module BABYLON { export type IndicesArray = number[] | Int32Array | Uint32Array | Uint16Array; export interface IGetSetVerticesData { isVerticesDataPresent(kind: string): boolean; getVerticesData(kind: string, copyWhenShared?: boolean, forceCopy?: boolean): number[] | Float32Array; getIndices(copyWhenShared?: boolean): IndicesArray; setVerticesData(kind: string, data: number[] | Float32Array, updatable?: boolean): void; updateVerticesData(kind: string, data: number[] | Float32Array, updateExtends?: boolean, makeItUnique?: boolean): void; setIndices(indices: IndicesArray): void; } export class VertexData { public positions: number[] | Float32Array; public normals: number[] | Float32Array; public tangents: number[] | Float32Array; public uvs: number[] | Float32Array; public uvs2: number[] | Float32Array; public uvs3: number[] | Float32Array; public uvs4: number[] | Float32Array; public uvs5: number[] | Float32Array; public uvs6: number[] | Float32Array; public colors: number[] | Float32Array; public matricesIndices: number[] | Float32Array; public matricesWeights: number[] | Float32Array; public matricesIndicesExtra: number[] | Float32Array; public matricesWeightsExtra: number[] | Float32Array; public indices: IndicesArray; public set(data: number[] | Float32Array, kind: string) { switch (kind) { case VertexBuffer.PositionKind: this.positions = data; break; case VertexBuffer.NormalKind: this.normals = data; break; case VertexBuffer.TangentKind: this.tangents = data; break; case VertexBuffer.UVKind: this.uvs = data; break; case VertexBuffer.UV2Kind: this.uvs2 = data; break; case VertexBuffer.UV3Kind: this.uvs3 = data; break; case VertexBuffer.UV4Kind: this.uvs4 = data; break; case VertexBuffer.UV5Kind: this.uvs5 = data; break; case VertexBuffer.UV6Kind: this.uvs6 = data; break; case VertexBuffer.ColorKind: this.colors = data; break; case VertexBuffer.MatricesIndicesKind: this.matricesIndices = data; break; case VertexBuffer.MatricesWeightsKind: this.matricesWeights = data; break; case VertexBuffer.MatricesIndicesExtraKind: this.matricesIndicesExtra = data; break; case VertexBuffer.MatricesWeightsExtraKind: this.matricesWeightsExtra = data; break; } } /** * Associates the vertexData to the passed Mesh. * Sets it as updatable or not (default `false`). * Returns the VertexData. */ public applyToMesh(mesh: Mesh, updatable?: boolean): VertexData { this._applyTo(mesh, updatable); return this; } /** * Associates the vertexData to the passed Geometry. * Sets it as updatable or not (default `false`). * Returns the VertexData. */ public applyToGeometry(geometry: Geometry, updatable?: boolean): VertexData { this._applyTo(geometry, updatable); return this; } /** * Updates the associated mesh. * Returns the VertexData. */ public updateMesh(mesh: Mesh, updateExtends?: boolean, makeItUnique?: boolean): VertexData { this._update(mesh); return this; } /** * Updates the associated geometry. * Returns the VertexData. */ public updateGeometry(geometry: Geometry, updateExtends?: boolean, makeItUnique?: boolean): VertexData { this._update(geometry); return this; } private _applyTo(meshOrGeometry: IGetSetVerticesData, updatable?: boolean): VertexData { if (this.positions) { meshOrGeometry.setVerticesData(VertexBuffer.PositionKind, this.positions, updatable); } if (this.normals) { meshOrGeometry.setVerticesData(VertexBuffer.NormalKind, this.normals, updatable); } if (this.tangents) { meshOrGeometry.setVerticesData(VertexBuffer.TangentKind, this.tangents, updatable); } if (this.uvs) { meshOrGeometry.setVerticesData(VertexBuffer.UVKind, this.uvs, updatable); } if (this.uvs2) { meshOrGeometry.setVerticesData(VertexBuffer.UV2Kind, this.uvs2, updatable); } if (this.uvs3) { meshOrGeometry.setVerticesData(VertexBuffer.UV3Kind, this.uvs3, updatable); } if (this.uvs4) { meshOrGeometry.setVerticesData(VertexBuffer.UV4Kind, this.uvs4, updatable); } if (this.uvs5) { meshOrGeometry.setVerticesData(VertexBuffer.UV5Kind, this.uvs5, updatable); } if (this.uvs6) { meshOrGeometry.setVerticesData(VertexBuffer.UV6Kind, this.uvs6, updatable); } if (this.colors) { meshOrGeometry.setVerticesData(VertexBuffer.ColorKind, this.colors, updatable); } if (this.matricesIndices) { meshOrGeometry.setVerticesData(VertexBuffer.MatricesIndicesKind, this.matricesIndices, updatable); } if (this.matricesWeights) { meshOrGeometry.setVerticesData(VertexBuffer.MatricesWeightsKind, this.matricesWeights, updatable); } if (this.matricesIndicesExtra) { meshOrGeometry.setVerticesData(VertexBuffer.MatricesIndicesExtraKind, this.matricesIndicesExtra, updatable); } if (this.matricesWeightsExtra) { meshOrGeometry.setVerticesData(VertexBuffer.MatricesWeightsExtraKind, this.matricesWeightsExtra, updatable); } if (this.indices) { meshOrGeometry.setIndices(this.indices); } return this; } private _update(meshOrGeometry: IGetSetVerticesData, updateExtends?: boolean, makeItUnique?: boolean): VertexData { if (this.positions) { meshOrGeometry.updateVerticesData(VertexBuffer.PositionKind, this.positions, updateExtends, makeItUnique); } if (this.normals) { meshOrGeometry.updateVerticesData(VertexBuffer.NormalKind, this.normals, updateExtends, makeItUnique); } if (this.tangents) { meshOrGeometry.updateVerticesData(VertexBuffer.TangentKind, this.tangents, updateExtends, makeItUnique); } if (this.uvs) { meshOrGeometry.updateVerticesData(VertexBuffer.UVKind, this.uvs, updateExtends, makeItUnique); } if (this.uvs2) { meshOrGeometry.updateVerticesData(VertexBuffer.UV2Kind, this.uvs2, updateExtends, makeItUnique); } if (this.uvs3) { meshOrGeometry.updateVerticesData(VertexBuffer.UV3Kind, this.uvs3, updateExtends, makeItUnique); } if (this.uvs4) { meshOrGeometry.updateVerticesData(VertexBuffer.UV4Kind, this.uvs4, updateExtends, makeItUnique); } if (this.uvs5) { meshOrGeometry.updateVerticesData(VertexBuffer.UV5Kind, this.uvs5, updateExtends, makeItUnique); } if (this.uvs6) { meshOrGeometry.updateVerticesData(VertexBuffer.UV6Kind, this.uvs6, updateExtends, makeItUnique); } if (this.colors) { meshOrGeometry.updateVerticesData(VertexBuffer.ColorKind, this.colors, updateExtends, makeItUnique); } if (this.matricesIndices) { meshOrGeometry.updateVerticesData(VertexBuffer.MatricesIndicesKind, this.matricesIndices, updateExtends, makeItUnique); } if (this.matricesWeights) { meshOrGeometry.updateVerticesData(VertexBuffer.MatricesWeightsKind, this.matricesWeights, updateExtends, makeItUnique); } if (this.matricesIndicesExtra) { meshOrGeometry.updateVerticesData(VertexBuffer.MatricesIndicesExtraKind, this.matricesIndicesExtra, updateExtends, makeItUnique); } if (this.matricesWeightsExtra) { meshOrGeometry.updateVerticesData(VertexBuffer.MatricesWeightsExtraKind, this.matricesWeightsExtra, updateExtends, makeItUnique); } if (this.indices) { meshOrGeometry.setIndices(this.indices); } return this; } /** * Transforms each position and each normal of the vertexData according to the passed Matrix. * Returns the VertexData. */ public transform(matrix: Matrix): VertexData { var transformed = Vector3.Zero(); var index: number; if (this.positions) { var position = Vector3.Zero(); for (index = 0; index < this.positions.length; index += 3) { Vector3.FromArrayToRef(this.positions, index, position); Vector3.TransformCoordinatesToRef(position, matrix, transformed); this.positions[index] = transformed.x; this.positions[index + 1] = transformed.y; this.positions[index + 2] = transformed.z; } } if (this.normals) { var normal = Vector3.Zero(); for (index = 0; index < this.normals.length; index += 3) { Vector3.FromArrayToRef(this.normals, index, normal); Vector3.TransformNormalToRef(normal, matrix, transformed); this.normals[index] = transformed.x; this.normals[index + 1] = transformed.y; this.normals[index + 2] = transformed.z; } } if (this.tangents) { var tangent = Vector4.Zero(); var tangentTransformed = Vector4.Zero(); for (index = 0; index < this.tangents.length; index += 4) { Vector4.FromArrayToRef(this.tangents, index, tangent); Vector4.TransformNormalToRef(tangent, matrix, tangentTransformed); this.tangents[index] = tangentTransformed.x; this.tangents[index + 1] = tangentTransformed.y; this.tangents[index + 2] = tangentTransformed.z; this.tangents[index + 3] = tangentTransformed.w; } } return this; } /** * Merges the passed VertexData into the current one. * Returns the modified VertexData. */ public merge(other: VertexData): VertexData { if (other.indices) { if (!this.indices) { this.indices = []; } var offset = this.positions ? this.positions.length / 3 : 0; for (var index = 0; index < other.indices.length; index++) { //TODO check type - if Int32Array | Uint32Array | Uint16Array! (this.indices).push(other.indices[index] + offset); } } this.positions = this._mergeElement(this.positions, other.positions); this.normals = this._mergeElement(this.normals, other.normals); this.tangents = this._mergeElement(this.tangents, other.tangents); this.uvs = this._mergeElement(this.uvs, other.uvs); this.uvs2 = this._mergeElement(this.uvs2, other.uvs2); this.uvs3 = this._mergeElement(this.uvs3, other.uvs3); this.uvs4 = this._mergeElement(this.uvs4, other.uvs4); this.uvs5 = this._mergeElement(this.uvs5, other.uvs5); this.uvs6 = this._mergeElement(this.uvs6, other.uvs6); this.colors = this._mergeElement(this.colors, other.colors); this.matricesIndices = this._mergeElement(this.matricesIndices, other.matricesIndices); this.matricesWeights = this._mergeElement(this.matricesWeights, other.matricesWeights); this.matricesIndicesExtra = this._mergeElement(this.matricesIndicesExtra, other.matricesIndicesExtra); this.matricesWeightsExtra = this._mergeElement(this.matricesWeightsExtra, other.matricesWeightsExtra); return this; } private _mergeElement(source: number[] | Float32Array, other: number[] | Float32Array): number[] | Float32Array { if (!other && !source) { return null; } if (!other) { return this._mergeElement(source, new Float32Array(source.length)); } if (!source) { return this._mergeElement(new Float32Array(other.length), other); } var len = other.length + source.length; var isSrcTypedArray = source instanceof Float32Array; var isOthTypedArray = other instanceof Float32Array; // use non-loop method when the source is Float32Array if (isSrcTypedArray) { var ret32 = new Float32Array(len); ret32.set(source); ret32.set(other, source.length); return ret32; // source is number[], when other is also use concat } else if (!isOthTypedArray) { return (source).concat(other); // source is a number[], but other is a Float32Array, loop required } else { var ret = (source).slice(0); // copy source to a separate array for (var i = 0, len = other.length; i < len; i++) { ret.push(other[i]); } return ret; } } /** * Serializes the VertexData. * Returns a serialized object. */ public serialize(): any { var serializationObject = this.serialize(); if (this.positions) { serializationObject.positions = this.positions; } if (this.normals) { serializationObject.normals = this.normals; } if (this.tangents) { serializationObject.tangents = this.tangents; } if (this.uvs) { serializationObject.uvs = this.uvs; } if (this.uvs2) { serializationObject.uvs2 = this.uvs2; } if (this.uvs3) { serializationObject.uvs3 = this.uvs3; } if (this.uvs4) { serializationObject.uvs4 = this.uvs4; } if (this.uvs5) { serializationObject.uvs5 = this.uvs5; } if (this.uvs6) { serializationObject.uvs6 = this.uvs6; } if (this.colors) { serializationObject.colors = this.colors; } if (this.matricesIndices) { serializationObject.matricesIndices = this.matricesIndices; serializationObject.matricesIndices._isExpanded = true; } if (this.matricesWeights) { serializationObject.matricesWeights = this.matricesWeights; } if (this.matricesIndicesExtra) { serializationObject.matricesIndicesExtra = this.matricesIndicesExtra; serializationObject.matricesIndicesExtra._isExpanded = true; } if (this.matricesWeightsExtra) { serializationObject.matricesWeightsExtra = this.matricesWeightsExtra; } serializationObject.indices = this.indices; return serializationObject; } // Statics /** * Returns the object VertexData associated to the passed mesh. */ public static ExtractFromMesh(mesh: Mesh, copyWhenShared?: boolean, forceCopy?: boolean): VertexData { return VertexData._ExtractFrom(mesh, copyWhenShared, forceCopy); } /** * Returns the object VertexData associated to the passed geometry. */ public static ExtractFromGeometry(geometry: Geometry, copyWhenShared?: boolean, forceCopy?: boolean): VertexData { return VertexData._ExtractFrom(geometry, copyWhenShared, forceCopy); } private static _ExtractFrom(meshOrGeometry: IGetSetVerticesData, copyWhenShared?: boolean, forceCopy?: boolean): VertexData { var result = new VertexData(); if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.PositionKind)) { result.positions = meshOrGeometry.getVerticesData(VertexBuffer.PositionKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.NormalKind)) { result.normals = meshOrGeometry.getVerticesData(VertexBuffer.NormalKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.TangentKind)) { result.tangents = meshOrGeometry.getVerticesData(VertexBuffer.TangentKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UVKind)) { result.uvs = meshOrGeometry.getVerticesData(VertexBuffer.UVKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UV2Kind)) { result.uvs2 = meshOrGeometry.getVerticesData(VertexBuffer.UV2Kind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UV3Kind)) { result.uvs3 = meshOrGeometry.getVerticesData(VertexBuffer.UV3Kind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UV4Kind)) { result.uvs4 = meshOrGeometry.getVerticesData(VertexBuffer.UV4Kind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UV5Kind)) { result.uvs5 = meshOrGeometry.getVerticesData(VertexBuffer.UV5Kind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UV6Kind)) { result.uvs6 = meshOrGeometry.getVerticesData(VertexBuffer.UV6Kind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.ColorKind)) { result.colors = meshOrGeometry.getVerticesData(VertexBuffer.ColorKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.MatricesIndicesKind)) { result.matricesIndices = meshOrGeometry.getVerticesData(VertexBuffer.MatricesIndicesKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.MatricesWeightsKind)) { result.matricesWeights = meshOrGeometry.getVerticesData(VertexBuffer.MatricesWeightsKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.MatricesIndicesExtraKind)) { result.matricesIndicesExtra = meshOrGeometry.getVerticesData(VertexBuffer.MatricesIndicesExtraKind, copyWhenShared, forceCopy); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.MatricesWeightsExtraKind)) { result.matricesWeightsExtra = meshOrGeometry.getVerticesData(VertexBuffer.MatricesWeightsExtraKind, copyWhenShared, forceCopy); } result.indices = meshOrGeometry.getIndices(copyWhenShared); return result; } /** * Creates the vertexData of the Ribbon. */ public static CreateRibbon(options: { pathArray: Vector3[][], closeArray?: boolean, closePath?: boolean, offset?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4, invertUV?: boolean, uvs?: Vector2[], colors?: Color4[] }): VertexData { var pathArray: Vector3[][] = options.pathArray; var closeArray: boolean = options.closeArray || false; var closePath: boolean = options.closePath || false; var invertUV: boolean = options.invertUV || false; var defaultOffset: number = Math.floor(pathArray[0].length / 2); var offset: number = options.offset || defaultOffset; offset = offset > defaultOffset ? defaultOffset : Math.floor(offset); // offset max allowed : defaultOffset var sideOrientation: number = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; var customUV = options.uvs; var customColors = options.colors; var positions: number[] = []; var indices: number[] = []; var normals: number[] = []; var uvs: number[] = []; var us: number[][] = []; // us[path_id] = [uDist1, uDist2, uDist3 ... ] distances between points on path path_id var vs: number[][] = []; // vs[i] = [vDist1, vDist2, vDist3, ... ] distances between points i of consecutives paths from pathArray var uTotalDistance: number[] = []; // uTotalDistance[p] : total distance of path p var vTotalDistance: number[] = []; // vTotalDistance[i] : total distance between points i of first and last path from pathArray var minlg: number; // minimal length among all paths from pathArray var lg: number[] = []; // array of path lengths : nb of vertex per path var idx: number[] = []; // array of path indexes : index of each path (first vertex) in the total vertex number var p: number; // path iterator var i: number; // point iterator var j: number; // point iterator // if single path in pathArray if (pathArray.length < 2) { var ar1: Vector3[] = []; var ar2: Vector3[] = []; for (i = 0; i < pathArray[0].length - offset; i++) { ar1.push(pathArray[0][i]); ar2.push(pathArray[0][i + offset]); } pathArray = [ar1, ar2]; } // positions and horizontal distances (u) var idc: number = 0; var closePathCorr: number = (closePath) ? 1 : 0; // the final index will be +1 if closePath var path: Vector3[]; var l: number; minlg = pathArray[0].length; var vectlg: number; var dist: number; for (p = 0; p < pathArray.length; p++) { uTotalDistance[p] = 0; us[p] = [0]; path = pathArray[p]; l = path.length; minlg = (minlg < l) ? minlg : l; j = 0; while (j < l) { positions.push(path[j].x, path[j].y, path[j].z); if (j > 0) { vectlg = path[j].subtract(path[j - 1]).length(); dist = vectlg + uTotalDistance[p]; us[p].push(dist); uTotalDistance[p] = dist; } j++; } if (closePath) { // an extra hidden vertex is added in the "positions" array j--; positions.push(path[0].x, path[0].y, path[0].z); vectlg = path[j].subtract(path[0]).length(); dist = vectlg + uTotalDistance[p]; us[p].push(dist); uTotalDistance[p] = dist; } lg[p] = l + closePathCorr; idx[p] = idc; idc += (l + closePathCorr); } // vertical distances (v) var path1: Vector3[]; var path2: Vector3[]; var vertex1: Vector3; var vertex2: Vector3; for (i = 0; i < minlg + closePathCorr; i++) { vTotalDistance[i] = 0; vs[i] = [0]; for (p = 0; p < pathArray.length - 1; p++) { path1 = pathArray[p]; path2 = pathArray[p + 1]; if (i === minlg) { // closePath vertex1 = path1[0]; vertex2 = path2[0]; } else { vertex1 = path1[i]; vertex2 = path2[i]; } vectlg = vertex2.subtract(vertex1).length(); dist = vectlg + vTotalDistance[i]; vs[i].push(dist); vTotalDistance[i] = dist; } if (closeArray) { path1 = pathArray[p]; path2 = pathArray[0]; if (i === minlg) { // closePath vertex2 = path2[0]; } vectlg = vertex2.subtract(vertex1).length(); dist = vectlg + vTotalDistance[i]; vTotalDistance[i] = dist; } } // uvs var u: number; var v: number; if (customUV) { for (p = 0; p < customUV.length; p++) { uvs.push(customUV[p].x, customUV[p].y); } } else { for (p = 0; p < pathArray.length; p++) { for (i = 0; i < minlg + closePathCorr; i++) { u = (uTotalDistance[p] != 0.0) ? us[p][i] / uTotalDistance[p] : 0.0; v = (vTotalDistance[i] != 0.0) ? vs[i][p] / vTotalDistance[i] : 0.0; if (invertUV) { uvs.push(v, u); } else { uvs.push(u, v); } } } } // indices p = 0; // path index var pi: number = 0; // positions array index var l1: number = lg[p] - 1; // path1 length var l2: number = lg[p + 1] - 1; // path2 length var min: number = (l1 < l2) ? l1 : l2; // current path stop index var shft: number = idx[1] - idx[0]; // shift var path1nb: number = closeArray ? lg.length : lg.length - 1; // number of path1 to iterate on while (pi <= min && p < path1nb) { // stay under min and don't go over next to last path // draw two triangles between path1 (p1) and path2 (p2) : (p1.pi, p2.pi, p1.pi+1) and (p2.pi+1, p1.pi+1, p2.pi) clockwise indices.push(pi, pi + shft, pi + 1); indices.push(pi + shft + 1, pi + 1, pi + shft); pi += 1; if (pi === min) { // if end of one of two consecutive paths reached, go to next existing path p++; if (p === lg.length - 1) { // last path of pathArray reached <=> closeArray == true shft = idx[0] - idx[p]; l1 = lg[p] - 1; l2 = lg[0] - 1; } else { shft = idx[p + 1] - idx[p]; l1 = lg[p] - 1; l2 = lg[p + 1] - 1; } pi = idx[p]; min = (l1 < l2) ? l1 + pi : l2 + pi; } } // normals VertexData.ComputeNormals(positions, indices, normals); if (closePath) { // update both the first and last vertex normals to their average value var indexFirst: number = 0; var indexLast: number = 0; for (p = 0; p < pathArray.length; p++) { indexFirst = idx[p] * 3; if (p + 1 < pathArray.length) { indexLast = (idx[p + 1] - 1) * 3; } else { indexLast = normals.length - 3; } normals[indexFirst] = (normals[indexFirst] + normals[indexLast]) * 0.5; normals[indexFirst + 1] = (normals[indexFirst + 1] + normals[indexLast + 1]) * 0.5; normals[indexFirst + 2] = (normals[indexFirst + 2] + normals[indexLast + 2]) * 0.5; normals[indexLast] = normals[indexFirst]; normals[indexLast + 1] = normals[indexFirst + 1]; normals[indexLast + 2] = normals[indexFirst + 2]; } } // sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Colors if (customColors) { var colors = new Float32Array(customColors.length * 4); for (var c = 0; c < customColors.length; c++) { colors[c * 4] = customColors[c].r; colors[c * 4 + 1] = customColors[c].g; colors[c * 4 + 2] = customColors[c].b; colors[c * 4 + 3] = customColors[c].a; } } // Result var vertexData = new VertexData(); var positions32 = new Float32Array(positions); var normals32 = new Float32Array(normals); var uvs32 = new Float32Array(uvs); vertexData.indices = indices; vertexData.positions = positions32; vertexData.normals = normals32; vertexData.uvs = uvs32; if (customColors) { vertexData.set(colors, VertexBuffer.ColorKind); } if (closePath) { (vertexData)._idx = idx; } return vertexData; } /** * Creates the VertexData of the Box. */ public static CreateBox(options: { size?: number, width?: number, height?: number, depth?: number, faceUV?: Vector4[], faceColors?: Color4[], sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var normalsSource = [ new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 1, 0), new Vector3(0, -1, 0) ]; var indices = []; var positions = []; var normals = []; var uvs = []; var width = options.width || options.size || 1; var height = options.height || options.size || 1; var depth = options.depth || options.size || 1; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; var faceUV: Vector4[] = options.faceUV || new Array(6); var faceColors: Color4[] = options.faceColors; var colors = []; // default face colors and UV if undefined for (var f = 0; f < 6; f++) { if (faceUV[f] === undefined) { faceUV[f] = new Vector4(0, 0, 1, 1); } if (faceColors && faceColors[f] === undefined) { faceColors[f] = new Color4(1, 1, 1, 1); } } var scaleVector = new Vector3(width / 2, height / 2, depth / 2); // Create each face in turn. for (var index = 0; index < normalsSource.length; index++) { var normal = normalsSource[index]; // Get two vectors perpendicular to the face normal and to each other. var side1 = new Vector3(normal.y, normal.z, normal.x); var side2 = Vector3.Cross(normal, side1); // Six indices (two triangles) per face. var verticesLength = positions.length / 3; indices.push(verticesLength); indices.push(verticesLength + 1); indices.push(verticesLength + 2); indices.push(verticesLength); indices.push(verticesLength + 2); indices.push(verticesLength + 3); // Four vertices per face. var vertex = normal.subtract(side1).subtract(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].z, faceUV[index].w); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } vertex = normal.subtract(side1).add(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].x, faceUV[index].w); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } vertex = normal.add(side1).add(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].x, faceUV[index].y); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } vertex = normal.add(side1).subtract(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].z, faceUV[index].y); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } } // sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; if (faceColors) { var totalColors = (sideOrientation === Mesh.DOUBLESIDE) ? colors.concat(colors) : colors; vertexData.colors = totalColors; } return vertexData; } /** * Creates the VertexData of the Sphere. */ public static CreateSphere(options: { segments?: number, diameter?: number, diameterX?: number, diameterY?: number, diameterZ?: number, arc?: number, slice?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var segments: number = options.segments || 32; var diameterX: number = options.diameterX || options.diameter || 1; var diameterY: number = options.diameterY || options.diameter || 1; var diameterZ: number = options.diameterZ || options.diameter || 1; var arc: number = (options.arc <= 0 || options.arc > 1) ? 1.0 : options.arc || 1.0; var slice: number = (options.slice <= 0) ? 1.0 : options.slice || 1.0; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; var radius = new Vector3(diameterX / 2, diameterY / 2, diameterZ / 2); var totalZRotationSteps = 2 + segments; var totalYRotationSteps = 2 * totalZRotationSteps; var indices = []; var positions = []; var normals = []; var uvs = []; for (var zRotationStep = 0; zRotationStep <= totalZRotationSteps; zRotationStep++) { var normalizedZ = zRotationStep / totalZRotationSteps; var angleZ = normalizedZ * Math.PI * slice; for (var yRotationStep = 0; yRotationStep <= totalYRotationSteps; yRotationStep++) { var normalizedY = yRotationStep / totalYRotationSteps; var angleY = normalizedY * Math.PI * 2 * arc; var rotationZ = Matrix.RotationZ(-angleZ); var rotationY = Matrix.RotationY(angleY); var afterRotZ = Vector3.TransformCoordinates(Vector3.Up(), rotationZ); var complete = Vector3.TransformCoordinates(afterRotZ, rotationY); var vertex = complete.multiply(radius); var normal = complete.divide(radius).normalize(); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(normalizedY, normalizedZ); } if (zRotationStep > 0) { var verticesCount = positions.length / 3; for (var firstIndex = verticesCount - 2 * (totalYRotationSteps + 1); (firstIndex + totalYRotationSteps + 2) < verticesCount; firstIndex++) { indices.push((firstIndex)); indices.push((firstIndex + 1)); indices.push(firstIndex + totalYRotationSteps + 1); indices.push((firstIndex + totalYRotationSteps + 1)); indices.push((firstIndex + 1)); indices.push((firstIndex + totalYRotationSteps + 2)); } } } // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Creates the VertexData of the Cylinder or Cone. */ public static CreateCylinder(options: { height?: number, diameterTop?: number, diameterBottom?: number, diameter?: number, tessellation?: number, subdivisions?: number, arc?: number, faceColors?: Color4[], faceUV?: Vector4[], hasRings?: boolean, enclose?: boolean, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var height: number = options.height || 2; var diameterTop: number = (options.diameterTop === 0) ? 0 : options.diameterTop || options.diameter || 1; var diameterBottom: number = (options.diameterBottom === 0) ? 0 : options.diameterBottom || options.diameter || 1; var tessellation: number = options.tessellation || 24; var subdivisions: number = options.subdivisions || 1; var hasRings: boolean = options.hasRings; var enclose: boolean = options.enclose; var arc: number = (options.arc <= 0 || options.arc > 1) ? 1.0 : options.arc || 1.0; var sideOrientation: number = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; var faceUV: Vector4[] = options.faceUV || new Array(3); var faceColors: Color4[] = options.faceColors; // default face colors and UV if undefined var quadNb: number = (arc !== 1 && enclose) ? 2 : 0; var ringNb: number = (hasRings) ? subdivisions : 1; var surfaceNb: number = 2 + (1 + quadNb) * ringNb; var f: number; for (f = 0; f < surfaceNb; f++) { if (faceColors && faceColors[f] === undefined) { faceColors[f] = new Color4(1, 1, 1, 1); } } for (f = 0; f < surfaceNb; f++) { if (faceUV && faceUV[f] === undefined) { faceUV[f] = new Vector4(0, 0, 1, 1); } } var indices = []; var positions = []; var normals = []; var uvs = []; var colors = []; var angle_step = Math.PI * 2 * arc / tessellation; var angle: number; var h: number; var radius: number; var tan = (diameterBottom - diameterTop) / 2 / height; var ringVertex: Vector3 = Vector3.Zero(); var ringNormal: Vector3 = Vector3.Zero(); var ringFirstVertex: Vector3 = Vector3.Zero(); var ringFirstNormal: Vector3 = Vector3.Zero(); var quadNormal: Vector3 = Vector3.Zero(); var Y: Vector3 = Axis.Y; // positions, normals, uvs var i: number; var j: number; var r: number; var ringIdx: number = 1; var s: number = 1; // surface index var cs: number = 0; var v: number = 0; for (i = 0; i <= subdivisions; i++) { h = i / subdivisions; radius = (h * (diameterTop - diameterBottom) + diameterBottom) / 2; ringIdx = (hasRings && i !== 0 && i !== subdivisions) ? 2 : 1; for (r = 0; r < ringIdx; r++) { if (hasRings) { s += r; } if (enclose) { s += 2 * r; } for (j = 0; j <= tessellation; j++) { angle = j * angle_step; // position ringVertex.x = Math.cos(-angle) * radius; ringVertex.y = -height / 2 + h * height; ringVertex.z = Math.sin(-angle) * radius; // normal if (diameterTop === 0 && i === subdivisions) { // if no top cap, reuse former normals ringNormal.x = normals[normals.length - (tessellation + 1) * 3]; ringNormal.y = normals[normals.length - (tessellation + 1) * 3 + 1]; ringNormal.z = normals[normals.length - (tessellation + 1) * 3 + 2]; } else { ringNormal.x = ringVertex.x; ringNormal.z = ringVertex.z; ringNormal.y = Math.sqrt(ringNormal.x * ringNormal.x + ringNormal.z * ringNormal.z) * tan; ringNormal.normalize(); } // keep first ring vertex values for enclose if (j === 0) { ringFirstVertex.copyFrom(ringVertex); ringFirstNormal.copyFrom(ringNormal); } positions.push(ringVertex.x, ringVertex.y, ringVertex.z); normals.push(ringNormal.x, ringNormal.y, ringNormal.z); if (hasRings) { v = (cs !== s) ? faceUV[s].y : faceUV[s].w; } else { v = faceUV[s].y + (faceUV[s].w - faceUV[s].y) * h; } uvs.push(faceUV[s].x + (faceUV[s].z - faceUV[s].x) * j / tessellation, v); if (faceColors) { colors.push(faceColors[s].r, faceColors[s].g, faceColors[s].b, faceColors[s].a); } } // if enclose, add four vertices and their dedicated normals if (arc !== 1 && enclose) { positions.push(ringVertex.x, ringVertex.y, ringVertex.z); positions.push(0, ringVertex.y, 0); positions.push(0, ringVertex.y, 0); positions.push(ringFirstVertex.x, ringFirstVertex.y, ringFirstVertex.z); Vector3.CrossToRef(Y, ringNormal, quadNormal); quadNormal.normalize(); normals.push(quadNormal.x, quadNormal.y, quadNormal.z, quadNormal.x, quadNormal.y, quadNormal.z); Vector3.CrossToRef(ringFirstNormal, Y, quadNormal); quadNormal.normalize(); normals.push(quadNormal.x, quadNormal.y, quadNormal.z, quadNormal.x, quadNormal.y, quadNormal.z); if (hasRings) { v = (cs !== s) ? faceUV[s + 1].y : faceUV[s + 1].w; } else { v = faceUV[s + 1].y + (faceUV[s + 1].w - faceUV[s + 1].y) * h; } uvs.push(faceUV[s + 1].x, v); uvs.push(faceUV[s + 1].z, v); if (hasRings) { v = (cs !== s) ? faceUV[s + 2].y : faceUV[s + 2].w; } else { v = faceUV[s + 2].y + (faceUV[s + 2].w - faceUV[s + 2].y) * h; } uvs.push(faceUV[s + 2].x, v); uvs.push(faceUV[s + 2].z, v); if (faceColors) { colors.push(faceColors[s + 1].r, faceColors[s + 1].g, faceColors[s + 1].b, faceColors[s + 1].a); colors.push(faceColors[s + 1].r, faceColors[s + 1].g, faceColors[s + 1].b, faceColors[s + 1].a); colors.push(faceColors[s + 2].r, faceColors[s + 2].g, faceColors[s + 2].b, faceColors[s + 2].a); colors.push(faceColors[s + 2].r, faceColors[s + 2].g, faceColors[s + 2].b, faceColors[s + 2].a); } } if (cs !== s) { cs = s; } } } // indices var e: number = (arc !== 1 && enclose) ? tessellation + 4 : tessellation; // correction of number of iteration if enclose var s: number; i = 0; for (s = 0; s < subdivisions; s++) { for (j = 0; j < tessellation; j++) { var i0 = i * (e + 1) + j; var i1 = (i + 1) * (e + 1) + j; var i2 = i * (e + 1) + (j + 1); var i3 = (i + 1) * (e + 1) + (j + 1); indices.push(i0, i1, i2); indices.push(i3, i2, i1); } if (arc !== 1 && enclose) { // if enclose, add two quads indices.push(i0 + 2, i1 + 2, i2 + 2); indices.push(i3 + 2, i2 + 2, i1 + 2); indices.push(i0 + 4, i1 + 4, i2 + 4); indices.push(i3 + 4, i2 + 4, i1 + 4); } i = (hasRings) ? (i + 2) : (i + 1); } // Caps var createCylinderCap = isTop => { var radius = isTop ? diameterTop / 2 : diameterBottom / 2; if (radius === 0) { return; } // Cap positions, normals & uvs var angle; var circleVector; var i: number; var u: Vector4 = (isTop) ? faceUV[surfaceNb - 1] : faceUV[0]; var c: Color4; if (faceColors) { c = (isTop) ? faceColors[surfaceNb - 1] : faceColors[0]; } // cap center var vbase = positions.length / 3; var offset = isTop ? height / 2 : -height / 2; var center = new Vector3(0, offset, 0); positions.push(center.x, center.y, center.z); normals.push(0, isTop ? 1 : -1, 0); uvs.push(u.x + (u.z - u.x) * 0.5, u.y + (u.w - u.y) * 0.5); if (faceColors) { colors.push(c.r, c.g, c.b, c.a); } var textureScale = new Vector2(0.5, 0.5); for (i = 0; i <= tessellation; i++) { angle = Math.PI * 2 * i * arc / tessellation; var cos = Math.cos(-angle); var sin = Math.sin(-angle); circleVector = new Vector3(cos * radius, offset, sin * radius); var textureCoordinate = new Vector2(cos * textureScale.x + 0.5, sin * textureScale.y + 0.5); positions.push(circleVector.x, circleVector.y, circleVector.z); normals.push(0, isTop ? 1 : -1, 0); uvs.push(u.x + (u.z - u.x) * textureCoordinate.x, u.y + (u.w - u.y) * textureCoordinate.y); if (faceColors) { colors.push(c.r, c.g, c.b, c.a); } } // Cap indices for (i = 0; i < tessellation; i++) { if (!isTop) { indices.push(vbase); indices.push(vbase + (i + 1)); indices.push(vbase + (i + 2)); } else { indices.push(vbase); indices.push(vbase + (i + 2)); indices.push(vbase + (i + 1)); } } }; // add caps to geometry createCylinderCap(false); createCylinderCap(true); // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; if (faceColors) { vertexData.colors = colors; } return vertexData; } /** * Creates the VertexData of the Torus. */ public static CreateTorus(options: { diameter?: number, thickness?: number, tessellation?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }) { var indices = []; var positions = []; var normals = []; var uvs = []; var diameter = options.diameter || 1; var thickness = options.thickness || 0.5; var tessellation = options.tessellation || 16; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; var stride = tessellation + 1; for (var i = 0; i <= tessellation; i++) { var u = i / tessellation; var outerAngle = i * Math.PI * 2.0 / tessellation - Math.PI / 2.0; var transform = Matrix.Translation(diameter / 2.0, 0, 0).multiply(Matrix.RotationY(outerAngle)); for (var j = 0; j <= tessellation; j++) { var v = 1 - j / tessellation; var innerAngle = j * Math.PI * 2.0 / tessellation + Math.PI; var dx = Math.cos(innerAngle); var dy = Math.sin(innerAngle); // Create a vertex. var normal = new Vector3(dx, dy, 0); var position = normal.scale(thickness / 2); var textureCoordinate = new Vector2(u, v); position = Vector3.TransformCoordinates(position, transform); normal = Vector3.TransformNormal(normal, transform); positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(textureCoordinate.x, textureCoordinate.y); // And create indices for two triangles. var nextI = (i + 1) % stride; var nextJ = (j + 1) % stride; indices.push(i * stride + j); indices.push(i * stride + nextJ); indices.push(nextI * stride + j); indices.push(i * stride + nextJ); indices.push(nextI * stride + nextJ); indices.push(nextI * stride + j); } } // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Creates the VertexData of the LineSystem. */ public static CreateLineSystem(options: { lines: Vector3[][] }): VertexData { var indices = []; var positions = []; var lines = options.lines; var idx = 0; for (var l = 0; l < lines.length; l++) { var points = lines[l]; for (var index = 0; index < points.length; index++) { positions.push(points[index].x, points[index].y, points[index].z); if (index > 0) { indices.push(idx - 1); indices.push(idx); } idx++; } } var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; return vertexData; } /** * Create the VertexData of the DashedLines. */ public static CreateDashedLines(options: { points: Vector3[], dashSize?: number, gapSize?: number, dashNb?: number }): VertexData { var dashSize = options.dashSize || 3; var gapSize = options.gapSize || 1; var dashNb = options.dashNb || 200; var points = options.points; var positions = new Array(); var indices = new Array(); var curvect = Vector3.Zero(); var lg = 0; var nb = 0; var shft = 0; var dashshft = 0; var curshft = 0; var idx = 0; var i = 0; for (i = 0; i < points.length - 1; i++) { points[i + 1].subtractToRef(points[i], curvect); lg += curvect.length(); } shft = lg / dashNb; dashshft = dashSize * shft / (dashSize + gapSize); for (i = 0; i < points.length - 1; i++) { points[i + 1].subtractToRef(points[i], curvect); nb = Math.floor(curvect.length() / shft); curvect.normalize(); for (var j = 0; j < nb; j++) { curshft = shft * j; positions.push(points[i].x + curshft * curvect.x, points[i].y + curshft * curvect.y, points[i].z + curshft * curvect.z); positions.push(points[i].x + (curshft + dashshft) * curvect.x, points[i].y + (curshft + dashshft) * curvect.y, points[i].z + (curshft + dashshft) * curvect.z); indices.push(idx, idx + 1); idx += 2; } } // Result var vertexData = new VertexData(); vertexData.positions = positions; vertexData.indices = indices; return vertexData; } /** * Creates the VertexData of the Ground. */ public static CreateGround(options: { width?: number, height?: number, subdivisions?: number, subdivisionsX?: number, subdivisionsY?: number }): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var row: number, col: number; var width: number = options.width || 1; var height: number = options.height || 1; var subdivisionsX: number = options.subdivisionsX || options.subdivisions || 1; var subdivisionsY: number = options.subdivisionsY || options.subdivisions || 1; for (row = 0; row <= subdivisionsY; row++) { for (col = 0; col <= subdivisionsX; col++) { var position = new Vector3((col * width) / subdivisionsX - (width / 2.0), 0, ((subdivisionsY - row) * height) / subdivisionsY - (height / 2.0)); var normal = new Vector3(0, 1.0, 0); positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(col / subdivisionsX, 1.0 - row / subdivisionsY); } } for (row = 0; row < subdivisionsY; row++) { for (col = 0; col < subdivisionsX; col++) { indices.push(col + 1 + (row + 1) * (subdivisionsX + 1)); indices.push(col + 1 + row * (subdivisionsX + 1)); indices.push(col + row * (subdivisionsX + 1)); indices.push(col + (row + 1) * (subdivisionsX + 1)); indices.push(col + 1 + (row + 1) * (subdivisionsX + 1)); indices.push(col + row * (subdivisionsX + 1)); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Creates the VertexData of the TiledGround. */ public static CreateTiledGround(options: { xmin: number, zmin: number, xmax: number, zmax: number, subdivisions?: { w: number; h: number; }, precision?: { w: number; h: number; } }): VertexData { var xmin = options.xmin || -1.0; var zmin = options.zmin || -1.0; var xmax = options.xmax || 1.0; var zmax = options.zmax || 1.0; var subdivisions = options.subdivisions || { w: 1, h: 1 }; var precision = options.precision || { w: 1, h: 1 }; var indices = []; var positions = []; var normals = []; var uvs = []; var row: number, col: number, tileRow: number, tileCol: number; subdivisions.h = (subdivisions.h < 1) ? 1 : subdivisions.h; subdivisions.w = (subdivisions.w < 1) ? 1 : subdivisions.w; precision.w = (precision.w < 1) ? 1 : precision.w; precision.h = (precision.h < 1) ? 1 : precision.h; var tileSize = { 'w': (xmax - xmin) / subdivisions.w, 'h': (zmax - zmin) / subdivisions.h }; function applyTile(xTileMin: number, zTileMin: number, xTileMax: number, zTileMax: number) { // Indices var base = positions.length / 3; var rowLength = precision.w + 1; for (row = 0; row < precision.h; row++) { for (col = 0; col < precision.w; col++) { var square = [ base + col + row * rowLength, base + (col + 1) + row * rowLength, base + (col + 1) + (row + 1) * rowLength, base + col + (row + 1) * rowLength ]; indices.push(square[1]); indices.push(square[2]); indices.push(square[3]); indices.push(square[0]); indices.push(square[1]); indices.push(square[3]); } } // Position, normals and uvs var position = Vector3.Zero(); var normal = new Vector3(0, 1.0, 0); for (row = 0; row <= precision.h; row++) { position.z = (row * (zTileMax - zTileMin)) / precision.h + zTileMin; for (col = 0; col <= precision.w; col++) { position.x = (col * (xTileMax - xTileMin)) / precision.w + xTileMin; position.y = 0; positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(col / precision.w, row / precision.h); } } } for (tileRow = 0; tileRow < subdivisions.h; tileRow++) { for (tileCol = 0; tileCol < subdivisions.w; tileCol++) { applyTile( xmin + tileCol * tileSize.w, zmin + tileRow * tileSize.h, xmin + (tileCol + 1) * tileSize.w, zmin + (tileRow + 1) * tileSize.h ); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Creates the VertexData of the Ground designed from a heightmap. */ public static CreateGroundFromHeightMap(options: { width: number, height: number, subdivisions: number, minHeight: number, maxHeight: number, colorFilter: Color3, buffer: Uint8Array, bufferWidth: number, bufferHeight: number }): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var row, col; var filter = options.colorFilter || new Color3(0.3, 0.59, 0.11); // Vertices for (row = 0; row <= options.subdivisions; row++) { for (col = 0; col <= options.subdivisions; col++) { var position = new Vector3((col * options.width) / options.subdivisions - (options.width / 2.0), 0, ((options.subdivisions - row) * options.height) / options.subdivisions - (options.height / 2.0)); // Compute height var heightMapX = (((position.x + options.width / 2) / options.width) * (options.bufferWidth - 1)) | 0; var heightMapY = ((1.0 - (position.z + options.height / 2) / options.height) * (options.bufferHeight - 1)) | 0; var pos = (heightMapX + heightMapY * options.bufferWidth) * 4; var r = options.buffer[pos] / 255.0; var g = options.buffer[pos + 1] / 255.0; var b = options.buffer[pos + 2] / 255.0; var gradient = r * filter.r + g * filter.g + b * filter.b; position.y = options.minHeight + (options.maxHeight - options.minHeight) * gradient; // Add vertex positions.push(position.x, position.y, position.z); normals.push(0, 0, 0); uvs.push(col / options.subdivisions, 1.0 - row / options.subdivisions); } } // Indices for (row = 0; row < options.subdivisions; row++) { for (col = 0; col < options.subdivisions; col++) { indices.push(col + 1 + (row + 1) * (options.subdivisions + 1)); indices.push(col + 1 + row * (options.subdivisions + 1)); indices.push(col + row * (options.subdivisions + 1)); indices.push(col + (row + 1) * (options.subdivisions + 1)); indices.push(col + 1 + (row + 1) * (options.subdivisions + 1)); indices.push(col + row * (options.subdivisions + 1)); } } // Normals VertexData.ComputeNormals(positions, indices, normals); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Creates the VertexData of the Plane. */ public static CreatePlane(options: { size?: number, width?: number, height?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var width: number = options.width || options.size || 1; var height: number = options.height || options.size || 1; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; // Vertices var halfWidth = width / 2.0; var halfHeight = height / 2.0; positions.push(-halfWidth, -halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(0.0, 0.0); positions.push(halfWidth, -halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(1.0, 0.0); positions.push(halfWidth, halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(1.0, 1.0); positions.push(-halfWidth, halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(0.0, 1.0); // Indices indices.push(0); indices.push(1); indices.push(2); indices.push(0); indices.push(2); indices.push(3); // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Creates the VertexData of the Disc or regular Polygon. */ public static CreateDisc(options: { radius?: number, tessellation?: number, arc?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var positions = []; var indices = []; var normals = []; var uvs = []; var radius = options.radius || 0.5; var tessellation = options.tessellation || 64; var arc: number = (options.arc <= 0 || options.arc > 1) ? 1.0 : options.arc || 1.0; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; // positions and uvs positions.push(0, 0, 0); // disc center first uvs.push(0.5, 0.5); var theta = Math.PI * 2 * arc; var step = theta / tessellation; for (var a = 0; a < theta; a += step) { var x = Math.cos(a); var y = Math.sin(a); var u = (x + 1) / 2; var v = (1 - y) / 2; positions.push(radius * x, radius * y, 0); uvs.push(u, v); } if (arc === 1) { positions.push(positions[3], positions[4], positions[5]); // close the circle uvs.push(uvs[2], uvs[3]); } //indices var vertexNb = positions.length / 3; for (var i = 1; i < vertexNb - 1; i++) { indices.push(i + 1, 0, i); } // result VertexData.ComputeNormals(positions, indices, normals); VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } /** * Re-creates the VertexData of the Polygon for sideOrientation. */ public static CreatePolygon(polygon: Mesh, sideOrientation: number, fUV?, fColors?, frontUVs?: Vector4, backUVs?: Vector4) { var faceUV: Vector4[] = fUV || new Array(3); var faceColors: Color4[] = fColors; var colors = []; // default face colors and UV if undefined for (var f = 0; f < 3; f++) { if (faceUV[f] === undefined) { faceUV[f] = new Vector4(0, 0, 1, 1); } if (faceColors && faceColors[f] === undefined) { faceColors[f] = new Color4(1, 1, 1, 1); } } var positions = polygon.getVerticesData(VertexBuffer.PositionKind); var normals = polygon.getVerticesData(VertexBuffer.NormalKind); var uvs = polygon.getVerticesData(VertexBuffer.UVKind); var indices = polygon.getIndices(); // set face colours and textures var idx: number = 0; var face: number = 0; for (var index = 0; index < normals.length; index += 3) { //Edge Face no. 1 if(Math.abs(normals[index + 1]) < 0.001) { face = 1; } //Top Face no. 0 if(Math.abs(normals[index + 1] - 1) < 0.001 ) { face = 0; } //Bottom Face no. 2 if(Math.abs(normals[index + 1] + 1) < 0.001 ) { face = 2; } idx = index / 3; uvs[2*idx] = (1 - uvs[2*idx])*faceUV[face].x + uvs[2*idx]*faceUV[face].z; uvs[2*idx + 1] = (1 - uvs[2*idx + 1])*faceUV[face].y + uvs[2*idx + 1]*faceUV[face].w; if (faceColors) { colors.push(faceColors[face].r, faceColors[face].g, faceColors[face].b, faceColors[face].a); } } // sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, frontUVs, backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; if (faceColors) { var totalColors = (sideOrientation === Mesh.DOUBLESIDE) ? colors.concat(colors) : colors; vertexData.colors = totalColors; } return vertexData; } /** * Creates the VertexData of the IcoSphere. */ public static CreateIcoSphere(options: { radius?: number, radiusX?: number, radiusY?: number, radiusZ?: number, flat?: boolean, subdivisions?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var sideOrientation = options.sideOrientation || Mesh.DEFAULTSIDE; var radius = options.radius || 1; var flat = (options.flat === undefined) ? true : options.flat; var subdivisions = options.subdivisions || 4; var radiusX = options.radiusX || radius; var radiusY = options.radiusY || radius; var radiusZ = options.radiusZ || radius; var t = (1 + Math.sqrt(5)) / 2; // 12 vertex x,y,z var ico_vertices = [ -1, t, -0, 1, t, 0, -1, -t, 0, 1, -t, 0, // v0-3 0, -1, -t, 0, 1, -t, 0, -1, t, 0, 1, t, // v4-7 t, 0, 1, t, 0, -1, -t, 0, 1, -t, 0, -1 // v8-11 ]; // index of 3 vertex makes a face of icopshere var ico_indices = [ 0, 11, 5, 0, 5, 1, 0, 1, 7, 0, 7, 10, 12, 22, 23, 1, 5, 20, 5, 11, 4, 23, 22, 13, 22, 18, 6, 7, 1, 8, 14, 21, 4, 14, 4, 2, 16, 13, 6, 15, 6, 19, 3, 8, 9, 4, 21, 5, 13, 17, 23, 6, 13, 22, 19, 6, 18, 9, 8, 1 ]; // vertex for uv have aliased position, not for UV var vertices_unalias_id = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, // vertex alias 0, // 12: 0 + 12 2, // 13: 2 + 11 3, // 14: 3 + 11 3, // 15: 3 + 12 3, // 16: 3 + 13 4, // 17: 4 + 13 7, // 18: 7 + 11 8, // 19: 8 + 11 9, // 20: 9 + 11 9, // 21: 9 + 12 10, // 22: A + 12 11 // 23: B + 12 ]; // uv as integer step (not pixels !) var ico_vertexuv = [ 5, 1, 3, 1, 6, 4, 0, 0, // v0-3 5, 3, 4, 2, 2, 2, 4, 0, // v4-7 2, 0, 1, 1, 6, 0, 6, 2, // v8-11 // vertex alias (for same vertex on different faces) 0, 4, // 12: 0 + 12 3, 3, // 13: 2 + 11 4, 4, // 14: 3 + 11 3, 1, // 15: 3 + 12 4, 2, // 16: 3 + 13 4, 4, // 17: 4 + 13 0, 2, // 18: 7 + 11 1, 1, // 19: 8 + 11 2, 2, // 20: 9 + 11 3, 3, // 21: 9 + 12 1, 3, // 22: A + 12 2, 4 // 23: B + 12 ]; // Vertices[0, 1, ...9, A, B] : position on UV plane // '+' indicate duplicate position to be fixed (3,9:0,2,3,4,7,8,A,B) // First island of uv mapping // v = 4h 3+ 2 // v = 3h 9+ 4 // v = 2h 9+ 5 B // v = 1h 9 1 0 // v = 0h 3 8 7 A // u = 0 1 2 3 4 5 6 *a // Second island of uv mapping // v = 4h 0+ B+ 4+ // v = 3h A+ 2+ // v = 2h 7+ 6 3+ // v = 1h 8+ 3+ // v = 0h // u = 0 1 2 3 4 5 6 *a // Face layout on texture UV mapping // ============ // \ 4 /\ 16 / ====== // \ / \ / /\ 11 / // \/ 7 \/ / \ / // ======= / 10 \/ // /\ 17 /\ ======= // / \ / \ \ 15 /\ // / 8 \/ 12 \ \ / \ // ============ \/ 6 \ // \ 18 /\ ============ // \ / \ \ 5 /\ 0 / // \/ 13 \ \ / \ / // ======= \/ 1 \/ // ============= // /\ 19 /\ 2 /\ // / \ / \ / \ // / 14 \/ 9 \/ 3 \ // =================== // uv step is u:1 or 0.5, v:cos(30)=sqrt(3)/2, ratio approx is 84/97 var ustep = 138 / 1024; var vstep = 239 / 1024; var uoffset = 60 / 1024; var voffset = 26 / 1024; // Second island should have margin, not to touch the first island // avoid any borderline artefact in pixel rounding var island_u_offset = -40 / 1024; var island_v_offset = +20 / 1024; // face is either island 0 or 1 : // second island is for faces : [4, 7, 8, 12, 13, 16, 17, 18] var island = [ 0, 0, 0, 0, 1, // 0 - 4 0, 0, 1, 1, 0, // 5 - 9 0, 0, 1, 1, 0, // 10 - 14 0, 1, 1, 1, 0 // 15 - 19 ]; var indices = []; var positions = []; var normals = []; var uvs = []; var current_indice = 0; // prepare array of 3 vector (empty) (to be worked in place, shared for each face) var face_vertex_pos = new Array(3); var face_vertex_uv = new Array(3); var v012; for (v012 = 0; v012 < 3; v012++) { face_vertex_pos[v012] = Vector3.Zero(); face_vertex_uv[v012] = Vector2.Zero(); } // create all with normals for (var face = 0; face < 20; face++) { // 3 vertex per face for (v012 = 0; v012 < 3; v012++) { // look up vertex 0,1,2 to its index in 0 to 11 (or 23 including alias) var v_id = ico_indices[3 * face + v012]; // vertex have 3D position (x,y,z) face_vertex_pos[v012].copyFromFloats( ico_vertices[3 * vertices_unalias_id[v_id]], ico_vertices[3 * vertices_unalias_id[v_id] + 1], ico_vertices[3 * vertices_unalias_id[v_id] + 2]); // Normalize to get normal, then scale to radius face_vertex_pos[v012].normalize().scaleInPlace(radius); // uv Coordinates from vertex ID face_vertex_uv[v012].copyFromFloats( ico_vertexuv[2 * v_id] * ustep + uoffset + island[face] * island_u_offset, ico_vertexuv[2 * v_id + 1] * vstep + voffset + island[face] * island_v_offset); } // Subdivide the face (interpolate pos, norm, uv) // - pos is linear interpolation, then projected to sphere (converge polyhedron to sphere) // - norm is linear interpolation of vertex corner normal // (to be checked if better to re-calc from face vertex, or if approximation is OK ??? ) // - uv is linear interpolation // // Topology is as below for sub-divide by 2 // vertex shown as v0,v1,v2 // interp index is i1 to progress in range [v0,v1[ // interp index is i2 to progress in range [v0,v2[ // face index as (i1,i2) for /\ : (i1,i2),(i1+1,i2),(i1,i2+1) // and (i1,i2)' for \/ : (i1+1,i2),(i1+1,i2+1),(i1,i2+1) // // // i2 v2 // ^ ^ // / / \ // / / \ // / / \ // / / (0,1) \ // / #---------\ // / / \ (0,0)'/ \ // / / \ / \ // / / \ / \ // / / (0,0) \ / (1,0) \ // / #---------#---------\ // v0 v1 // // --------------------> i1 // // interp of (i1,i2): // along i2 : x0=lerp(v0,v2, i2/S) <---> x1=lerp(v1,v2, i2/S) // along i1 : lerp(x0,x1, i1/(S-i2)) // // centroid of triangle is needed to get help normal computation // (c1,c2) are used for centroid location var interp_vertex = (i1: number, i2: number, c1: number, c2: number) => { // vertex is interpolated from // - face_vertex_pos[0..2] // - face_vertex_uv[0..2] var pos_x0 = Vector3.Lerp(face_vertex_pos[0], face_vertex_pos[2], i2 / subdivisions); var pos_x1 = Vector3.Lerp(face_vertex_pos[1], face_vertex_pos[2], i2 / subdivisions); var pos_interp = (subdivisions === i2) ? face_vertex_pos[2] : Vector3.Lerp(pos_x0, pos_x1, i1 / (subdivisions - i2)); pos_interp.normalize(); var vertex_normal; if (flat) { // in flat mode, recalculate normal as face centroid normal var centroid_x0 = Vector3.Lerp(face_vertex_pos[0], face_vertex_pos[2], c2 / subdivisions); var centroid_x1 = Vector3.Lerp(face_vertex_pos[1], face_vertex_pos[2], c2 / subdivisions); vertex_normal = Vector3.Lerp(centroid_x0, centroid_x1, c1 / (subdivisions - c2)); } else { // in smooth mode, recalculate normal from each single vertex position vertex_normal = new Vector3(pos_interp.x, pos_interp.y, pos_interp.z); } // Vertex normal need correction due to X,Y,Z radius scaling vertex_normal.x /= radiusX; vertex_normal.y /= radiusY; vertex_normal.z /= radiusZ; vertex_normal.normalize(); var uv_x0 = Vector2.Lerp(face_vertex_uv[0], face_vertex_uv[2], i2 / subdivisions); var uv_x1 = Vector2.Lerp(face_vertex_uv[1], face_vertex_uv[2], i2 / subdivisions); var uv_interp = (subdivisions === i2) ? face_vertex_uv[2] : Vector2.Lerp(uv_x0, uv_x1, i1 / (subdivisions - i2)); positions.push(pos_interp.x * radiusX, pos_interp.y * radiusY, pos_interp.z * radiusZ); normals.push(vertex_normal.x, vertex_normal.y, vertex_normal.z); uvs.push(uv_interp.x, uv_interp.y); // push each vertex has member of a face // Same vertex can bleong to multiple face, it is pushed multiple time (duplicate vertex are present) indices.push(current_indice); current_indice++; } for (var i2 = 0; i2 < subdivisions; i2++) { for (var i1 = 0; i1 + i2 < subdivisions; i1++) { // face : (i1,i2) for /\ : // interp for : (i1,i2),(i1+1,i2),(i1,i2+1) interp_vertex(i1, i2, i1 + 1.0 / 3, i2 + 1.0 / 3); interp_vertex(i1 + 1, i2, i1 + 1.0 / 3, i2 + 1.0 / 3); interp_vertex(i1, i2 + 1, i1 + 1.0 / 3, i2 + 1.0 / 3); if (i1 + i2 + 1 < subdivisions) { // face : (i1,i2)' for \/ : // interp for (i1+1,i2),(i1+1,i2+1),(i1,i2+1) interp_vertex(i1 + 1, i2, i1 + 2.0 / 3, i2 + 2.0 / 3); interp_vertex(i1 + 1, i2 + 1, i1 + 2.0 / 3, i2 + 2.0 / 3); interp_vertex(i1, i2 + 1, i1 + 2.0 / 3, i2 + 2.0 / 3); } } } } // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } // inspired from // http://stemkoski.github.io/Three.js/Polyhedra.html /** * Creates the VertexData of the Polyhedron. */ public static CreatePolyhedron(options: { type?: number, size?: number, sizeX?: number, sizeY?: number, sizeZ?: number, custom?: any, faceUV?: Vector4[], faceColors?: Color4[], flat?: boolean, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { // provided polyhedron types : // 0 : Tetrahedron, 1 : Octahedron, 2 : Dodecahedron, 3 : Icosahedron, 4 : Rhombicuboctahedron, 5 : Triangular Prism, 6 : Pentagonal Prism, 7 : Hexagonal Prism, 8 : Square Pyramid (J1) // 9 : Pentagonal Pyramid (J2), 10 : Triangular Dipyramid (J12), 11 : Pentagonal Dipyramid (J13), 12 : Elongated Square Dipyramid (J15), 13 : Elongated Pentagonal Dipyramid (J16), 14 : Elongated Pentagonal Cupola (J20) var polyhedra: { vertex: number[][], face: number[][] }[] = []; polyhedra[0] = { vertex: [[0, 0, 1.732051], [1.632993, 0, -0.5773503], [-0.8164966, 1.414214, -0.5773503], [-0.8164966, -1.414214, -0.5773503]], face: [[0, 1, 2], [0, 2, 3], [0, 3, 1], [1, 3, 2]] }; polyhedra[1] = { vertex: [[0, 0, 1.414214], [1.414214, 0, 0], [0, 1.414214, 0], [-1.414214, 0, 0], [0, -1.414214, 0], [0, 0, -1.414214]], face: [[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 1], [1, 4, 5], [1, 5, 2], [2, 5, 3], [3, 5, 4]] }; polyhedra[2] = { vertex: [[0, 0, 1.070466], [0.7136442, 0, 0.7978784], [-0.3568221, 0.618034, 0.7978784], [-0.3568221, -0.618034, 0.7978784], [0.7978784, 0.618034, 0.3568221], [0.7978784, -0.618034, 0.3568221], [-0.9341724, 0.381966, 0.3568221], [0.1362939, 1, 0.3568221], [0.1362939, -1, 0.3568221], [-0.9341724, -0.381966, 0.3568221], [0.9341724, 0.381966, -0.3568221], [0.9341724, -0.381966, -0.3568221], [-0.7978784, 0.618034, -0.3568221], [-0.1362939, 1, -0.3568221], [-0.1362939, -1, -0.3568221], [-0.7978784, -0.618034, -0.3568221], [0.3568221, 0.618034, -0.7978784], [0.3568221, -0.618034, -0.7978784], [-0.7136442, 0, -0.7978784], [0, 0, -1.070466]], face: [[0, 1, 4, 7, 2], [0, 2, 6, 9, 3], [0, 3, 8, 5, 1], [1, 5, 11, 10, 4], [2, 7, 13, 12, 6], [3, 9, 15, 14, 8], [4, 10, 16, 13, 7], [5, 8, 14, 17, 11], [6, 12, 18, 15, 9], [10, 11, 17, 19, 16], [12, 13, 16, 19, 18], [14, 15, 18, 19, 17]] }; polyhedra[3] = { vertex: [[0, 0, 1.175571], [1.051462, 0, 0.5257311], [0.3249197, 1, 0.5257311], [-0.8506508, 0.618034, 0.5257311], [-0.8506508, -0.618034, 0.5257311], [0.3249197, -1, 0.5257311], [0.8506508, 0.618034, -0.5257311], [0.8506508, -0.618034, -0.5257311], [-0.3249197, 1, -0.5257311], [-1.051462, 0, -0.5257311], [-0.3249197, -1, -0.5257311], [0, 0, -1.175571]], face: [[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 5], [0, 5, 1], [1, 5, 7], [1, 7, 6], [1, 6, 2], [2, 6, 8], [2, 8, 3], [3, 8, 9], [3, 9, 4], [4, 9, 10], [4, 10, 5], [5, 10, 7], [6, 7, 11], [6, 11, 8], [7, 10, 11], [8, 11, 9], [9, 11, 10]] }; polyhedra[4] = { vertex: [[0, 0, 1.070722], [0.7148135, 0, 0.7971752], [-0.104682, 0.7071068, 0.7971752], [-0.6841528, 0.2071068, 0.7971752], [-0.104682, -0.7071068, 0.7971752], [0.6101315, 0.7071068, 0.5236279], [1.04156, 0.2071068, 0.1367736], [0.6101315, -0.7071068, 0.5236279], [-0.3574067, 1, 0.1367736], [-0.7888348, -0.5, 0.5236279], [-0.9368776, 0.5, 0.1367736], [-0.3574067, -1, 0.1367736], [0.3574067, 1, -0.1367736], [0.9368776, -0.5, -0.1367736], [0.7888348, 0.5, -0.5236279], [0.3574067, -1, -0.1367736], [-0.6101315, 0.7071068, -0.5236279], [-1.04156, -0.2071068, -0.1367736], [-0.6101315, -0.7071068, -0.5236279], [0.104682, 0.7071068, -0.7971752], [0.6841528, -0.2071068, -0.7971752], [0.104682, -0.7071068, -0.7971752], [-0.7148135, 0, -0.7971752], [0, 0, -1.070722]], face: [[0, 2, 3], [1, 6, 5], [4, 9, 11], [7, 15, 13], [8, 16, 10], [12, 14, 19], [17, 22, 18], [20, 21, 23], [0, 1, 5, 2], [0, 3, 9, 4], [0, 4, 7, 1], [1, 7, 13, 6], [2, 5, 12, 8], [2, 8, 10, 3], [3, 10, 17, 9], [4, 11, 15, 7], [5, 6, 14, 12], [6, 13, 20, 14], [8, 12, 19, 16], [9, 17, 18, 11], [10, 16, 22, 17], [11, 18, 21, 15], [13, 15, 21, 20], [14, 20, 23, 19], [16, 19, 23, 22], [18, 22, 23, 21]] }; polyhedra[5] = { vertex: [[0, 0, 1.322876], [1.309307, 0, 0.1889822], [-0.9819805, 0.8660254, 0.1889822], [0.1636634, -1.299038, 0.1889822], [0.3273268, 0.8660254, -0.9449112], [-0.8183171, -0.4330127, -0.9449112]], face: [[0, 3, 1], [2, 4, 5], [0, 1, 4, 2], [0, 2, 5, 3], [1, 3, 5, 4]] }; polyhedra[6] = { vertex: [[0, 0, 1.159953], [1.013464, 0, 0.5642542], [-0.3501431, 0.9510565, 0.5642542], [-0.7715208, -0.6571639, 0.5642542], [0.6633206, 0.9510565, -0.03144481], [0.8682979, -0.6571639, -0.3996071], [-1.121664, 0.2938926, -0.03144481], [-0.2348831, -1.063314, -0.3996071], [0.5181548, 0.2938926, -0.9953061], [-0.5850262, -0.112257, -0.9953061]], face: [[0, 1, 4, 2], [0, 2, 6, 3], [1, 5, 8, 4], [3, 6, 9, 7], [5, 7, 9, 8], [0, 3, 7, 5, 1], [2, 4, 8, 9, 6]] }; polyhedra[7] = { vertex: [[0, 0, 1.118034], [0.8944272, 0, 0.6708204], [-0.2236068, 0.8660254, 0.6708204], [-0.7826238, -0.4330127, 0.6708204], [0.6708204, 0.8660254, 0.2236068], [1.006231, -0.4330127, -0.2236068], [-1.006231, 0.4330127, 0.2236068], [-0.6708204, -0.8660254, -0.2236068], [0.7826238, 0.4330127, -0.6708204], [0.2236068, -0.8660254, -0.6708204], [-0.8944272, 0, -0.6708204], [0, 0, -1.118034]], face: [[0, 1, 4, 2], [0, 2, 6, 3], [1, 5, 8, 4], [3, 6, 10, 7], [5, 9, 11, 8], [7, 10, 11, 9], [0, 3, 7, 9, 5, 1], [2, 4, 8, 11, 10, 6]] }; polyhedra[8] = { vertex: [[-0.729665, 0.670121, 0.319155], [-0.655235, -0.29213, -0.754096], [-0.093922, -0.607123, 0.537818], [0.702196, 0.595691, 0.485187], [0.776626, -0.36656, -0.588064]], face: [[1, 4, 2], [0, 1, 2], [3, 0, 2], [4, 3, 2], [4, 1, 0, 3]] }; polyhedra[9] = { vertex: [[-0.868849, -0.100041, 0.61257], [-0.329458, 0.976099, 0.28078], [-0.26629, -0.013796, -0.477654], [-0.13392, -1.034115, 0.229829], [0.738834, 0.707117, -0.307018], [0.859683, -0.535264, -0.338508]], face: [[3, 0, 2], [5, 3, 2], [4, 5, 2], [1, 4, 2], [0, 1, 2], [0, 3, 5, 4, 1]] }; polyhedra[10] = { vertex: [[-0.610389, 0.243975, 0.531213], [-0.187812, -0.48795, -0.664016], [-0.187812, 0.9759, -0.664016], [0.187812, -0.9759, 0.664016], [0.798201, 0.243975, 0.132803]], face: [[1, 3, 0], [3, 4, 0], [3, 1, 4], [0, 2, 1], [0, 4, 2], [2, 4, 1]] }; polyhedra[11] = { vertex: [[-1.028778, 0.392027, -0.048786], [-0.640503, -0.646161, 0.621837], [-0.125162, -0.395663, -0.540059], [0.004683, 0.888447, -0.651988], [0.125161, 0.395663, 0.540059], [0.632925, -0.791376, 0.433102], [1.031672, 0.157063, -0.354165]], face: [[3, 2, 0], [2, 1, 0], [2, 5, 1], [0, 4, 3], [0, 1, 4], [4, 1, 5], [2, 3, 6], [3, 4, 6], [5, 2, 6], [4, 5, 6]] }; polyhedra[12] = { vertex: [[-0.669867, 0.334933, -0.529576], [-0.669867, 0.334933, 0.529577], [-0.4043, 1.212901, 0], [-0.334933, -0.669867, -0.529576], [-0.334933, -0.669867, 0.529577], [0.334933, 0.669867, -0.529576], [0.334933, 0.669867, 0.529577], [0.4043, -1.212901, 0], [0.669867, -0.334933, -0.529576], [0.669867, -0.334933, 0.529577]], face: [[8, 9, 7], [6, 5, 2], [3, 8, 7], [5, 0, 2], [4, 3, 7], [0, 1, 2], [9, 4, 7], [1, 6, 2], [9, 8, 5, 6], [8, 3, 0, 5], [3, 4, 1, 0], [4, 9, 6, 1]] }; polyhedra[13] = { vertex: [[-0.931836, 0.219976, -0.264632], [-0.636706, 0.318353, 0.692816], [-0.613483, -0.735083, -0.264632], [-0.326545, 0.979634, 0], [-0.318353, -0.636706, 0.692816], [-0.159176, 0.477529, -0.856368], [0.159176, -0.477529, -0.856368], [0.318353, 0.636706, 0.692816], [0.326545, -0.979634, 0], [0.613482, 0.735082, -0.264632], [0.636706, -0.318353, 0.692816], [0.931835, -0.219977, -0.264632]], face: [[11, 10, 8], [7, 9, 3], [6, 11, 8], [9, 5, 3], [2, 6, 8], [5, 0, 3], [4, 2, 8], [0, 1, 3], [10, 4, 8], [1, 7, 3], [10, 11, 9, 7], [11, 6, 5, 9], [6, 2, 0, 5], [2, 4, 1, 0], [4, 10, 7, 1]] }; polyhedra[14] = { vertex: [[-0.93465, 0.300459, -0.271185], [-0.838689, -0.260219, -0.516017], [-0.711319, 0.717591, 0.128359], [-0.710334, -0.156922, 0.080946], [-0.599799, 0.556003, -0.725148], [-0.503838, -0.004675, -0.969981], [-0.487004, 0.26021, 0.48049], [-0.460089, -0.750282, -0.512622], [-0.376468, 0.973135, -0.325605], [-0.331735, -0.646985, 0.084342], [-0.254001, 0.831847, 0.530001], [-0.125239, -0.494738, -0.966586], [0.029622, 0.027949, 0.730817], [0.056536, -0.982543, -0.262295], [0.08085, 1.087391, 0.076037], [0.125583, -0.532729, 0.485984], [0.262625, 0.599586, 0.780328], [0.391387, -0.726999, -0.716259], [0.513854, -0.868287, 0.139347], [0.597475, 0.85513, 0.326364], [0.641224, 0.109523, 0.783723], [0.737185, -0.451155, 0.538891], [0.848705, -0.612742, -0.314616], [0.976075, 0.365067, 0.32976], [1.072036, -0.19561, 0.084927]], face: [[15, 18, 21], [12, 20, 16], [6, 10, 2], [3, 0, 1], [9, 7, 13], [2, 8, 4, 0], [0, 4, 5, 1], [1, 5, 11, 7], [7, 11, 17, 13], [13, 17, 22, 18], [18, 22, 24, 21], [21, 24, 23, 20], [20, 23, 19, 16], [16, 19, 14, 10], [10, 14, 8, 2], [15, 9, 13, 18], [12, 15, 21, 20], [6, 12, 16, 10], [3, 6, 2, 0], [9, 3, 1, 7], [9, 15, 12, 6, 3], [22, 17, 11, 5, 4, 8, 14, 19, 23, 24]] }; var type: number = (options.type < 0 || options.type >= polyhedra.length) ? 0 : options.type || 0; var size: number = options.size; var sizeX: number = options.sizeX || size || 1; var sizeY: number = options.sizeY || size || 1; var sizeZ: number = options.sizeZ || size || 1; var data: { vertex: number[][], face: number[][], name?: string, category?: string } = options.custom || polyhedra[type]; var nbfaces = data.face.length; var faceUV = options.faceUV || new Array(nbfaces); var faceColors = options.faceColors; var flat = (options.flat === undefined) ? true : options.flat; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; var positions = []; var indices = []; var normals = []; var uvs = []; var colors = []; var index = 0; var faceIdx = 0; // face cursor in the array "indexes" var indexes = []; var i = 0; var f = 0; var u: number, v: number, ang: number, x: number, y: number, tmp: number; // default face colors and UV if undefined if (flat) { for (f = 0; f < nbfaces; f++) { if (faceColors && faceColors[f] === undefined) { faceColors[f] = new Color4(1, 1, 1, 1); } if (faceUV && faceUV[f] === undefined) { faceUV[f] = new Vector4(0, 0, 1, 1); } } } if (!flat) { for (i = 0; i < data.vertex.length; i++) { positions.push(data.vertex[i][0] * sizeX, data.vertex[i][1] * sizeY, data.vertex[i][2] * sizeZ); uvs.push(0, 0); } for (f = 0; f < nbfaces; f++) { for (i = 0; i < data.face[f].length - 2; i++) { indices.push(data.face[f][0], data.face[f][i + 2], data.face[f][i + 1]); } } } else { for (f = 0; f < nbfaces; f++) { var fl = data.face[f].length; // number of vertices of the current face ang = 2 * Math.PI / fl; x = 0.5 * Math.tan(ang / 2); y = 0.5; // positions, uvs, colors for (i = 0; i < fl; i++) { // positions positions.push(data.vertex[data.face[f][i]][0] * sizeX, data.vertex[data.face[f][i]][1] * sizeY, data.vertex[data.face[f][i]][2] * sizeZ); indexes.push(index); index++; // uvs u = faceUV[f].x + (faceUV[f].z - faceUV[f].x) * (0.5 + x); v = faceUV[f].y + (faceUV[f].w - faceUV[f].y) * (y - 0.5); uvs.push(u, v); tmp = x * Math.cos(ang) - y * Math.sin(ang); y = x * Math.sin(ang) + y * Math.cos(ang); x = tmp; // colors if (faceColors) { colors.push(faceColors[f].r, faceColors[f].g, faceColors[f].b, faceColors[f].a); } } // indices from indexes for (i = 0; i < fl - 2; i++) { indices.push(indexes[0 + faceIdx], indexes[i + 2 + faceIdx], indexes[i + 1 + faceIdx]); } faceIdx += fl; } } VertexData.ComputeNormals(positions, indices, normals); VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); var vertexData = new VertexData(); vertexData.positions = positions; vertexData.indices = indices; vertexData.normals = normals; vertexData.uvs = uvs; if (faceColors && flat) { vertexData.colors = colors; } return vertexData; } // based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473 /** * Creates the VertexData of the Torus Knot. */ public static CreateTorusKnot(options: { radius?: number, tube?: number, radialSegments?: number, tubularSegments?: number, p?: number, q?: number, sideOrientation?: number, frontUVs?: Vector4, backUVs?: Vector4 }): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var radius = options.radius || 2; var tube = options.tube || 0.5; var radialSegments = options.radialSegments || 32; var tubularSegments = options.tubularSegments || 32; var p = options.p || 2; var q = options.q || 3; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || Mesh.DEFAULTSIDE; // Helper var getPos = (angle) => { var cu = Math.cos(angle); var su = Math.sin(angle); var quOverP = q / p * angle; var cs = Math.cos(quOverP); var tx = radius * (2 + cs) * 0.5 * cu; var ty = radius * (2 + cs) * su * 0.5; var tz = radius * Math.sin(quOverP) * 0.5; return new Vector3(tx, ty, tz); }; // Vertices var i: number; var j: number; for (i = 0; i <= radialSegments; i++) { var modI = i % radialSegments; var u = modI / radialSegments * 2 * p * Math.PI; var p1 = getPos(u); var p2 = getPos(u + 0.01); var tang = p2.subtract(p1); var n = p2.add(p1); var bitan = Vector3.Cross(tang, n); n = Vector3.Cross(bitan, tang); bitan.normalize(); n.normalize(); for (j = 0; j < tubularSegments; j++) { var modJ = j % tubularSegments; var v = modJ / tubularSegments * 2 * Math.PI; var cx = -tube * Math.cos(v); var cy = tube * Math.sin(v); positions.push(p1.x + cx * n.x + cy * bitan.x); positions.push(p1.y + cx * n.y + cy * bitan.y); positions.push(p1.z + cx * n.z + cy * bitan.z); uvs.push(i / radialSegments); uvs.push(j / tubularSegments); } } for (i = 0; i < radialSegments; i++) { for (j = 0; j < tubularSegments; j++) { var jNext = (j + 1) % tubularSegments; var a = i * tubularSegments + j; var b = (i + 1) * tubularSegments + j; var c = (i + 1) * tubularSegments + jNext; var d = i * tubularSegments + jNext; indices.push(d); indices.push(b); indices.push(a); indices.push(d); indices.push(c); indices.push(b); } } // Normals VertexData.ComputeNormals(positions, indices, normals); // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs, options.frontUVs, options.backUVs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } // Tools /** * @param {any} - positions (number[] or Float32Array) * @param {any} - indices (number[] or Uint16Array) * @param {any} - normals (number[] or Float32Array) * options (optional) : * facetPositions : optional array of facet positions (vector3) * facetNormals : optional array of facet normals (vector3) * facetPartitioning : optional partitioning array. facetPositions is required for facetPartitioning computation * subDiv : optional partitioning data about subdivsions on each axis (int), required for facetPartitioning computation * ratio : optional partitioning ratio / bounding box, required for facetPartitioning computation * bbSize : optional bounding box size data, required for facetPartitioning computation * bInfo : optional bounding info, required for facetPartitioning computation */ public static ComputeNormals(positions: any, indices: any, normals: any, options?: { facetNormals?: any, facetPositions?: any, facetPartitioning?: any, ratio?: number, bInfo?: any, bbSize?: Vector3, subDiv?: any, useRightHandedSystem?: boolean }): void { // temporary scalar variables var index = 0; // facet index var p1p2x = 0.0; // p1p2 vector x coordinate var p1p2y = 0.0; // p1p2 vector y coordinate var p1p2z = 0.0; // p1p2 vector z coordinate var p3p2x = 0.0; // p3p2 vector x coordinate var p3p2y = 0.0; // p3p2 vector y coordinate var p3p2z = 0.0; // p3p2 vector z coordinate var faceNormalx = 0.0; // facet normal x coordinate var faceNormaly = 0.0; // facet normal y coordinate var faceNormalz = 0.0; // facet normal z coordinate var length = 0.0; // facet normal length before normalization var v1x = 0; // vector1 x index in the positions array var v1y = 0; // vector1 y index in the positions array var v1z = 0; // vector1 z index in the positions array var v2x = 0; // vector2 x index in the positions array var v2y = 0; // vector2 y index in the positions array var v2z = 0; // vector2 z index in the positions array var v3x = 0; // vector3 x index in the positions array var v3y = 0; // vector3 y index in the positions array var v3z = 0; // vector3 z index in the positions array var computeFacetNormals = false; var computeFacetPositions = false; var computeFacetPartitioning = false; var faceNormalSign = 1; if (options) { computeFacetNormals = (options.facetNormals) ? true : false; computeFacetPositions = (options.facetPositions) ? true : false; computeFacetPartitioning = (options.facetPartitioning) ? true : false; faceNormalSign = (options.useRightHandedSystem === true) ? -1 : 1; } // facetPartitioning reinit if needed if (computeFacetPartitioning) { var ox = 0; // X partitioning index for facet position var oy = 0; // Y partinioning index for facet position var oz = 0; // Z partinioning index for facet position var b1x = 0; // X partitioning index for facet v1 vertex var b1y = 0; // Y partitioning index for facet v1 vertex var b1z = 0; // z partitioning index for facet v1 vertex var b2x = 0; // X partitioning index for facet v2 vertex var b2y = 0; // Y partitioning index for facet v2 vertex var b2z = 0; // Z partitioning index for facet v2 vertex var b3x = 0; // X partitioning index for facet v3 vertex var b3y = 0; // Y partitioning index for facet v3 vertex var b3z = 0; // Z partitioning index for facet v3 vertex var block_idx_o = 0; // facet barycenter block index var block_idx_v1 = 0; // v1 vertex block index var block_idx_v2 = 0; // v2 vertex block index var block_idx_v3 = 0; // v3 vertex block index var bbSizeMax = (options.bbSize.x > options.bbSize.y) ? options.bbSize.x : options.bbSize.y; bbSizeMax = (bbSizeMax > options.bbSize.z) ? bbSizeMax : options.bbSize.z; var xSubRatio = options.subDiv.X * options.ratio / options.bbSize.x; var ySubRatio = options.subDiv.Y * options.ratio / options.bbSize.y; var zSubRatio = options.subDiv.Z * options.ratio / options.bbSize.z; var subSq = options.subDiv.max * options.subDiv.max; options.facetPartitioning.length = 0; } // reset the normals for (index = 0; index < positions.length; index++) { normals[index] = 0.0; } // Loop : 1 indice triplet = 1 facet var nbFaces = indices.length / 3; for (index = 0; index < nbFaces; index++) { // get the indexes of the coordinates of each vertex of the facet v1x = indices[index * 3] * 3; v1y = v1x + 1; v1z = v1x + 2; v2x = indices[index * 3 + 1] * 3; v2y = v2x + 1; v2z = v2x + 2; v3x = indices[index * 3 + 2] * 3; v3y = v3x + 1; v3z = v3x + 2; p1p2x = positions[v1x] - positions[v2x]; // compute two vectors per facet : p1p2 and p3p2 p1p2y = positions[v1y] - positions[v2y]; p1p2z = positions[v1z] - positions[v2z]; p3p2x = positions[v3x] - positions[v2x]; p3p2y = positions[v3y] - positions[v2y]; p3p2z = positions[v3z] - positions[v2z]; // compute the face normal with the cross product faceNormalx = faceNormalSign * (p1p2y * p3p2z - p1p2z * p3p2y); faceNormaly = faceNormalSign * (p1p2z * p3p2x - p1p2x * p3p2z); faceNormalz = faceNormalSign * (p1p2x * p3p2y - p1p2y * p3p2x); // normalize this normal and store it in the array facetData length = Math.sqrt(faceNormalx * faceNormalx + faceNormaly * faceNormaly + faceNormalz * faceNormalz); length = (length === 0) ? 1.0 : length; faceNormalx /= length; faceNormaly /= length; faceNormalz /= length; if (computeFacetNormals) { options.facetNormals[index].x = faceNormalx; options.facetNormals[index].y = faceNormaly; options.facetNormals[index].z = faceNormalz; } if (computeFacetPositions) { // compute and the facet barycenter coordinates in the array facetPositions options.facetPositions[index].x = (positions[v1x] + positions[v2x] + positions[v3x]) / 3.0; options.facetPositions[index].y = (positions[v1y] + positions[v2y] + positions[v3y]) / 3.0; options.facetPositions[index].z = (positions[v1z] + positions[v2z] + positions[v3z]) / 3.0; } if (computeFacetPartitioning) { // store the facet indexes in arrays in the main facetPartitioning array : // compute each facet vertex (+ facet barycenter) index in the partiniong array ox = Math.floor((options.facetPositions[index].x - options.bInfo.minimum.x * options.ratio) * xSubRatio); oy = Math.floor((options.facetPositions[index].y - options.bInfo.minimum.y * options.ratio) * ySubRatio); oz = Math.floor((options.facetPositions[index].z - options.bInfo.minimum.z * options.ratio) * zSubRatio); b1x = Math.floor((positions[v1x] - options.bInfo.minimum.x * options.ratio) * xSubRatio); b1y = Math.floor((positions[v1y] - options.bInfo.minimum.y * options.ratio) * ySubRatio); b1z = Math.floor((positions[v1z] - options.bInfo.minimum.z * options.ratio) * zSubRatio); b2x = Math.floor((positions[v2x] - options.bInfo.minimum.x * options.ratio) * xSubRatio); b2y = Math.floor((positions[v2y] - options.bInfo.minimum.y * options.ratio) * ySubRatio); b2z = Math.floor((positions[v2z] - options.bInfo.minimum.z * options.ratio) * zSubRatio); b3x = Math.floor((positions[v3x] - options.bInfo.minimum.x * options.ratio) * xSubRatio); b3y = Math.floor((positions[v3y] - options.bInfo.minimum.y * options.ratio) * ySubRatio); b3z = Math.floor((positions[v3z] - options.bInfo.minimum.z * options.ratio) * zSubRatio); block_idx_v1 = b1x + options.subDiv.max * b1y + subSq * b1z; block_idx_v2 = b2x + options.subDiv.max * b2y + subSq * b2z; block_idx_v3 = b3x + options.subDiv.max * b3y + subSq * b3z; block_idx_o = ox + options.subDiv.max * oy + subSq * oz; options.facetPartitioning[block_idx_o] = options.facetPartitioning[block_idx_o] ? options.facetPartitioning[block_idx_o] :new Array(); options.facetPartitioning[block_idx_v1] = options.facetPartitioning[block_idx_v1] ? options.facetPartitioning[block_idx_v1] :new Array(); options.facetPartitioning[block_idx_v2] = options.facetPartitioning[block_idx_v2] ? options.facetPartitioning[block_idx_v2] :new Array(); options.facetPartitioning[block_idx_v3] = options.facetPartitioning[block_idx_v3] ? options.facetPartitioning[block_idx_v3] :new Array(); // push each facet index in each block containing the vertex options.facetPartitioning[block_idx_v1].push(index); if (block_idx_v2 != block_idx_v1) { options.facetPartitioning[block_idx_v2].push(index); } if (!(block_idx_v3 == block_idx_v2 || block_idx_v3 == block_idx_v1)) { options.facetPartitioning[block_idx_v3].push(index); } if (!(block_idx_o == block_idx_v1 || block_idx_o == block_idx_v2 || block_idx_o == block_idx_v3)) { options.facetPartitioning[block_idx_o].push(index); } } // compute the normals anyway normals[v1x] += faceNormalx; // accumulate all the normals per face normals[v1y] += faceNormaly; normals[v1z] += faceNormalz; normals[v2x] += faceNormalx; normals[v2y] += faceNormaly; normals[v2z] += faceNormalz; normals[v3x] += faceNormalx; normals[v3y] += faceNormaly; normals[v3z] += faceNormalz; } // last normalization of each normal for (index = 0; index < normals.length / 3; index++) { faceNormalx = normals[index * 3]; faceNormaly = normals[index * 3 + 1]; faceNormalz = normals[index * 3 + 2]; length = Math.sqrt(faceNormalx * faceNormalx + faceNormaly * faceNormaly + faceNormalz * faceNormalz); length = (length === 0) ? 1.0 : length; faceNormalx /= length; faceNormaly /= length; faceNormalz /= length; normals[index * 3] = faceNormalx; normals[index * 3 + 1] = faceNormaly; normals[index * 3 + 2] = faceNormalz; } } private static _ComputeSides(sideOrientation: number, positions: number[] | Float32Array, indices: number[] | Float32Array, normals: number[] | Float32Array, uvs: number[] | Float32Array, frontUVs?: Vector4, backUVs?: Vector4) { var li: number = indices.length; var ln: number = normals.length; var i: number; var n: number; sideOrientation = sideOrientation || Mesh.DEFAULTSIDE; switch (sideOrientation) { case Mesh.FRONTSIDE: // nothing changed break; case Mesh.BACKSIDE: var tmp: number; // indices for (i = 0; i < li; i += 3) { tmp = indices[i]; indices[i] = indices[i + 2]; indices[i + 2] = tmp; } // normals for (n = 0; n < ln; n++) { normals[n] = -normals[n]; } break; case Mesh.DOUBLESIDE: // positions var lp: number = positions.length; var l: number = lp / 3; for (var p = 0; p < lp; p++) { positions[lp + p] = positions[p]; } // indices for (i = 0; i < li; i += 3) { indices[i + li] = indices[i + 2] + l; indices[i + 1 + li] = indices[i + 1] + l; indices[i + 2 + li] = indices[i] + l; } // normals for (n = 0; n < ln; n++) { normals[ln + n] = -normals[n]; } // uvs var lu: number = uvs.length; var u: number = 0; for (u = 0; u < lu; u++) { uvs[u + lu] = uvs[u]; } var frontUVs = frontUVs ? frontUVs : new Vector4(0.0, 0.0, 1.0, 1.0); var backUVs = backUVs ? backUVs : new Vector4(0.0, 0.0, 1.0, 1.0); u = 0; for (i = 0; i < lu / 2; i++) { uvs[u] = frontUVs.x + (frontUVs.z - frontUVs.x) * uvs[u]; uvs[u + 1] = frontUVs.y + (frontUVs.w - frontUVs.y) * uvs[u + 1]; uvs[u + lu] = backUVs.x + (backUVs.z - backUVs.x) * uvs[u + lu]; uvs[u + lu + 1] = backUVs.y + (backUVs.w - backUVs.y) * uvs[u + lu + 1]; u += 2; } break; } } /** * Creates a new VertexData from the imported parameters. */ public static ImportVertexData(parsedVertexData: any, geometry: Geometry) { var vertexData = new VertexData(); // positions var positions = parsedVertexData.positions; if (positions) { vertexData.set(positions, VertexBuffer.PositionKind); } // normals var normals = parsedVertexData.normals; if (normals) { vertexData.set(normals, VertexBuffer.NormalKind); } // tangents var tangents = parsedVertexData.tangents; if (tangents) { vertexData.set(tangents, VertexBuffer.TangentKind); } // uvs var uvs = parsedVertexData.uvs; if (uvs) { vertexData.set(uvs, VertexBuffer.UVKind); } // uv2s var uv2s = parsedVertexData.uv2s; if (uv2s) { vertexData.set(uv2s, VertexBuffer.UV2Kind); } // uv3s var uv3s = parsedVertexData.uv3s; if (uv3s) { vertexData.set(uv3s, VertexBuffer.UV3Kind); } // uv4s var uv4s = parsedVertexData.uv4s; if (uv4s) { vertexData.set(uv4s, VertexBuffer.UV4Kind); } // uv5s var uv5s = parsedVertexData.uv5s; if (uv5s) { vertexData.set(uv5s, VertexBuffer.UV5Kind); } // uv6s var uv6s = parsedVertexData.uv6s; if (uv6s) { vertexData.set(uv6s, VertexBuffer.UV6Kind); } // colors var colors = parsedVertexData.colors; if (colors) { vertexData.set(Color4.CheckColors4(colors, positions.length / 3), VertexBuffer.ColorKind); } // matricesIndices var matricesIndices = parsedVertexData.matricesIndices; if (matricesIndices) { vertexData.set(matricesIndices, VertexBuffer.MatricesIndicesKind); } // matricesWeights var matricesWeights = parsedVertexData.matricesWeights; if (matricesWeights) { vertexData.set(matricesWeights, VertexBuffer.MatricesWeightsKind); } // indices var indices = parsedVertexData.indices; if (indices) { vertexData.indices = indices; } geometry.setAllVerticesData(vertexData, parsedVertexData.updatable); } } }