put alpha back to 1; alpha = 1.0; #endif // Add Multiple internal bounces. vec3 bounceSpecularEnvironmentReflectance = (2.0 * specularEnvironmentReflectance) / (1.0 + specularEnvironmentReflectance); specularEnvironmentReflectance = mix(bounceSpecularEnvironmentReflectance, specularEnvironmentReflectance, alpha); // In theory T = 1 - R. transmission *= 1.0 - specularEnvironmentReflectance; // Should baked in diffuse. refractance = surfaceRefractionColor * transmission; #endif // Apply Energy Conservation taking in account the environment level only if the environment is present. float reflectance = max(max(surfaceReflectivityColor.r, surfaceReflectivityColor.g), surfaceReflectivityColor.b); surfaceAlbedo.rgb = (1. - reflectance) * surfaceAlbedo.rgb; refractance *= vLightingIntensity.z; environmentRadiance *= specularEnvironmentReflectance; // Emissive vec3 surfaceEmissiveColor = vEmissiveColor; #ifdef EMISSIVE vec3 emissiveColorTex = texture2D(emissiveSampler, vEmissiveUV).rgb; surfaceEmissiveColor = toLinearSpace(emissiveColorTex.rgb) * surfaceEmissiveColor * vEmissiveInfos.y; #endif #ifdef OVERLOADEDVALUES surfaceEmissiveColor = mix(surfaceEmissiveColor, vOverloadedEmissive, vOverloadedIntensity.w); #endif #ifdef EMISSIVEFRESNEL float emissiveFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, emissiveRightColor.a, emissiveLeftColor.a); surfaceEmissiveColor *= emissiveLeftColor.rgb * (1.0 - emissiveFresnelTerm) + emissiveFresnelTerm * emissiveRightColor.rgb; #endif // Composition #ifdef EMISSIVEASILLUMINATION vec3 finalDiffuse = max(lightDiffuseContribution * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb; #endif #else #ifdef LINKEMISSIVEWITHALBEDO vec3 finalDiffuse = max((lightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution = max((shadowedOnlyLightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution + vAmbientColor, 0.0) * surfaceAlbedo.rgb; #endif #else vec3 finalDiffuse = max(lightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor + vAmbientColor, 0.0) * surfaceAlbedo.rgb; #ifdef OVERLOADEDSHADOWVALUES shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor + vAmbientColor, 0.0) * surfaceAlbedo.rgb; #endif #endif #endif #ifdef OVERLOADEDSHADOWVALUES finalDiffuse = mix(finalDiffuse, shadowedOnlyLightDiffuseContribution, (1.0 - vOverloadedShadowIntensity.y)); #endif #ifdef SPECULARTERM vec3 finalSpecular = lightSpecularContribution * surfaceReflectivityColor; #else vec3 finalSpecular = vec3(0.0); #endif #ifdef OVERLOADEDSHADOWVALUES finalSpecular = mix(finalSpecular, vec3(0.0), (1.0 - vOverloadedShadowIntensity.y)); #endif #ifdef SPECULAROVERALPHA alpha = clamp(alpha + dot(finalSpecular, vec3(0.3, 0.59, 0.11)), 0., 1.); #endif // Composition // Reflection already includes the environment intensity. #ifdef EMISSIVEASILLUMINATION vec4 finalColor = vec4(finalDiffuse * ambientColor * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance + finalSpecular * vLightingIntensity.x + environmentRadiance + surfaceEmissiveColor * vLightingIntensity.y + refractance, alpha); #else vec4 finalColor = vec4(finalDiffuse * ambientColor * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance + finalSpecular * vLightingIntensity.x + environmentRadiance + refractance, alpha); #endif #ifdef LIGHTMAP vec3 lightmapColor = texture2D(lightmapSampler, vLightmapUV).rgb * vLightmapInfos.y; #ifdef USELIGHTMAPASSHADOWMAP finalColor.rgb *= lightmapColor; #else finalColor.rgb += lightmapColor; #endif #endif #ifdef FOG float fog = CalcFogFactor(); finalColor.rgb = fog * finalColor.rgb + (1.0 - fog) * vFogColor; #endif finalColor = max(finalColor, 0.0); #ifdef CAMERATONEMAP finalColor.rgb = toneMaps(finalColor.rgb); #endif finalColor.rgb = toGammaSpace(finalColor.rgb); #ifdef CAMERACONTRAST finalColor = contrasts(finalColor); #endif // Normal Display. // gl_FragColor = vec4(normalW * 0.5 + 0.5, 1.0); // Ambient reflection color. // gl_FragColor = vec4(ambientReflectionColor, 1.0); // Reflection color. // gl_FragColor = vec4(reflectionColor, 1.0); // Base color. // gl_FragColor = vec4(surfaceAlbedo.rgb, 1.0); // Specular color. // gl_FragColor = vec4(surfaceReflectivityColor.rgb, 1.0); // MicroSurface color. // gl_FragColor = vec4(microSurface, microSurface, microSurface, 1.0); // Specular Map // gl_FragColor = vec4(reflectivityMapColor.rgb, 1.0); // Refractance // gl_FragColor = vec4(refractance.rgb, 1.0); //// Emissive Color //vec2 test = vEmissiveUV * 0.5 + 0.5; //gl_FragColor = vec4(test.x, test.y, 1.0, 1.0); gl_FragColor = finalColor; }