module BABYLON { // Unique ID when we import meshes from Babylon to CSG var currentCSGMeshId = 0; // # class Vertex // Represents a vertex of a polygon. Use your own vertex class instead of this // one to provide additional features like texture coordinates and vertex // colors. Custom vertex classes need to provide a `pos` property and `clone()`, // `flip()`, and `interpolate()` methods that behave analogous to the ones // defined by `BABYLON.CSG.Vertex`. This class provides `normal` so convenience // functions like `BABYLON.CSG.sphere()` can return a smooth vertex normal, but `normal` // is not used anywhere else. // Same goes for uv, it allows to keep the original vertex uv coordinates of the 2 meshes class Vertex { constructor(public pos: Vector3, public normal: Vector3, public uv: Vector2) { } public clone(): Vertex { return new Vertex(this.pos.clone(), this.normal.clone(), this.uv.clone()); } // Invert all orientation-specific data (e.g. vertex normal). Called when the // orientation of a polygon is flipped. public flip(): void { this.normal = this.normal.scale(-1); } // Create a new vertex between this vertex and `other` by linearly // interpolating all properties using a parameter of `t`. Subclasses should // override this to interpolate additional properties. public interpolate(other, t): Vertex { return new Vertex(Vector3.Lerp(this.pos, other.pos, t), Vector3.Lerp(this.normal, other.normal, t), Vector2.Lerp(this.uv, other.uv, t) ); } } // # class Plane // Represents a plane in 3D space. class Plane { constructor(public normal: Vector3, public w: number) { } // `BABYLON.CSG.Plane.EPSILON` is the tolerance used by `splitPolygon()` to decide if a // point is on the plane. static EPSILON = 1e-5; public static FromPoints(a: Vector3, b: Vector3, c: Vector3): Plane { var v0 = c.subtract(a); var v1 = b.subtract(a); if (v0.lengthSquared() === 0 || v1.lengthSquared() === 0) { return null; } var n = Vector3.Normalize(Vector3.Cross(v0, v1)); return new Plane(n, Vector3.Dot(n, a)); } public clone(): Plane { return new Plane(this.normal.clone(), this.w); } public flip() { this.normal.scaleInPlace(-1); this.w = -this.w; } // Split `polygon` by this plane if needed, then put the polygon or polygon // fragments in the appropriate lists. Coplanar polygons go into either // `coplanarFront` or `coplanarBack` depending on their orientation with // respect to this plane. Polygons in front or in back of this plane go into // either `front` or `back`. public splitPolygon(polygon: Polygon, coplanarFront: Polygon[], coplanarBack: Polygon[], front: Polygon[], back: Polygon[]): void { var COPLANAR = 0; var FRONT = 1; var BACK = 2; var SPANNING = 3; // Classify each point as well as the entire polygon into one of the above // four classes. var polygonType = 0; var types = []; for (var i = 0; i < polygon.vertices.length; i++) { var t = Vector3.Dot(this.normal, polygon.vertices[i].pos) - this.w; var type = (t < -Plane.EPSILON) ? BACK : (t > Plane.EPSILON) ? FRONT : COPLANAR; polygonType |= type; types.push(type); } // Put the polygon in the correct list, splitting it when necessary. switch (polygonType) { case COPLANAR: (Vector3.Dot(this.normal, polygon.plane.normal) > 0 ? coplanarFront : coplanarBack).push(polygon); break; case FRONT: front.push(polygon); break; case BACK: back.push(polygon); break; case SPANNING: var f = [], b = []; for (i = 0; i < polygon.vertices.length; i++) { var j = (i + 1) % polygon.vertices.length; var ti = types[i], tj = types[j]; var vi = polygon.vertices[i], vj = polygon.vertices[j]; if (ti != BACK) f.push(vi); if (ti != FRONT) b.push(ti != BACK ? vi.clone() : vi); if ((ti | tj) == SPANNING) { t = (this.w - Vector3.Dot(this.normal, vi.pos)) / Vector3.Dot(this.normal, vj.pos.subtract(vi.pos)); var v = vi.interpolate(vj, t); f.push(v); b.push(v.clone()); } } if (f.length >= 3) { var poly = new Polygon(f, polygon.shared); if (poly.plane) front.push(poly); } if (b.length >= 3) { poly = new Polygon(b, polygon.shared); if (poly.plane) back.push(poly); } break; } } } // # class Polygon // Represents a convex polygon. The vertices used to initialize a polygon must // be coplanar and form a convex loop. // // Each convex polygon has a `shared` property, which is shared between all // polygons that are clones of each other or were split from the same polygon. // This can be used to define per-polygon properties (such as surface color). class Polygon { public vertices: Vertex[]; public shared; public plane: Plane; constructor(vertices: Vertex[], shared) { this.vertices = vertices; this.shared = shared; this.plane = Plane.FromPoints(vertices[0].pos, vertices[1].pos, vertices[2].pos); } public clone(): Polygon { var vertices = this.vertices.map(v => v.clone()); return new Polygon(vertices, this.shared); } public flip() { this.vertices.reverse().map(v => { v.flip(); }); this.plane.flip(); } } // # class Node // Holds a node in a BSP tree. A BSP tree is built from a collection of polygons // by picking a polygon to split along. That polygon (and all other coplanar // polygons) are added directly to that node and the other polygons are added to // the front and/or back subtrees. This is not a leafy BSP tree since there is // no distinction between internal and leaf nodes. class Node { private plane = null; private front = null; private back = null; private polygons = []; constructor(polygons?) { if (polygons) { this.build(polygons); } } public clone(): Node { var node = new Node(); node.plane = this.plane && this.plane.clone(); node.front = this.front && this.front.clone(); node.back = this.back && this.back.clone(); node.polygons = this.polygons.map(p => p.clone()); return node; } // Convert solid space to empty space and empty space to solid space. public invert(): void { for (var i = 0; i < this.polygons.length; i++) { this.polygons[i].flip(); } if (this.plane) { this.plane.flip(); } if (this.front) { this.front.invert(); } if (this.back) { this.back.invert(); } var temp = this.front; this.front = this.back; this.back = temp; } // Recursively remove all polygons in `polygons` that are inside this BSP // tree. clipPolygons(polygons: Polygon[]) { if (!this.plane) return polygons.slice(); var front = [], back = []; for (var i = 0; i < polygons.length; i++) { this.plane.splitPolygon(polygons[i], front, back, front, back); } if (this.front) { front = this.front.clipPolygons(front); } if (this.back) { back = this.back.clipPolygons(back); } else { back = []; } return front.concat(back); } // Remove all polygons in this BSP tree that are inside the other BSP tree // `bsp`. clipTo(bsp: Node): void { this.polygons = bsp.clipPolygons(this.polygons); if (this.front) this.front.clipTo(bsp); if (this.back) this.back.clipTo(bsp); } // Return a list of all polygons in this BSP tree. allPolygons(): Polygon[] { var polygons = this.polygons.slice(); if (this.front) polygons = polygons.concat(this.front.allPolygons()); if (this.back) polygons = polygons.concat(this.back.allPolygons()); return polygons; } // Build a BSP tree out of `polygons`. When called on an existing tree, the // new polygons are filtered down to the bottom of the tree and become new // nodes there. Each set of polygons is partitioned using the first polygon // (no heuristic is used to pick a good split). build(polygons: Polygon[]) { if (!polygons.length) return; if (!this.plane) this.plane = polygons[0].plane.clone(); var front = [], back = []; for (var i = 0; i < polygons.length; i++) { this.plane.splitPolygon(polygons[i], this.polygons, this.polygons, front, back); } if (front.length) { if (!this.front) this.front = new Node(); this.front.build(front); } if (back.length) { if (!this.back) this.back = new Node(); this.back.build(back); } } } export class CSG { private polygons = new Array(); public matrix: Matrix; public position: Vector3; public rotation: Vector3; public scaling: Vector3; // Convert BABYLON.Mesh to BABYLON.CSG public static FromMesh(mesh: Mesh) { var vertex, normal, uv, position, polygon, polygons = [], vertices; if (mesh instanceof BABYLON.Mesh) { mesh.computeWorldMatrix(true); var matrix = mesh.getWorldMatrix(); var meshPosition = mesh.position.clone(); var meshRotation = mesh.rotation.clone(); var meshScaling = mesh.scaling.clone(); } else { throw 'BABYLON.CSG: Wrong Mesh type, must be BABYLON.Mesh'; } var indices = mesh.getIndices(), positions = mesh.getVerticesData(BABYLON.VertexBuffer.PositionKind), normals = mesh.getVerticesData(BABYLON.VertexBuffer.NormalKind), uvs = mesh.getVerticesData(BABYLON.VertexBuffer.UVKind); var subMeshes = mesh.subMeshes; for (var sm = 0, sml = subMeshes.length; sm < sml; sm++) { for (var i = subMeshes[sm].indexStart, il = subMeshes[sm].indexCount + subMeshes[sm].indexStart; i < il; i += 3) { vertices = []; for (var j = 0; j < 3; j++) { normal = new BABYLON.Vector3(normals[indices[i + j] * 3], normals[indices[i + j] * 3 + 1], normals[indices[i + j] * 3 + 2]); uv = new BABYLON.Vector2(uvs[indices[i + j] * 2], uvs[indices[i + j] * 2 + 1]); position = new BABYLON.Vector3(positions[indices[i + j] * 3], positions[indices[i + j] * 3 + 1], positions[indices[i + j] * 3 + 2]); BABYLON.Vector3.TransformCoordinatesToRef(position, matrix, position); BABYLON.Vector3.TransformNormalToRef(normal, matrix, normal); vertex = new Vertex(position, normal, uv); vertices.push(vertex); } polygon = new Polygon(vertices, { subMeshId: sm, meshId: currentCSGMeshId, materialIndex: subMeshes[sm].materialIndex }); // To handle the case of degenerated triangle // polygon.plane == null <=> the polygon does not represent 1 single plane <=> the triangle is degenerated if (polygon.plane) polygons.push(polygon); } } var csg = CSG.FromPolygons(polygons); csg.matrix = matrix; csg.position = meshPosition; csg.rotation = meshRotation; csg.scaling = meshScaling; currentCSGMeshId++; return csg; } // Construct a BABYLON.CSG solid from a list of `BABYLON.CSG.Polygon` instances. private static FromPolygons(polygons: Polygon[]): CSG { var csg = new BABYLON.CSG(); csg.polygons = polygons; return csg; } public clone(): CSG { var csg = new BABYLON.CSG(); csg.polygons = this.polygons.map(p => p.clone()); csg.copyTransformAttributes(this); return csg; } private toPolygons(): Polygon[] { return this.polygons; } public union(csg: CSG): CSG { var a = new Node(this.clone().polygons); var b = new Node(csg.clone().polygons); a.clipTo(b); b.clipTo(a); b.invert(); b.clipTo(a); b.invert(); a.build(b.allPolygons()); return CSG.FromPolygons(a.allPolygons()).copyTransformAttributes(this); } public unionInPlace(csg: CSG): void { var a = new Node(this.polygons); var b = new Node(csg.polygons); a.clipTo(b); b.clipTo(a); b.invert(); b.clipTo(a); b.invert(); a.build(b.allPolygons()); this.polygons = a.allPolygons(); } public subtract(csg: CSG): CSG { var a = new Node(this.clone().polygons); var b = new Node(csg.clone().polygons); a.invert(); a.clipTo(b); b.clipTo(a); b.invert(); b.clipTo(a); b.invert(); a.build(b.allPolygons()); a.invert(); return CSG.FromPolygons(a.allPolygons()).copyTransformAttributes(this); } public subtractInPlace(csg: CSG): void { var a = new Node(this.polygons); var b = new Node(csg.polygons); a.invert(); a.clipTo(b); b.clipTo(a); b.invert(); b.clipTo(a); b.invert(); a.build(b.allPolygons()); a.invert(); this.polygons = a.allPolygons(); } public intersect(csg: CSG): CSG { var a = new Node(this.clone().polygons); var b = new Node(csg.clone().polygons); a.invert(); b.clipTo(a); b.invert(); a.clipTo(b); b.clipTo(a); a.build(b.allPolygons()); a.invert(); return CSG.FromPolygons(a.allPolygons()).copyTransformAttributes(this); } public intersectInPlace(csg: CSG): void { var a = new Node(this.polygons); var b = new Node(csg.polygons); a.invert(); b.clipTo(a); b.invert(); a.clipTo(b); b.clipTo(a); a.build(b.allPolygons()); a.invert(); this.polygons = a.allPolygons(); } // Return a new BABYLON.CSG solid with solid and empty space switched. This solid is // not modified. public inverse(): CSG { var csg = this.clone(); csg.inverseInPlace(); return csg; } public inverseInPlace(): void { this.polygons.map(p => { p.flip(); }); } // This is used to keep meshes transformations so they can be restored // when we build back a Babylon Mesh // NB : All CSG operations are performed in world coordinates public copyTransformAttributes(csg: CSG): CSG { this.matrix = csg.matrix; this.position = csg.position; this.rotation = csg.rotation; this.scaling = csg.scaling; return this; } // Build Raw mesh from CSG // Coordinates here are in world space public buildMeshGeometry(name: string, scene: Scene, keepSubMeshes: boolean): Mesh { var matrix = this.matrix.clone(); matrix.invert(); var mesh = new BABYLON.Mesh(name, scene), vertices = [], indices = [], normals = [], uvs = [], vertex = BABYLON.Vector3.Zero(), normal = BABYLON.Vector3.Zero(), uv = BABYLON.Vector2.Zero(), polygons = this.polygons, polygonIndices = [0, 0, 0], polygon, vertice_dict = {}, vertex_idx, currentIndex = 0, subMesh_dict = {}, subMesh_obj; if (keepSubMeshes) { // Sort Polygons, since subMeshes are indices range polygons.sort((a, b) => { if (a.shared.meshId === b.shared.meshId) { return a.shared.subMeshId - b.shared.subMeshId; } else { return a.shared.meshId - b.shared.meshId; } }); } for (var i = 0, il = polygons.length; i < il; i++) { polygon = polygons[i]; // Building SubMeshes if (!subMesh_dict[polygon.shared.meshId]) { subMesh_dict[polygon.shared.meshId] = {}; } if (!subMesh_dict[polygon.shared.meshId][polygon.shared.subMeshId]) { subMesh_dict[polygon.shared.meshId][polygon.shared.subMeshId] = { indexStart: +Infinity, indexEnd: -Infinity, materialIndex: polygon.shared.materialIndex }; } subMesh_obj = subMesh_dict[polygon.shared.meshId][polygon.shared.subMeshId]; for (var j = 2, jl = polygon.vertices.length; j < jl; j++) { polygonIndices[0] = 0; polygonIndices[1] = j - 1; polygonIndices[2] = j; for (var k = 0; k < 3; k++) { vertex.copyFrom(polygon.vertices[polygonIndices[k]].pos); normal.copyFrom(polygon.vertices[polygonIndices[k]].normal); uv.copyFrom(polygon.vertices[polygonIndices[k]].uv); BABYLON.Vector3.TransformCoordinatesToRef(vertex, matrix, vertex); BABYLON.Vector3.TransformNormalToRef(normal, matrix, normal); vertex_idx = vertice_dict[vertex.x + ',' + vertex.y + ',' + vertex.z]; // Check if 2 points can be merged if (!(typeof vertex_idx !== 'undefined' && normals[vertex_idx * 3] === normal.x && normals[vertex_idx * 3 + 1] === normal.y && normals[vertex_idx * 3 + 2] === normal.z && uvs[vertex_idx * 2] === uv.x && uvs[vertex_idx * 2 + 1] === uv.y)) { vertices.push(vertex.x, vertex.y, vertex.z); uvs.push(uv.x, uv.y); normals.push(normal.x, normal.y, normal.z); vertex_idx = vertice_dict[vertex.x + ',' + vertex.y + ',' + vertex.z] = (vertices.length / 3) - 1; } indices.push(vertex_idx); subMesh_obj.indexStart = Math.min(currentIndex, subMesh_obj.indexStart); subMesh_obj.indexEnd = Math.max(currentIndex, subMesh_obj.indexEnd); currentIndex++; } } } mesh.setVerticesData(BABYLON.VertexBuffer.PositionKind, vertices); mesh.setVerticesData(BABYLON.VertexBuffer.NormalKind, normals); mesh.setVerticesData(BABYLON.VertexBuffer.UVKind, uvs); mesh.setIndices(indices); if (keepSubMeshes) { // We offset the materialIndex by the previous number of materials in the CSG mixed meshes var materialIndexOffset = 0, materialMaxIndex; mesh.subMeshes.length = 0; for (var m in subMesh_dict) { materialMaxIndex = -1; for (var sm in subMesh_dict[m]) { subMesh_obj = subMesh_dict[m][sm]; BABYLON.SubMesh.CreateFromIndices(subMesh_obj.materialIndex + materialIndexOffset, subMesh_obj.indexStart, subMesh_obj.indexEnd - subMesh_obj.indexStart + 1, mesh); materialMaxIndex = Math.max(subMesh_obj.materialIndex, materialMaxIndex); } materialIndexOffset += ++materialMaxIndex; } } return mesh; } // Build Mesh from CSG taking material and transforms into account public toMesh(name: string, material: Material, scene: Scene, keepSubMeshes: boolean): Mesh { var mesh = this.buildMeshGeometry(name, scene, keepSubMeshes); mesh.material = material; mesh.position.copyFrom(this.position); mesh.rotation.copyFrom(this.rotation); mesh.scaling.copyFrom(this.scaling); mesh.computeWorldMatrix(true); return mesh; } } }