module BABYLON { export class _InstancesBatch { public mustReturn = false; public visibleInstances = new Array>(); public renderSelf = new Array(); } export class Mesh extends AbstractMesh implements IGetSetVerticesData { // Consts public static _FRONTSIDE: number = 0; public static _BACKSIDE: number = 1; public static _DOUBLESIDE: number = 2; public static _DEFAULTSIDE: number = 0; public static _NO_CAP = 0; public static _CAP_START = 1; public static _CAP_END = 2; public static _CAP_ALL = 3; public static get FRONTSIDE(): number { return Mesh._FRONTSIDE; } public static get BACKSIDE(): number { return Mesh._BACKSIDE; } public static get DOUBLESIDE(): number { return Mesh._DOUBLESIDE; } public static get DEFAULTSIDE(): number { return Mesh._DEFAULTSIDE; } public static get NO_CAP(): number { return Mesh._NO_CAP; } public static get CAP_START(): number { return Mesh._CAP_START; } public static get CAP_END(): number { return Mesh._CAP_END; } public static get CAP_ALL(): number { return Mesh._CAP_ALL; } // Members public delayLoadState = Engine.DELAYLOADSTATE_NONE; public instances = new Array(); public delayLoadingFile: string; public _binaryInfo: any; private _LODLevels = new Array(); public onLODLevelSelection: (distance: number, mesh: Mesh, selectedLevel: Mesh) => void; public onBeforeDraw: () => void; // Private public _geometry: Geometry; private _onBeforeRenderCallbacks = new Array<(mesh: AbstractMesh) => void>(); private _onAfterRenderCallbacks = new Array<(mesh: AbstractMesh) => void>(); public _delayInfo; //ANY public _delayLoadingFunction: (any: any, mesh: Mesh) => void; public _visibleInstances: any = {}; private _renderIdForInstances = new Array(); private _batchCache = new _InstancesBatch(); private _worldMatricesInstancesBuffer: WebGLBuffer; private _worldMatricesInstancesArray: Float32Array; private _instancesBufferSize = 32 * 16 * 4; // let's start with a maximum of 32 instances public _shouldGenerateFlatShading: boolean; private _preActivateId: number; private _sideOrientation: number = Mesh._DEFAULTSIDE; private _areNormalsFrozen: boolean = false; // Will be used by ribbons mainly private _sourcePositions: Float32Array; // Will be used to save original positions when using software skinning private _sourceNormals: Float32Array; // Will be used to save original normals when using software skinning /** * @constructor * @param {string} name - The value used by scene.getMeshByName() to do a lookup. * @param {Scene} scene - The scene to add this mesh to. * @param {Node} parent - The parent of this mesh, if it has one * @param {Mesh} source - An optional Mesh from which geometry is shared, cloned. * @param {boolean} doNotCloneChildren - When cloning, skip cloning child meshes of source, default False. * When false, achieved by calling a clone(), also passing False. * This will make creation of children, recursive. */ constructor(name: string, scene: Scene, parent: Node = null, source?: Mesh, doNotCloneChildren?: boolean) { super(name, scene); if (source) { // Geometry if (source._geometry) { source._geometry.applyToMesh(this); } // Deep copy Tools.DeepCopy(source, this, ["name", "material", "skeleton", "instances"], ["_poseMatrix"]); // Pivot this.setPivotMatrix(source.getPivotMatrix()); this.id = name + "." + source.id; // Material this.material = source.material; var index: number; if (!doNotCloneChildren) { // Children for (index = 0; index < scene.meshes.length; index++) { var mesh = scene.meshes[index]; if (mesh.parent === source) { // doNotCloneChildren is always going to be False var newChild = mesh.clone(name + "." + mesh.name, this, doNotCloneChildren); } } } // Particles for (index = 0; index < scene.particleSystems.length; index++) { var system = scene.particleSystems[index]; if (system.emitter === source) { system.clone(system.name, this); } } this.computeWorldMatrix(true); } // Parent if (parent !== null) { this.parent = parent; } } // Methods /** * @param {boolean} fullDetails - support for multiple levels of logging within scene loading */ public toString(fullDetails? : boolean) : string { var ret = super.toString(fullDetails); ret += ", n vertices: " + this.getTotalVertices(); ret += ", parent: " + (this._waitingParentId ? this._waitingParentId : (this.parent ? this.parent.name : "NONE")); if (this.animations){ for (var i = 0; i < this.animations.length; i++){ ret += ", animation[0]: " + this.animations[i].toString(fullDetails); } } if (fullDetails){ ret += ", flat shading: " + (this._geometry ? (this.getVerticesData(VertexBuffer.PositionKind).length / 3 === this.getIndices().length ? "YES" : "NO") : "UNKNOWN"); } return ret; } public get hasLODLevels(): boolean { return this._LODLevels.length > 0; } private _sortLODLevels(): void { this._LODLevels.sort((a, b) => { if (a.distance < b.distance) { return 1; } if (a.distance > b.distance) { return -1; } return 0; }); } /** * Add a mesh as LOD level triggered at the given distance. * @param {number} distance - the distance from the center of the object to show this level * @param {Mesh} mesh - the mesh to be added as LOD level * @return {Mesh} this mesh (for chaining) */ public addLODLevel(distance: number, mesh: Mesh): Mesh { if (mesh && mesh._masterMesh) { Tools.Warn("You cannot use a mesh as LOD level twice"); return this; } var level = new Internals.MeshLODLevel(distance, mesh); this._LODLevels.push(level); if (mesh) { mesh._masterMesh = this; } this._sortLODLevels(); return this; } public getLODLevelAtDistance(distance: number): Mesh { for (var index = 0; index < this._LODLevels.length; index++) { var level = this._LODLevels[index]; if (level.distance === distance) { return level.mesh; } } return null; } /** * Remove a mesh from the LOD array * @param {Mesh} mesh - the mesh to be removed. * @return {Mesh} this mesh (for chaining) */ public removeLODLevel(mesh: Mesh): Mesh { for (var index = 0; index < this._LODLevels.length; index++) { if (this._LODLevels[index].mesh === mesh) { this._LODLevels.splice(index, 1); if (mesh) { mesh._masterMesh = null; } } } this._sortLODLevels(); return this; } public getLOD(camera: Camera, boundingSphere?: BoundingSphere): AbstractMesh { if (!this._LODLevels || this._LODLevels.length === 0) { return this; } var distanceToCamera = (boundingSphere ? boundingSphere : this.getBoundingInfo().boundingSphere).centerWorld.subtract(camera.globalPosition).length(); if (this._LODLevels[this._LODLevels.length - 1].distance > distanceToCamera) { if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, this._LODLevels[this._LODLevels.length - 1].mesh); } return this; } for (var index = 0; index < this._LODLevels.length; index++) { var level = this._LODLevels[index]; if (level.distance < distanceToCamera) { if (level.mesh) { level.mesh._preActivate(); level.mesh._updateSubMeshesBoundingInfo(this.worldMatrixFromCache); } if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, level.mesh); } return level.mesh; } } if (this.onLODLevelSelection) { this.onLODLevelSelection(distanceToCamera, this, this); } return this; } public get geometry(): Geometry { return this._geometry; } public getTotalVertices(): number { if (!this._geometry) { return 0; } return this._geometry.getTotalVertices(); } public getVerticesData(kind: string, copyWhenShared?: boolean): number[] | Float32Array { if (!this._geometry) { return null; } return this._geometry.getVerticesData(kind, copyWhenShared); } public getVertexBuffer(kind): VertexBuffer { if (!this._geometry) { return undefined; } return this._geometry.getVertexBuffer(kind); } public isVerticesDataPresent(kind: string): boolean { if (!this._geometry) { if (this._delayInfo) { return this._delayInfo.indexOf(kind) !== -1; } return false; } return this._geometry.isVerticesDataPresent(kind); } public getVerticesDataKinds(): string[] { if (!this._geometry) { var result = []; if (this._delayInfo) { for (var kind in this._delayInfo) { result.push(kind); } } return result; } return this._geometry.getVerticesDataKinds(); } public getTotalIndices(): number { if (!this._geometry) { return 0; } return this._geometry.getTotalIndices(); } public getIndices(copyWhenShared?: boolean): number[] | Int32Array { if (!this._geometry) { return []; } return this._geometry.getIndices(copyWhenShared); } public get isBlocked(): boolean { return this._masterMesh !== null && this._masterMesh !== undefined; } public isReady(): boolean { if (this.delayLoadState === Engine.DELAYLOADSTATE_LOADING) { return false; } return super.isReady(); } public isDisposed(): boolean { return this._isDisposed; } public get sideOrientation(): number { return this._sideOrientation; } public set sideOrientation(sideO: number) { this._sideOrientation = sideO; } public get areNormalsFrozen(): boolean { return this._areNormalsFrozen; } /** This function affects parametric shapes on update only : ribbons, tubes, etc. It has no effect at all on other shapes */ public freezeNormals(): void { this._areNormalsFrozen = true; } /** This function affects parametric shapes on update only : ribbons, tubes, etc. It has no effect at all on other shapes */ public unfreezeNormals(): void { this._areNormalsFrozen = false; } // Methods public _preActivate(): void { var sceneRenderId = this.getScene().getRenderId(); if (this._preActivateId === sceneRenderId) { return; } this._preActivateId = sceneRenderId; this._visibleInstances = null; } public _preActivateForIntermediateRendering(renderId: number): void { if (this._visibleInstances) { this._visibleInstances.intermediateDefaultRenderId = renderId; } } public _registerInstanceForRenderId(instance: InstancedMesh, renderId: number) { if (!this._visibleInstances) { this._visibleInstances = {}; this._visibleInstances.defaultRenderId = renderId; this._visibleInstances.selfDefaultRenderId = this._renderId; } if (!this._visibleInstances[renderId]) { this._visibleInstances[renderId] = new Array(); } this._visibleInstances[renderId].push(instance); } public refreshBoundingInfo(): void { if (this._boundingInfo.isLocked) { return; } var data = this.getVerticesData(VertexBuffer.PositionKind); if (data) { var extend = Tools.ExtractMinAndMax(data, 0, this.getTotalVertices()); this._boundingInfo = new BoundingInfo(extend.minimum, extend.maximum); } if (this.subMeshes) { for (var index = 0; index < this.subMeshes.length; index++) { this.subMeshes[index].refreshBoundingInfo(); } } this._updateBoundingInfo(); } public _createGlobalSubMesh(): SubMesh { var totalVertices = this.getTotalVertices(); if (!totalVertices || !this.getIndices()) { return null; } this.releaseSubMeshes(); return new SubMesh(0, 0, totalVertices, 0, this.getTotalIndices(), this); } public subdivide(count: number): void { if (count < 1) { return; } var totalIndices = this.getTotalIndices(); var subdivisionSize = (totalIndices / count) | 0; var offset = 0; // Ensure that subdivisionSize is a multiple of 3 while (subdivisionSize % 3 !== 0) { subdivisionSize++; } this.releaseSubMeshes(); for (var index = 0; index < count; index++) { if (offset >= totalIndices) { break; } SubMesh.CreateFromIndices(0, offset, Math.min(subdivisionSize, totalIndices - offset), this); offset += subdivisionSize; } this.synchronizeInstances(); } public setVerticesData(kind: string, data: number[] | Float32Array, updatable?: boolean, stride?: number): void { if (!this._geometry) { var vertexData = new VertexData(); vertexData.set(data, kind); var scene = this.getScene(); new Geometry(Geometry.RandomId(), scene, vertexData, updatable, this); } else { this._geometry.setVerticesData(kind, data, updatable, stride); } } public updateVerticesData(kind: string, data: number[] | Float32Array, updateExtends?: boolean, makeItUnique?: boolean): void { if (!this._geometry) { return; } if (!makeItUnique) { this._geometry.updateVerticesData(kind, data, updateExtends); } else { this.makeGeometryUnique(); this.updateVerticesData(kind, data, updateExtends, false); } } public updateVerticesDataDirectly(kind: string, data: Float32Array, offset?: number, makeItUnique?: boolean): void { Tools.Warn("Mesh.updateVerticesDataDirectly deprecated since 2.3."); if (!this._geometry) { return; } if (!makeItUnique) { this._geometry.updateVerticesDataDirectly(kind, data, offset); } else { this.makeGeometryUnique(); this.updateVerticesDataDirectly(kind, data, offset, false); } } // Mesh positions update function : // updates the mesh positions according to the positionFunction returned values. // The positionFunction argument must be a javascript function accepting the mesh "positions" array as parameter. // This dedicated positionFunction computes new mesh positions according to the given mesh type. public updateMeshPositions(positionFunction, computeNormals: boolean = true): void { var positions = this.getVerticesData(VertexBuffer.PositionKind); positionFunction(positions); this.updateVerticesData(VertexBuffer.PositionKind, positions, false, false); if (computeNormals) { var indices = this.getIndices(); var normals = this.getVerticesData(VertexBuffer.NormalKind); VertexData.ComputeNormals(positions, indices, normals); this.updateVerticesData(VertexBuffer.NormalKind, normals, false, false); } } public makeGeometryUnique() { if (!this._geometry) { return; } var geometry = this._geometry.copy(Geometry.RandomId()); geometry.applyToMesh(this); } public setIndices(indices: number[] | Int32Array, totalVertices?: number): void { if (!this._geometry) { var vertexData = new VertexData(); vertexData.indices = indices; var scene = this.getScene(); new Geometry(Geometry.RandomId(), scene, vertexData, false, this); } else { this._geometry.setIndices(indices, totalVertices); } } public _bind(subMesh: SubMesh, effect: Effect, fillMode: number): void { var engine = this.getScene().getEngine(); // Wireframe var indexToBind; if (this._unIndexed) { indexToBind = null; } else { switch (fillMode) { case Material.PointFillMode: indexToBind = null; break; case Material.WireFrameFillMode: indexToBind = subMesh.getLinesIndexBuffer(this.getIndices(), engine); break; default: case Material.TriangleFillMode: indexToBind = this._unIndexed ? null : this._geometry.getIndexBuffer(); break; } } // VBOs engine.bindMultiBuffers(this._geometry.getVertexBuffers(), indexToBind, effect); } public _draw(subMesh: SubMesh, fillMode: number, instancesCount?: number): void { if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) { return; } if (this.onBeforeDraw) { this.onBeforeDraw(); } var engine = this.getScene().getEngine(); // Draw order switch (fillMode) { case Material.PointFillMode: engine.drawPointClouds(subMesh.verticesStart, subMesh.verticesCount, instancesCount); break; case Material.WireFrameFillMode: if (this._unIndexed) { engine.drawUnIndexed(false, subMesh.verticesStart, subMesh.verticesCount, instancesCount); } else { engine.draw(false, 0, subMesh.linesIndexCount, instancesCount); } break; default: if (this._unIndexed) { engine.drawUnIndexed(true, subMesh.verticesStart, subMesh.verticesCount, instancesCount); } else { engine.draw(true, subMesh.indexStart, subMesh.indexCount, instancesCount); } } } public registerBeforeRender(func: (mesh: AbstractMesh) => void): void { this._onBeforeRenderCallbacks.push(func); } public unregisterBeforeRender(func: (mesh: AbstractMesh) => void): void { var index = this._onBeforeRenderCallbacks.indexOf(func); if (index > -1) { this._onBeforeRenderCallbacks.splice(index, 1); } } public registerAfterRender(func: (mesh: AbstractMesh) => void): void { this._onAfterRenderCallbacks.push(func); } public unregisterAfterRender(func: (mesh: AbstractMesh) => void): void { var index = this._onAfterRenderCallbacks.indexOf(func); if (index > -1) { this._onAfterRenderCallbacks.splice(index, 1); } } public _getInstancesRenderList(subMeshId: number): _InstancesBatch { var scene = this.getScene(); this._batchCache.mustReturn = false; this._batchCache.renderSelf[subMeshId] = this.isEnabled() && this.isVisible; this._batchCache.visibleInstances[subMeshId] = null; if (this._visibleInstances) { var currentRenderId = scene.getRenderId(); var defaultRenderId = (scene._isInIntermediateRendering() ? this._visibleInstances.intermediateDefaultRenderId : this._visibleInstances.defaultRenderId); this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[currentRenderId]; var selfRenderId = this._renderId; if (!this._batchCache.visibleInstances[subMeshId] && defaultRenderId) { this._batchCache.visibleInstances[subMeshId] = this._visibleInstances[defaultRenderId]; currentRenderId = Math.max(defaultRenderId, currentRenderId); selfRenderId = Math.max(this._visibleInstances.selfDefaultRenderId, currentRenderId); } if (this._batchCache.visibleInstances[subMeshId] && this._batchCache.visibleInstances[subMeshId].length) { if (this._renderIdForInstances[subMeshId] === currentRenderId) { this._batchCache.mustReturn = true; return this._batchCache; } if (currentRenderId !== selfRenderId) { this._batchCache.renderSelf[subMeshId] = false; } } this._renderIdForInstances[subMeshId] = currentRenderId; } return this._batchCache; } public _renderWithInstances(subMesh: SubMesh, fillMode: number, batch: _InstancesBatch, effect: Effect, engine: Engine): void { var visibleInstances = batch.visibleInstances[subMesh._id]; var matricesCount = visibleInstances.length + 1; var bufferSize = matricesCount * 16 * 4; while (this._instancesBufferSize < bufferSize) { this._instancesBufferSize *= 2; } if (!this._worldMatricesInstancesBuffer || this._worldMatricesInstancesBuffer.capacity < this._instancesBufferSize) { if (this._worldMatricesInstancesBuffer) { engine.deleteInstancesBuffer(this._worldMatricesInstancesBuffer); } this._worldMatricesInstancesBuffer = engine.createInstancesBuffer(this._instancesBufferSize); this._worldMatricesInstancesArray = new Float32Array(this._instancesBufferSize / 4); } var offset = 0; var instancesCount = 0; var world = this.getWorldMatrix(); if (batch.renderSelf[subMesh._id]) { world.copyToArray(this._worldMatricesInstancesArray, offset); offset += 16; instancesCount++; } if (visibleInstances) { for (var instanceIndex = 0; instanceIndex < visibleInstances.length; instanceIndex++) { var instance = visibleInstances[instanceIndex]; instance.getWorldMatrix().copyToArray(this._worldMatricesInstancesArray, offset); offset += 16; instancesCount++; } } var offsetLocation0 = effect.getAttributeLocationByName("world0"); var offsetLocation1 = effect.getAttributeLocationByName("world1"); var offsetLocation2 = effect.getAttributeLocationByName("world2"); var offsetLocation3 = effect.getAttributeLocationByName("world3"); var offsetLocations = [offsetLocation0, offsetLocation1, offsetLocation2, offsetLocation3]; engine.updateAndBindInstancesBuffer(this._worldMatricesInstancesBuffer, this._worldMatricesInstancesArray, offsetLocations); this._draw(subMesh, fillMode, instancesCount); engine.unBindInstancesBuffer(this._worldMatricesInstancesBuffer, offsetLocations); } public _processRendering(subMesh: SubMesh, effect: Effect, fillMode: number, batch: _InstancesBatch, hardwareInstancedRendering: boolean, onBeforeDraw: (isInstance: boolean, world: Matrix) => void) { var scene = this.getScene(); var engine = scene.getEngine(); if (hardwareInstancedRendering) { this._renderWithInstances(subMesh, fillMode, batch, effect, engine); } else { if (batch.renderSelf[subMesh._id]) { // Draw if (onBeforeDraw) { onBeforeDraw(false, this.getWorldMatrix()); } this._draw(subMesh, fillMode); } if (batch.visibleInstances[subMesh._id]) { for (var instanceIndex = 0; instanceIndex < batch.visibleInstances[subMesh._id].length; instanceIndex++) { var instance = batch.visibleInstances[subMesh._id][instanceIndex]; // World var world = instance.getWorldMatrix(); if (onBeforeDraw) { onBeforeDraw(true, world); } // Draw this._draw(subMesh, fillMode); } } } } public render(subMesh: SubMesh, enableAlphaMode: boolean): void { var scene = this.getScene(); // Managing instances var batch = this._getInstancesRenderList(subMesh._id); if (batch.mustReturn) { return; } // Checking geometry state if (!this._geometry || !this._geometry.getVertexBuffers() || !this._geometry.getIndexBuffer()) { return; } var callbackIndex: number; for (callbackIndex = 0; callbackIndex < this._onBeforeRenderCallbacks.length; callbackIndex++) { this._onBeforeRenderCallbacks[callbackIndex](this); } var engine = scene.getEngine(); var hardwareInstancedRendering = (engine.getCaps().instancedArrays !== null) && (batch.visibleInstances[subMesh._id] !== null) && (batch.visibleInstances[subMesh._id] !== undefined); // Material var effectiveMaterial = subMesh.getMaterial(); if (!effectiveMaterial || !effectiveMaterial.isReady(this, hardwareInstancedRendering)) { return; } // Outline - step 1 var savedDepthWrite = engine.getDepthWrite(); if (this.renderOutline) { engine.setDepthWrite(false); scene.getOutlineRenderer().render(subMesh, batch); engine.setDepthWrite(savedDepthWrite); } effectiveMaterial._preBind(); var effect = effectiveMaterial.getEffect(); // Bind var fillMode = scene.forcePointsCloud ? Material.PointFillMode : (scene.forceWireframe ? Material.WireFrameFillMode : effectiveMaterial.fillMode); this._bind(subMesh, effect, fillMode); var world = this.getWorldMatrix(); effectiveMaterial.bind(world, this); // Alpha mode if (enableAlphaMode) { engine.setAlphaMode(effectiveMaterial.alphaMode); } // Draw this._processRendering(subMesh, effect, fillMode, batch, hardwareInstancedRendering, (isInstance, world) => { if (isInstance) { effectiveMaterial.bindOnlyWorldMatrix(world); } }); // Unbind effectiveMaterial.unbind(); // Outline - step 2 if (this.renderOutline && savedDepthWrite) { engine.setDepthWrite(true); engine.setColorWrite(false); scene.getOutlineRenderer().render(subMesh, batch); engine.setColorWrite(true); } // Overlay if (this.renderOverlay) { var currentMode = engine.getAlphaMode(); engine.setAlphaMode(Engine.ALPHA_COMBINE); scene.getOutlineRenderer().render(subMesh, batch, true); engine.setAlphaMode(currentMode); } for (callbackIndex = 0; callbackIndex < this._onAfterRenderCallbacks.length; callbackIndex++) { this._onAfterRenderCallbacks[callbackIndex](this); } } public getEmittedParticleSystems(): ParticleSystem[] { var results = new Array(); for (var index = 0; index < this.getScene().particleSystems.length; index++) { var particleSystem = this.getScene().particleSystems[index]; if (particleSystem.emitter === this) { results.push(particleSystem); } } return results; } public getHierarchyEmittedParticleSystems(): ParticleSystem[] { var results = new Array(); var descendants = this.getDescendants(); descendants.push(this); for (var index = 0; index < this.getScene().particleSystems.length; index++) { var particleSystem = this.getScene().particleSystems[index]; if (descendants.indexOf(particleSystem.emitter) !== -1) { results.push(particleSystem); } } return results; } public _checkDelayState(): void { var that = this; var scene = this.getScene(); if (this._geometry) { this._geometry.load(scene); } else if (that.delayLoadState === Engine.DELAYLOADSTATE_NOTLOADED) { that.delayLoadState = Engine.DELAYLOADSTATE_LOADING; scene._addPendingData(that); var getBinaryData = (this.delayLoadingFile.indexOf(".babylonbinarymeshdata") !== -1); Tools.LoadFile(this.delayLoadingFile, data => { if (data instanceof ArrayBuffer) { this._delayLoadingFunction(data, this); } else { this._delayLoadingFunction(JSON.parse(data), this); } this.delayLoadState = Engine.DELAYLOADSTATE_LOADED; scene._removePendingData(this); }, () => { }, scene.database, getBinaryData); } } public isInFrustum(frustumPlanes: Plane[]): boolean { if (this.delayLoadState === Engine.DELAYLOADSTATE_LOADING) { return false; } if (!super.isInFrustum(frustumPlanes)) { return false; } this._checkDelayState(); return true; } public setMaterialByID(id: string): void { var materials = this.getScene().materials; var index: number; for (index = 0; index < materials.length; index++) { if (materials[index].id === id) { this.material = materials[index]; return; } } // Multi var multiMaterials = this.getScene().multiMaterials; for (index = 0; index < multiMaterials.length; index++) { if (multiMaterials[index].id === id) { this.material = multiMaterials[index]; return; } } } public getAnimatables(): IAnimatable[] { var results = []; if (this.material) { results.push(this.material); } if (this.skeleton) { results.push(this.skeleton); } return results; } // Geometry public bakeTransformIntoVertices(transform: Matrix): void { // Position if (!this.isVerticesDataPresent(VertexBuffer.PositionKind)) { return; } this._resetPointsArrayCache(); var data = this.getVerticesData(VertexBuffer.PositionKind); var temp = []; var index: number; for (index = 0; index < data.length; index += 3) { Vector3.TransformCoordinates(Vector3.FromArray(data, index), transform).toArray(temp, index); } this.setVerticesData(VertexBuffer.PositionKind, temp, this.getVertexBuffer(VertexBuffer.PositionKind).isUpdatable()); // Normals if (!this.isVerticesDataPresent(VertexBuffer.NormalKind)) { return; } data = this.getVerticesData(VertexBuffer.NormalKind); temp = []; for (index = 0; index < data.length; index += 3) { Vector3.TransformNormal(Vector3.FromArray(data, index), transform).normalize().toArray(temp, index); } this.setVerticesData(VertexBuffer.NormalKind, temp, this.getVertexBuffer(VertexBuffer.NormalKind).isUpdatable()); // flip faces? if (transform.m[0] * transform.m[5] * transform.m[10] < 0) { this.flipFaces(); } } // Will apply current transform to mesh and reset world matrix public bakeCurrentTransformIntoVertices(): void { this.bakeTransformIntoVertices(this.computeWorldMatrix(true)); this.scaling.copyFromFloats(1, 1, 1); this.position.copyFromFloats(0, 0, 0); this.rotation.copyFromFloats(0, 0, 0); //only if quaternion is already set if (this.rotationQuaternion) { this.rotationQuaternion = Quaternion.Identity(); } this._worldMatrix = Matrix.Identity(); } // Cache public _resetPointsArrayCache(): void { this._positions = null; } public _generatePointsArray(): boolean { if (this._positions) return true; this._positions = []; var data = this.getVerticesData(VertexBuffer.PositionKind); if (!data) { return false; } for (var index = 0; index < data.length; index += 3) { this._positions.push(Vector3.FromArray(data, index)); } return true; } // Clone public clone(name: string, newParent?: Node, doNotCloneChildren?: boolean): Mesh { return new Mesh(name, this.getScene(), newParent, this, doNotCloneChildren); } // Dispose public dispose(doNotRecurse?: boolean): void { if (this._geometry) { this._geometry.releaseForMesh(this, true); } // Instances if (this._worldMatricesInstancesBuffer) { this.getEngine().deleteInstancesBuffer(this._worldMatricesInstancesBuffer); this._worldMatricesInstancesBuffer = null; } while (this.instances.length) { this.instances[0].dispose(); } super.dispose(doNotRecurse); } // Geometric tools public applyDisplacementMap(url: string, minHeight: number, maxHeight: number, onSuccess?: (mesh: Mesh) => void): void { var scene = this.getScene(); var onload = img => { // Getting height map data var canvas = document.createElement("canvas"); var context = canvas.getContext("2d"); var heightMapWidth = img.width; var heightMapHeight = img.height; canvas.width = heightMapWidth; canvas.height = heightMapHeight; context.drawImage(img, 0, 0); // Create VertexData from map data //Cast is due to wrong definition in lib.d.ts from ts 1.3 - https://github.com/Microsoft/TypeScript/issues/949 var buffer = (context.getImageData(0, 0, heightMapWidth, heightMapHeight).data); this.applyDisplacementMapFromBuffer(buffer, heightMapWidth, heightMapHeight, minHeight, maxHeight); //execute success callback, if set if (onSuccess) { onSuccess(this); } }; Tools.LoadImage(url, onload, () => { }, scene.database); } public applyDisplacementMapFromBuffer(buffer: Uint8Array, heightMapWidth: number, heightMapHeight: number, minHeight: number, maxHeight: number): void { if (!this.isVerticesDataPresent(VertexBuffer.PositionKind) || !this.isVerticesDataPresent(VertexBuffer.NormalKind) || !this.isVerticesDataPresent(VertexBuffer.UVKind)) { Tools.Warn("Cannot call applyDisplacementMap: Given mesh is not complete. Position, Normal or UV are missing"); return; } var positions = this.getVerticesData(VertexBuffer.PositionKind); var normals = this.getVerticesData(VertexBuffer.NormalKind); var uvs = this.getVerticesData(VertexBuffer.UVKind); var position = Vector3.Zero(); var normal = Vector3.Zero(); var uv = Vector2.Zero(); for (var index = 0; index < positions.length; index += 3) { Vector3.FromArrayToRef(positions, index, position); Vector3.FromArrayToRef(normals, index, normal); Vector2.FromArrayToRef(uvs, (index / 3) * 2, uv); // Compute height var u = ((Math.abs(uv.x) * heightMapWidth) % heightMapWidth) | 0; var v = ((Math.abs(uv.y) * heightMapHeight) % heightMapHeight) | 0; var pos = (u + v * heightMapWidth) * 4; var r = buffer[pos] / 255.0; var g = buffer[pos + 1] / 255.0; var b = buffer[pos + 2] / 255.0; var gradient = r * 0.3 + g * 0.59 + b * 0.11; normal.normalize(); normal.scaleInPlace(minHeight + (maxHeight - minHeight) * gradient); position = position.add(normal); position.toArray(positions, index); } VertexData.ComputeNormals(positions, this.getIndices(), normals); this.updateVerticesData(VertexBuffer.PositionKind, positions); this.updateVerticesData(VertexBuffer.NormalKind, normals); } public convertToFlatShadedMesh(): void { /// Update normals and vertices to get a flat shading rendering. /// Warning: This may imply adding vertices to the mesh in order to get exactly 3 vertices per face var kinds = this.getVerticesDataKinds(); var vbs = []; var data = []; var newdata = []; var updatableNormals = false; var kindIndex: number; var kind: string; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var vertexBuffer = this.getVertexBuffer(kind); if (kind === VertexBuffer.NormalKind) { updatableNormals = vertexBuffer.isUpdatable(); kinds.splice(kindIndex, 1); kindIndex--; continue; } vbs[kind] = vertexBuffer; data[kind] = vbs[kind].getData(); newdata[kind] = []; } // Save previous submeshes var previousSubmeshes = this.subMeshes.slice(0); var indices = this.getIndices(); var totalIndices = this.getTotalIndices(); // Generating unique vertices per face var index: number; for (index = 0; index < totalIndices; index++) { var vertexIndex = indices[index]; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var stride = vbs[kind].getStrideSize(); for (var offset = 0; offset < stride; offset++) { newdata[kind].push(data[kind][vertexIndex * stride + offset]); } } } // Updating faces & normal var normals = []; var positions = newdata[VertexBuffer.PositionKind]; for (index = 0; index < totalIndices; index += 3) { indices[index] = index; indices[index + 1] = index + 1; indices[index + 2] = index + 2; var p1 = Vector3.FromArray(positions, index * 3); var p2 = Vector3.FromArray(positions, (index + 1) * 3); var p3 = Vector3.FromArray(positions, (index + 2) * 3); var p1p2 = p1.subtract(p2); var p3p2 = p3.subtract(p2); var normal = Vector3.Normalize(Vector3.Cross(p1p2, p3p2)); // Store same normals for every vertex for (var localIndex = 0; localIndex < 3; localIndex++) { normals.push(normal.x); normals.push(normal.y); normals.push(normal.z); } } this.setIndices(indices); this.setVerticesData(VertexBuffer.NormalKind, normals, updatableNormals); // Updating vertex buffers for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable()); } // Updating submeshes this.releaseSubMeshes(); for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) { var previousOne = previousSubmeshes[submeshIndex]; var subMesh = new SubMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this); } this.synchronizeInstances(); } public convertToUnIndexedMesh(): void { /// Remove indices by unfolding faces into buffers /// Warning: This implies adding vertices to the mesh in order to get exactly 3 vertices per face var kinds = this.getVerticesDataKinds(); var vbs = []; var data = []; var newdata = []; var updatableNormals = false; var kindIndex: number; var kind: string; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var vertexBuffer = this.getVertexBuffer(kind); vbs[kind] = vertexBuffer; data[kind] = vbs[kind].getData(); newdata[kind] = []; } // Save previous submeshes var previousSubmeshes = this.subMeshes.slice(0); var indices = this.getIndices(); var totalIndices = this.getTotalIndices(); // Generating unique vertices per face var index: number; for (index = 0; index < totalIndices; index++) { var vertexIndex = indices[index]; for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; var stride = vbs[kind].getStrideSize(); for (var offset = 0; offset < stride; offset++) { newdata[kind].push(data[kind][vertexIndex * stride + offset]); } } } // Updating indices for (index = 0; index < totalIndices; index += 3) { indices[index] = index; indices[index + 1] = index + 1; indices[index + 2] = index + 2; } this.setIndices(indices); // Updating vertex buffers for (kindIndex = 0; kindIndex < kinds.length; kindIndex++) { kind = kinds[kindIndex]; this.setVerticesData(kind, newdata[kind], vbs[kind].isUpdatable()); } // Updating submeshes this.releaseSubMeshes(); for (var submeshIndex = 0; submeshIndex < previousSubmeshes.length; submeshIndex++) { var previousOne = previousSubmeshes[submeshIndex]; var subMesh = new SubMesh(previousOne.materialIndex, previousOne.indexStart, previousOne.indexCount, previousOne.indexStart, previousOne.indexCount, this); } this._unIndexed = true; this.synchronizeInstances(); } // will inverse faces orientations, and invert normals too if specified public flipFaces(flipNormals: boolean = false): void { var vertex_data = VertexData.ExtractFromMesh(this); var i: number; if (flipNormals && this.isVerticesDataPresent(VertexBuffer.NormalKind)) { for (i = 0; i < vertex_data.normals.length; i++) { vertex_data.normals[i] *= -1; } } var temp; for (i = 0; i < vertex_data.indices.length; i += 3) { // reassign indices temp = vertex_data.indices[i + 1]; vertex_data.indices[i + 1] = vertex_data.indices[i + 2]; vertex_data.indices[i + 2] = temp; } vertex_data.applyToMesh(this); } // Instances public createInstance(name: string): InstancedMesh { return new InstancedMesh(name, this); } public synchronizeInstances(): void { for (var instanceIndex = 0; instanceIndex < this.instances.length; instanceIndex++) { var instance = this.instances[instanceIndex]; instance._syncSubMeshes(); } } /** * Simplify the mesh according to the given array of settings. * Function will return immediately and will simplify async. * @param settings a collection of simplification settings. * @param parallelProcessing should all levels calculate parallel or one after the other. * @param type the type of simplification to run. * @param successCallback optional success callback to be called after the simplification finished processing all settings. */ public simplify(settings: Array, parallelProcessing: boolean = true, simplificationType: SimplificationType = SimplificationType.QUADRATIC, successCallback?: (mesh?: Mesh, submeshIndex?: number) => void) { this.getScene().simplificationQueue.addTask({ settings: settings, parallelProcessing: parallelProcessing, mesh: this, simplificationType: simplificationType, successCallback: successCallback }); } /** * Optimization of the mesh's indices, in case a mesh has duplicated vertices. * The function will only reorder the indices and will not remove unused vertices to avoid problems with submeshes. * This should be used together with the simplification to avoid disappearing triangles. * @param successCallback an optional success callback to be called after the optimization finished. */ public optimizeIndices(successCallback?: (mesh?: Mesh) => void) { var indices = this.getIndices(); var positions = this.getVerticesData(VertexBuffer.PositionKind); var vectorPositions = []; for (var pos = 0; pos < positions.length; pos = pos + 3) { vectorPositions.push(Vector3.FromArray(positions, pos)); } var dupes = []; AsyncLoop.SyncAsyncForLoop(vectorPositions.length, 40, (iteration) => { var realPos = vectorPositions.length - 1 - iteration; var testedPosition = vectorPositions[realPos]; for (var j = 0; j < realPos; ++j) { var againstPosition = vectorPositions[j]; if (testedPosition.equals(againstPosition)) { dupes[realPos] = j; break; } } }, () => { for (var i = 0; i < indices.length; ++i) { indices[i] = dupes[indices[i]] || indices[i]; } //indices are now reordered var originalSubMeshes = this.subMeshes.slice(0); this.setIndices(indices); this.subMeshes = originalSubMeshes; if (successCallback) { successCallback(this); } }); } // Statics public static Parse(parsedMesh: any, scene: Scene, rootUrl: string): Mesh { var mesh = new Mesh(parsedMesh.name, scene); mesh.id = parsedMesh.id; Tags.AddTagsTo(mesh, parsedMesh.tags); mesh.position = Vector3.FromArray(parsedMesh.position); if (parsedMesh.rotationQuaternion) { mesh.rotationQuaternion = Quaternion.FromArray(parsedMesh.rotationQuaternion); } else if (parsedMesh.rotation) { mesh.rotation = Vector3.FromArray(parsedMesh.rotation); } mesh.scaling = Vector3.FromArray(parsedMesh.scaling); if (parsedMesh.localMatrix) { mesh.setPivotMatrix(Matrix.FromArray(parsedMesh.localMatrix)); } else if (parsedMesh.pivotMatrix) { mesh.setPivotMatrix(Matrix.FromArray(parsedMesh.pivotMatrix)); } mesh.setEnabled(parsedMesh.isEnabled); mesh.isVisible = parsedMesh.isVisible; mesh.infiniteDistance = parsedMesh.infiniteDistance; mesh.showBoundingBox = parsedMesh.showBoundingBox; mesh.showSubMeshesBoundingBox = parsedMesh.showSubMeshesBoundingBox; if (parsedMesh.applyFog !== undefined) { mesh.applyFog = parsedMesh.applyFog; } if (parsedMesh.pickable !== undefined) { mesh.isPickable = parsedMesh.pickable; } if (parsedMesh.alphaIndex !== undefined) { mesh.alphaIndex = parsedMesh.alphaIndex; } mesh.receiveShadows = parsedMesh.receiveShadows; mesh.billboardMode = parsedMesh.billboardMode; if (parsedMesh.visibility !== undefined) { mesh.visibility = parsedMesh.visibility; } mesh.checkCollisions = parsedMesh.checkCollisions; mesh._shouldGenerateFlatShading = parsedMesh.useFlatShading; // freezeWorldMatrix if (parsedMesh.freezeWorldMatrix) { mesh._waitingFreezeWorldMatrix = parsedMesh.freezeWorldMatrix; } // Parent if (parsedMesh.parentId) { mesh._waitingParentId = parsedMesh.parentId; } // Actions if (parsedMesh.actions !== undefined) { mesh._waitingActions = parsedMesh.actions; } // Geometry mesh.hasVertexAlpha = parsedMesh.hasVertexAlpha; if (parsedMesh.delayLoadingFile) { mesh.delayLoadState = Engine.DELAYLOADSTATE_NOTLOADED; mesh.delayLoadingFile = rootUrl + parsedMesh.delayLoadingFile; mesh._boundingInfo = new BoundingInfo(Vector3.FromArray(parsedMesh.boundingBoxMinimum), Vector3.FromArray(parsedMesh.boundingBoxMaximum)); if (parsedMesh._binaryInfo) { mesh._binaryInfo = parsedMesh._binaryInfo; } mesh._delayInfo = []; if (parsedMesh.hasUVs) { mesh._delayInfo.push(VertexBuffer.UVKind); } if (parsedMesh.hasUVs2) { mesh._delayInfo.push(VertexBuffer.UV2Kind); } if (parsedMesh.hasUVs3) { mesh._delayInfo.push(VertexBuffer.UV3Kind); } if (parsedMesh.hasUVs4) { mesh._delayInfo.push(VertexBuffer.UV4Kind); } if (parsedMesh.hasUVs5) { mesh._delayInfo.push(VertexBuffer.UV5Kind); } if (parsedMesh.hasUVs6) { mesh._delayInfo.push(VertexBuffer.UV6Kind); } if (parsedMesh.hasColors) { mesh._delayInfo.push(VertexBuffer.ColorKind); } if (parsedMesh.hasMatricesIndices) { mesh._delayInfo.push(VertexBuffer.MatricesIndicesKind); } if (parsedMesh.hasMatricesWeights) { mesh._delayInfo.push(VertexBuffer.MatricesWeightsKind); } mesh._delayLoadingFunction = Geometry.ImportGeometry; if (SceneLoader.ForceFullSceneLoadingForIncremental) { mesh._checkDelayState(); } } else { Geometry.ImportGeometry(parsedMesh, mesh); } // Material if (parsedMesh.materialId) { mesh.setMaterialByID(parsedMesh.materialId); } else { mesh.material = null; } // Skeleton if (parsedMesh.skeletonId > -1) { mesh.skeleton = scene.getLastSkeletonByID(parsedMesh.skeletonId); if (parsedMesh.numBoneInfluencers) { mesh.numBoneInfluencers = parsedMesh.numBoneInfluencers; } } // Animations if (parsedMesh.animations) { for (var animationIndex = 0; animationIndex < parsedMesh.animations.length; animationIndex++) { var parsedAnimation = parsedMesh.animations[animationIndex]; mesh.animations.push(Animation.Parse(parsedAnimation)); } Node.ParseAnimationRanges(mesh, parsedMesh, scene); } if (parsedMesh.autoAnimate) { scene.beginAnimation(mesh, parsedMesh.autoAnimateFrom, parsedMesh.autoAnimateTo, parsedMesh.autoAnimateLoop, parsedMesh.autoAnimateSpeed || 1.0); } // Layer Mask if (parsedMesh.layerMask && (!isNaN(parsedMesh.layerMask))) { mesh.layerMask = Math.abs(parseInt(parsedMesh.layerMask)); } else { mesh.layerMask = 0x0FFFFFFF; } // Instances if (parsedMesh.instances) { for (var index = 0; index < parsedMesh.instances.length; index++) { var parsedInstance = parsedMesh.instances[index]; var instance = mesh.createInstance(parsedInstance.name); Tags.AddTagsTo(instance, parsedInstance.tags); instance.position = Vector3.FromArray(parsedInstance.position); if (parsedInstance.rotationQuaternion) { instance.rotationQuaternion = Quaternion.FromArray(parsedInstance.rotationQuaternion); } else if (parsedInstance.rotation) { instance.rotation = Vector3.FromArray(parsedInstance.rotation); } instance.scaling = Vector3.FromArray(parsedInstance.scaling); instance.checkCollisions = mesh.checkCollisions; if (parsedMesh.animations) { for (animationIndex = 0; animationIndex < parsedMesh.animations.length; animationIndex++) { parsedAnimation = parsedMesh.animations[animationIndex]; instance.animations.push(Animation.Parse(parsedAnimation)); } Node.ParseAnimationRanges(instance, parsedMesh, scene); } } } return mesh; } public static CreateRibbon(name: string, pathArray: Vector3[][], closeArray: boolean, closePath: boolean, offset: number, scene: Scene, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { return MeshBuilder.CreateRibbon(name, { pathArray: pathArray, closeArray: closeArray, closePath: closePath, offset: offset, updatable: updatable, sideOrientation: sideOrientation, instance: instance }, scene); } public static CreateDisc(name: string, radius: number, tessellation: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { radius: radius, tessellation: tessellation, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateDisc(name, options, scene); } public static CreateBox(name: string, size: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { size: size, sideOrientation: sideOrientation, updatable: updatable }; return MeshBuilder.CreateBox(name, options, scene); } public static CreateSphere(name: string, segments: number, diameter: number, scene?: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { segments: segments, diameterX: diameter, diameterY: diameter, diameterZ: diameter, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateSphere(name, options, scene); } // Cylinder and cone public static CreateCylinder(name: string, height: number, diameterTop: number, diameterBottom: number, tessellation: number, subdivisions: any, scene: Scene, updatable?: any, sideOrientation?: number): Mesh { if (scene === undefined || !(scene instanceof Scene)) { if (scene !== undefined) { sideOrientation = updatable || Mesh.DEFAULTSIDE; updatable = scene; } scene = subdivisions; subdivisions = 1; } var options = { height: height, diameterTop: diameterTop, diameterBottom: diameterBottom, tessellation: tessellation, subdivisions: subdivisions, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateCylinder(name, options, scene); } // Torus (Code from SharpDX.org) public static CreateTorus(name: string, diameter: number, thickness: number, tessellation: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { diameter: diameter, thickness: thickness, tessellation: tessellation, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateTorus(name, options, scene); } public static CreateTorusKnot(name: string, radius: number, tube: number, radialSegments: number, tubularSegments: number, p: number, q: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { radius: radius, tube: tube, radialSegments: radialSegments, tubularSegments: tubularSegments, p: p, q: q, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreateTorusKnot(name, options, scene); } // Lines public static CreateLines(name: string, points: Vector3[], scene: Scene, updatable?: boolean, instance?: LinesMesh): LinesMesh { var options = { points: points, updatable: updatable, instance: instance } return MeshBuilder.CreateLines(name, options, scene); } // Dashed Lines public static CreateDashedLines(name: string, points: Vector3[], dashSize: number, gapSize: number, dashNb: number, scene: Scene, updatable?: boolean, instance?: LinesMesh): LinesMesh { var options = { points: points, dashSize: dashSize, gapSize: gapSize, dashNb: dashNb, updatable: updatable } return MeshBuilder.CreateDashedLines(name, options, scene); } // Extrusion public static ExtrudeShape(name: string, shape: Vector3[], path: Vector3[], scale: number, rotation: number, cap: number, scene: Scene, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { var options = { shape: shape, path: path, scale: scale, rotation: rotation, cap: (cap === 0) ? 0 : cap || Mesh.NO_CAP, sideOrientation: sideOrientation, instance: instance, updatable: updatable } return MeshBuilder.ExtrudeShape(name, options, scene); } public static ExtrudeShapeCustom(name: string, shape: Vector3[], path: Vector3[], scaleFunction, rotationFunction, ribbonCloseArray: boolean, ribbonClosePath: boolean, cap: number, scene: Scene, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { var options = { shape: shape, path: path, scaleFunction: scaleFunction, rotationFunction: rotationFunction, ribbonCloseArray: ribbonCloseArray, ribbonClosePath: ribbonClosePath, cap: (cap === 0) ? 0 : cap || Mesh.NO_CAP, sideOrientation: sideOrientation, instance: instance, updatable: updatable } return MeshBuilder.ExtrudeShapeCustom(name, options, scene); } // Lathe public static CreateLathe(name: string, shape: Vector3[], radius: number, tessellation: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { shape: shape, radius: radius, tessellation: tessellation, sideOrientation: sideOrientation, updatable: updatable }; return MeshBuilder.CreateLathe(name, options, scene); } // Plane & ground public static CreatePlane(name: string, size: number, scene: Scene, updatable?: boolean, sideOrientation?: number): Mesh { var options = { size: size, width: size, height: size, sideOrientation: sideOrientation, updatable: updatable } return MeshBuilder.CreatePlane(name, options, scene); } public static CreateGround(name: string, width: number, height: number, subdivisions: number, scene: Scene, updatable?: boolean): Mesh { var options = { width: width, height: height, subdivisions: subdivisions, updatable: updatable } return MeshBuilder.CreateGround(name, options, scene); } public static CreateTiledGround(name: string, xmin: number, zmin: number, xmax: number, zmax: number, subdivisions: { w: number; h: number; }, precision: { w: number; h: number; }, scene: Scene, updatable?: boolean): Mesh { var options = { xmin: xmin, zmin: zmin, xmax: xmax, zmax: zmax, subdivisions: subdivisions, precision: precision, updatable: updatable } return MeshBuilder.CreateTiledGround(name, options, scene); } public static CreateGroundFromHeightMap(name: string, url: string, width: number, height: number, subdivisions: number, minHeight: number, maxHeight: number, scene: Scene, updatable?: boolean, onReady?: (mesh: GroundMesh) => void): GroundMesh { var options = { width: width, height: height, subdivisions: subdivisions, minHeight: minHeight, maxHeight: maxHeight, updatable: updatable, onReady: onReady }; return MeshBuilder.CreateGroundFromHeightMap(name, url, options, scene); } public static CreateTube(name: string, path: Vector3[], radius: number, tessellation: number, radiusFunction: { (i: number, distance: number): number; }, cap: number, scene: Scene, updatable?: boolean, sideOrientation?: number, instance?: Mesh): Mesh { var options = { path: path, radius: radius, tessellation: tessellation, radiusFunction: radiusFunction, arc: 1, cap: cap, updatable: updatable, sideOrientation: sideOrientation, instance: instance } return MeshBuilder.CreateTube(name, options, scene); } public static CreatePolyhedron(name: string, options: { type?: number, size?: number, sizeX?: number, sizeY?: number, sizeZ?: number, custom?: any, faceUV?: Vector4[], faceColors?: Color4[], updatable?: boolean, sideOrientation?: number }, scene: Scene): Mesh { return MeshBuilder.CreatePolyhedron(name, options, scene); } public static CreateIcoSphere(name: string, options: { radius?: number, flat?: boolean, subdivisions?: number, sideOrientation?: number, updatable?: boolean }, scene: Scene): Mesh { return MeshBuilder.CreateIcoSphere(name, options, scene); } // Decals public static CreateDecal(name: string, sourceMesh: AbstractMesh, position: Vector3, normal: Vector3, size: Vector3, angle: number): Mesh { var options = { position: position, normal: normal, size: size, angle: angle } return MeshBuilder.CreateDecal(name, sourceMesh, options); } // Skeletons /** * @returns original positions used for CPU skinning. Useful for integrating Morphing with skeletons in same mesh. */ public setPositionsForCPUSkinning(): Float32Array { var source: number[] | Float32Array; if (!this._sourcePositions) { source = this.getVerticesData(VertexBuffer.PositionKind); this._sourcePositions = new Float32Array(source); if (!this.getVertexBuffer(VertexBuffer.PositionKind).isUpdatable()) { this.setVerticesData(VertexBuffer.PositionKind, source, true); } } return this._sourcePositions; } /** * @returns original normals used for CPU skinning. Useful for integrating Morphing with skeletons in same mesh. */ public setNormalsForCPUSkinning(): Float32Array { var source: number[] | Float32Array; if (!this._sourceNormals) { source = this.getVerticesData(VertexBuffer.NormalKind); this._sourceNormals = new Float32Array(source); if (!this.getVertexBuffer(VertexBuffer.NormalKind).isUpdatable()) { this.setVerticesData(VertexBuffer.NormalKind, source, true); } } return this._sourceNormals; } /** * Update the vertex buffers by applying transformation from the bones * @param {skeleton} skeleton to apply */ public applySkeleton(skeleton: Skeleton): Mesh { if (!this.geometry) { return; } if (this.geometry._softwareSkinningRenderId == this.getScene().getRenderId()) { return; } this.geometry._softwareSkinningRenderId = this.getScene().getRenderId(); if (!this.isVerticesDataPresent(VertexBuffer.PositionKind)) { return this; } if (!this.isVerticesDataPresent(VertexBuffer.NormalKind)) { return this; } if (!this.isVerticesDataPresent(VertexBuffer.MatricesIndicesKind)) { return this; } if (!this.isVerticesDataPresent(VertexBuffer.MatricesWeightsKind)) { return this; } if (!this._sourcePositions) { this.setPositionsForCPUSkinning(); } if (!this._sourceNormals) { this.setNormalsForCPUSkinning(); } // positionsData checks for not being Float32Array will only pass at most once var positionsData = this.getVerticesData(VertexBuffer.PositionKind); if (!(positionsData instanceof Float32Array)) { positionsData = new Float32Array(positionsData); } // normalsData checks for not being Float32Array will only pass at most once var normalsData = this.getVerticesData(VertexBuffer.NormalKind); if (!(normalsData instanceof Float32Array)) { normalsData = new Float32Array(normalsData); } var matricesIndicesData = this.getVerticesData(VertexBuffer.MatricesIndicesKind); var matricesWeightsData = this.getVerticesData(VertexBuffer.MatricesWeightsKind); var needExtras = this.numBoneInfluencers > 4; var matricesIndicesExtraData = needExtras ? this.getVerticesData(VertexBuffer.MatricesIndicesExtraKind) : null; var matricesWeightsExtraData = needExtras ? this.getVerticesData(VertexBuffer.MatricesWeightsExtraKind) : null; var skeletonMatrices = skeleton.getTransformMatrices(this); var tempVector3 = Vector3.Zero(); var finalMatrix = new Matrix(); var tempMatrix = new Matrix(); var matWeightIdx = 0; var inf: number; for (var index = 0; index < positionsData.length; index += 3, matWeightIdx += 4) { var weight: number; for (inf = 0; inf < 4; inf++) { weight = matricesWeightsData[matWeightIdx + inf]; if (weight > 0) { Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesData[matWeightIdx + inf] * 16, weight, tempMatrix); finalMatrix.addToSelf(tempMatrix); } else break; } if (needExtras) { for (inf = 0; inf < 4; inf++) { weight = matricesWeightsExtraData[matWeightIdx + inf]; if (weight > 0) { Matrix.FromFloat32ArrayToRefScaled(skeletonMatrices, matricesIndicesExtraData[matWeightIdx + inf] * 16, weight, tempMatrix); finalMatrix.addToSelf(tempMatrix); } else break; } } Vector3.TransformCoordinatesFromFloatsToRef(this._sourcePositions[index], this._sourcePositions[index + 1], this._sourcePositions[index + 2], finalMatrix, tempVector3); tempVector3.toArray(positionsData, index); Vector3.TransformNormalFromFloatsToRef(this._sourceNormals[index], this._sourceNormals[index + 1], this._sourceNormals[index + 2], finalMatrix, tempVector3); tempVector3.toArray(normalsData, index); finalMatrix.reset(); } this.updateVerticesData(VertexBuffer.PositionKind, positionsData); this.updateVerticesData(VertexBuffer.NormalKind, normalsData); return this; } // Tools public static MinMax(meshes: AbstractMesh[]): { min: Vector3; max: Vector3 } { var minVector: Vector3 = null; var maxVector: Vector3 = null; for (var i in meshes) { var mesh = meshes[i]; var boundingBox = mesh.getBoundingInfo().boundingBox; if (!minVector) { minVector = boundingBox.minimumWorld; maxVector = boundingBox.maximumWorld; continue; } minVector.MinimizeInPlace(boundingBox.minimumWorld); maxVector.MaximizeInPlace(boundingBox.maximumWorld); } return { min: minVector, max: maxVector }; } public static Center(meshesOrMinMaxVector): Vector3 { var minMaxVector = meshesOrMinMaxVector.min !== undefined ? meshesOrMinMaxVector : Mesh.MinMax(meshesOrMinMaxVector); return Vector3.Center(minMaxVector.min, minMaxVector.max); } /** * Merge the array of meshes into a single mesh for performance reasons. * @param {Array} meshes - The vertices source. They should all be of the same material. Entries can empty * @param {boolean} disposeSource - When true (default), dispose of the vertices from the source meshes * @param {boolean} allow32BitsIndices - When the sum of the vertices > 64k, this must be set to true. * @param {Mesh} meshSubclass - When set, vertices inserted into this Mesh. Meshes can then be merged into a Mesh sub-class. */ public static MergeMeshes(meshes: Array, disposeSource = true, allow32BitsIndices?: boolean, meshSubclass?: Mesh): Mesh { var index: number; if (!allow32BitsIndices) { var totalVertices = 0; // Counting vertices for (index = 0; index < meshes.length; index++) { if (meshes[index]) { totalVertices += meshes[index].getTotalVertices(); if (totalVertices > 65536) { Tools.Warn("Cannot merge meshes because resulting mesh will have more than 65536 vertices. Please use allow32BitsIndices = true to use 32 bits indices"); return null; } } } } // Merge var vertexData: VertexData; var otherVertexData: VertexData; var source: Mesh; for (index = 0; index < meshes.length; index++) { if (meshes[index]) { meshes[index].computeWorldMatrix(true); otherVertexData = VertexData.ExtractFromMesh(meshes[index], true); otherVertexData.transform(meshes[index].getWorldMatrix()); if (vertexData) { vertexData.merge(otherVertexData); } else { vertexData = otherVertexData; source = meshes[index]; } } } if (!meshSubclass) { meshSubclass = new Mesh(source.name + "_merged", source.getScene()); } vertexData.applyToMesh(meshSubclass); // Setting properties meshSubclass.material = source.material; meshSubclass.checkCollisions = source.checkCollisions; // Cleaning if (disposeSource) { for (index = 0; index < meshes.length; index++) { if (meshes[index]) { meshes[index].dispose(); } } } return meshSubclass; } } }