var BABYLON; (function (BABYLON) { var VertexData = (function () { function VertexData() { } VertexData.prototype.set = function (data, kind) { switch (kind) { case BABYLON.VertexBuffer.PositionKind: this.positions = data; break; case BABYLON.VertexBuffer.NormalKind: this.normals = data; break; case BABYLON.VertexBuffer.UVKind: this.uvs = data; break; case BABYLON.VertexBuffer.UV2Kind: this.uvs2 = data; break; case BABYLON.VertexBuffer.UV3Kind: this.uvs3 = data; break; case BABYLON.VertexBuffer.UV4Kind: this.uvs4 = data; break; case BABYLON.VertexBuffer.UV5Kind: this.uvs5 = data; break; case BABYLON.VertexBuffer.UV6Kind: this.uvs6 = data; break; case BABYLON.VertexBuffer.ColorKind: this.colors = data; break; case BABYLON.VertexBuffer.MatricesIndicesKind: this.matricesIndices = data; break; case BABYLON.VertexBuffer.MatricesWeightsKind: this.matricesWeights = data; break; } }; VertexData.prototype.applyToMesh = function (mesh, updatable) { this._applyTo(mesh, updatable); }; VertexData.prototype.applyToGeometry = function (geometry, updatable) { this._applyTo(geometry, updatable); }; VertexData.prototype.updateMesh = function (mesh, updateExtends, makeItUnique) { this._update(mesh); }; VertexData.prototype.updateGeometry = function (geometry, updateExtends, makeItUnique) { this._update(geometry); }; VertexData.prototype._applyTo = function (meshOrGeometry, updatable) { if (this.positions) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.PositionKind, this.positions, updatable); } if (this.normals) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.NormalKind, this.normals, updatable); } if (this.uvs) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.UVKind, this.uvs, updatable); } if (this.uvs2) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.UV2Kind, this.uvs2, updatable); } if (this.uvs3) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.UV3Kind, this.uvs3, updatable); } if (this.uvs4) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.UV4Kind, this.uvs4, updatable); } if (this.uvs5) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.UV5Kind, this.uvs5, updatable); } if (this.uvs6) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.UV6Kind, this.uvs6, updatable); } if (this.colors) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.ColorKind, this.colors, updatable); } if (this.matricesIndices) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.MatricesIndicesKind, this.matricesIndices, updatable); } if (this.matricesWeights) { meshOrGeometry.setVerticesData(BABYLON.VertexBuffer.MatricesWeightsKind, this.matricesWeights, updatable); } if (this.indices) { meshOrGeometry.setIndices(this.indices); } }; VertexData.prototype._update = function (meshOrGeometry, updateExtends, makeItUnique) { if (this.positions) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.PositionKind, this.positions, updateExtends, makeItUnique); } if (this.normals) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.NormalKind, this.normals, updateExtends, makeItUnique); } if (this.uvs) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.UVKind, this.uvs, updateExtends, makeItUnique); } if (this.uvs2) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.UV2Kind, this.uvs2, updateExtends, makeItUnique); } if (this.uvs3) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.UV3Kind, this.uvs3, updateExtends, makeItUnique); } if (this.uvs4) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.UV4Kind, this.uvs4, updateExtends, makeItUnique); } if (this.uvs5) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.UV5Kind, this.uvs5, updateExtends, makeItUnique); } if (this.uvs6) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.UV6Kind, this.uvs6, updateExtends, makeItUnique); } if (this.colors) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.ColorKind, this.colors, updateExtends, makeItUnique); } if (this.matricesIndices) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.MatricesIndicesKind, this.matricesIndices, updateExtends, makeItUnique); } if (this.matricesWeights) { meshOrGeometry.updateVerticesData(BABYLON.VertexBuffer.MatricesWeightsKind, this.matricesWeights, updateExtends, makeItUnique); } if (this.indices) { meshOrGeometry.setIndices(this.indices); } }; VertexData.prototype.transform = function (matrix) { var transformed = BABYLON.Vector3.Zero(); var index; if (this.positions) { var position = BABYLON.Vector3.Zero(); for (index = 0; index < this.positions.length; index += 3) { BABYLON.Vector3.FromArrayToRef(this.positions, index, position); BABYLON.Vector3.TransformCoordinatesToRef(position, matrix, transformed); this.positions[index] = transformed.x; this.positions[index + 1] = transformed.y; this.positions[index + 2] = transformed.z; } } if (this.normals) { var normal = BABYLON.Vector3.Zero(); for (index = 0; index < this.normals.length; index += 3) { BABYLON.Vector3.FromArrayToRef(this.normals, index, normal); BABYLON.Vector3.TransformNormalToRef(normal, matrix, transformed); this.normals[index] = transformed.x; this.normals[index + 1] = transformed.y; this.normals[index + 2] = transformed.z; } } }; VertexData.prototype.merge = function (other) { var index; if (other.indices) { if (!this.indices) { this.indices = []; } var offset = this.positions ? this.positions.length / 3 : 0; for (index = 0; index < other.indices.length; index++) { this.indices.push(other.indices[index] + offset); } } if (other.positions) { if (!this.positions) { this.positions = []; } for (index = 0; index < other.positions.length; index++) { this.positions.push(other.positions[index]); } } if (other.normals) { if (!this.normals) { this.normals = []; } for (index = 0; index < other.normals.length; index++) { this.normals.push(other.normals[index]); } } if (other.uvs) { if (!this.uvs) { this.uvs = []; } for (index = 0; index < other.uvs.length; index++) { this.uvs.push(other.uvs[index]); } } if (other.uvs2) { if (!this.uvs2) { this.uvs2 = []; } for (index = 0; index < other.uvs2.length; index++) { this.uvs2.push(other.uvs2[index]); } } if (other.uvs3) { if (!this.uvs3) { this.uvs3 = []; } for (index = 0; index < other.uvs3.length; index++) { this.uvs3.push(other.uvs3[index]); } } if (other.uvs4) { if (!this.uvs4) { this.uvs4 = []; } for (index = 0; index < other.uvs4.length; index++) { this.uvs4.push(other.uvs4[index]); } } if (other.uvs5) { if (!this.uvs5) { this.uvs5 = []; } for (index = 0; index < other.uvs5.length; index++) { this.uvs5.push(other.uvs5[index]); } } if (other.uvs6) { if (!this.uvs6) { this.uvs6 = []; } for (index = 0; index < other.uvs6.length; index++) { this.uvs6.push(other.uvs6[index]); } } if (other.matricesIndices) { if (!this.matricesIndices) { this.matricesIndices = []; } for (index = 0; index < other.matricesIndices.length; index++) { this.matricesIndices.push(other.matricesIndices[index]); } } if (other.matricesWeights) { if (!this.matricesWeights) { this.matricesWeights = []; } for (index = 0; index < other.matricesWeights.length; index++) { this.matricesWeights.push(other.matricesWeights[index]); } } if (other.colors) { if (!this.colors) { this.colors = []; } for (index = 0; index < other.colors.length; index++) { this.colors.push(other.colors[index]); } } }; // Statics VertexData.ExtractFromMesh = function (mesh, copyWhenShared) { return VertexData._ExtractFrom(mesh, copyWhenShared); }; VertexData.ExtractFromGeometry = function (geometry, copyWhenShared) { return VertexData._ExtractFrom(geometry, copyWhenShared); }; VertexData._ExtractFrom = function (meshOrGeometry, copyWhenShared) { var result = new VertexData(); if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.PositionKind)) { result.positions = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.PositionKind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.NormalKind)) { result.normals = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.NormalKind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.UVKind)) { result.uvs = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.UVKind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.UV2Kind)) { result.uvs2 = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.UV2Kind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.UV3Kind)) { result.uvs3 = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.UV3Kind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.UV4Kind)) { result.uvs4 = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.UV4Kind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.UV5Kind)) { result.uvs5 = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.UV5Kind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.UV6Kind)) { result.uvs6 = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.UV6Kind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.ColorKind)) { result.colors = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.ColorKind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.MatricesIndicesKind)) { result.matricesIndices = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.MatricesIndicesKind, copyWhenShared); } if (meshOrGeometry.isVerticesDataPresent(BABYLON.VertexBuffer.MatricesWeightsKind)) { result.matricesWeights = meshOrGeometry.getVerticesData(BABYLON.VertexBuffer.MatricesWeightsKind, copyWhenShared); } result.indices = meshOrGeometry.getIndices(copyWhenShared); return result; }; VertexData.CreateRibbon = function (options) { var pathArray = options.pathArray; var closeArray = options.closeArray || false; var closePath = options.closePath || false; var defaultOffset = Math.floor(pathArray[0].length / 2); var offset = options.offset || defaultOffset; offset = offset > defaultOffset ? defaultOffset : Math.floor(offset); // offset max allowed : defaultOffset var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; var positions = []; var indices = []; var normals = []; var uvs = []; var us = []; // us[path_id] = [uDist1, uDist2, uDist3 ... ] distances between points on path path_id var vs = []; // vs[i] = [vDist1, vDist2, vDist3, ... ] distances between points i of consecutives paths from pathArray var uTotalDistance = []; // uTotalDistance[p] : total distance of path p var vTotalDistance = []; // vTotalDistance[i] : total distance between points i of first and last path from pathArray var minlg; // minimal length among all paths from pathArray var lg = []; // array of path lengths : nb of vertex per path var idx = []; // array of path indexes : index of each path (first vertex) in the total vertex number var p; // path iterator var i; // point iterator var j; // point iterator // if single path in pathArray if (pathArray.length < 2) { var ar1 = []; var ar2 = []; for (i = 0; i < pathArray[0].length - offset; i++) { ar1.push(pathArray[0][i]); ar2.push(pathArray[0][i + offset]); } pathArray = [ar1, ar2]; } // positions and horizontal distances (u) var idc = 0; var closePathCorr = (closePath) ? 1 : 0; var path; var l; minlg = pathArray[0].length; var vectlg; var dist; for (p = 0; p < pathArray.length; p++) { uTotalDistance[p] = 0; us[p] = [0]; path = pathArray[p]; l = path.length; minlg = (minlg < l) ? minlg : l; j = 0; while (j < l) { positions.push(path[j].x, path[j].y, path[j].z); if (j > 0) { vectlg = path[j].subtract(path[j - 1]).length(); dist = vectlg + uTotalDistance[p]; us[p].push(dist); uTotalDistance[p] = dist; } j++; } if (closePath) { j--; positions.push(path[0].x, path[0].y, path[0].z); vectlg = path[j].subtract(path[0]).length(); dist = vectlg + uTotalDistance[p]; us[p].push(dist); uTotalDistance[p] = dist; } lg[p] = l + closePathCorr; idx[p] = idc; idc += (l + closePathCorr); } // vertical distances (v) var path1; var path2; var vertex1; var vertex2; for (i = 0; i < minlg + closePathCorr; i++) { vTotalDistance[i] = 0; vs[i] = [0]; for (p = 0; p < pathArray.length - 1; p++) { path1 = pathArray[p]; path2 = pathArray[p + 1]; if (i === minlg) { vertex1 = path1[0]; vertex2 = path2[0]; } else { vertex1 = path1[i]; vertex2 = path2[i]; } vectlg = vertex2.subtract(vertex1).length(); dist = vectlg + vTotalDistance[i]; vs[i].push(dist); vTotalDistance[i] = dist; } if (closeArray) { path1 = pathArray[p]; path2 = pathArray[0]; if (i === minlg) { vertex2 = path2[0]; } vectlg = vertex2.subtract(vertex1).length(); dist = vectlg + vTotalDistance[i]; vTotalDistance[i] = dist; } } // uvs var u; var v; for (p = 0; p < pathArray.length; p++) { for (i = 0; i < minlg + closePathCorr; i++) { u = us[p][i] / uTotalDistance[p]; v = vs[i][p] / vTotalDistance[i]; uvs.push(u, v); } } // indices p = 0; // path index var pi = 0; // positions array index var l1 = lg[p] - 1; // path1 length var l2 = lg[p + 1] - 1; // path2 length var min = (l1 < l2) ? l1 : l2; // current path stop index var shft = idx[1] - idx[0]; // shift var path1nb = closeArray ? lg.length : lg.length - 1; // number of path1 to iterate on while (pi <= min && p < path1nb) { // draw two triangles between path1 (p1) and path2 (p2) : (p1.pi, p2.pi, p1.pi+1) and (p2.pi+1, p1.pi+1, p2.pi) clockwise indices.push(pi, pi + shft, pi + 1); indices.push(pi + shft + 1, pi + 1, pi + shft); pi += 1; if (pi === min) { p++; if (p === lg.length - 1) { shft = idx[0] - idx[p]; l1 = lg[p] - 1; l2 = lg[0] - 1; } else { shft = idx[p + 1] - idx[p]; l1 = lg[p] - 1; l2 = lg[p + 1] - 1; } pi = idx[p]; min = (l1 < l2) ? l1 + pi : l2 + pi; } } // normals VertexData.ComputeNormals(positions, indices, normals); if (closePath) { var indexFirst = 0; var indexLast = 0; for (p = 0; p < pathArray.length; p++) { indexFirst = idx[p] * 3; if (p + 1 < pathArray.length) { indexLast = (idx[p + 1] - 1) * 3; } else { indexLast = normals.length - 3; } normals[indexFirst] = (normals[indexFirst] + normals[indexLast]) * 0.5; normals[indexFirst + 1] = (normals[indexFirst + 1] + normals[indexLast + 1]) * 0.5; normals[indexFirst + 2] = (normals[indexFirst + 2] + normals[indexLast + 2]) * 0.5; normals[indexLast] = normals[indexFirst]; normals[indexLast + 1] = normals[indexFirst + 1]; normals[indexLast + 2] = normals[indexFirst + 2]; } } // sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; if (closePath) { vertexData._idx = idx; } return vertexData; }; VertexData.CreateBox = function (options) { var normalsSource = [ new BABYLON.Vector3(0, 0, 1), new BABYLON.Vector3(0, 0, -1), new BABYLON.Vector3(1, 0, 0), new BABYLON.Vector3(-1, 0, 0), new BABYLON.Vector3(0, 1, 0), new BABYLON.Vector3(0, -1, 0) ]; var indices = []; var positions = []; var normals = []; var uvs = []; var width = options.width || options.size || 1; var height = options.height || options.size || 1; var depth = options.depth || options.size || 1; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; var faceUV = options.faceUV || new Array(6); var faceColors = options.faceColors; var colors = []; // default face colors and UV if undefined for (var f = 0; f < 6; f++) { if (faceUV[f] === undefined) { faceUV[f] = new BABYLON.Vector4(0, 0, 1, 1); } if (faceColors && faceColors[f] === undefined) { faceColors[f] = new BABYLON.Color4(1, 1, 1, 1); } } var scaleVector = new BABYLON.Vector3(width / 2, height / 2, depth / 2); // Create each face in turn. for (var index = 0; index < normalsSource.length; index++) { var normal = normalsSource[index]; // Get two vectors perpendicular to the face normal and to each other. var side1 = new BABYLON.Vector3(normal.y, normal.z, normal.x); var side2 = BABYLON.Vector3.Cross(normal, side1); // Six indices (two triangles) per face. var verticesLength = positions.length / 3; indices.push(verticesLength); indices.push(verticesLength + 1); indices.push(verticesLength + 2); indices.push(verticesLength); indices.push(verticesLength + 2); indices.push(verticesLength + 3); // Four vertices per face. var vertex = normal.subtract(side1).subtract(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].z, faceUV[index].w); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } vertex = normal.subtract(side1).add(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].x, faceUV[index].w); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } vertex = normal.add(side1).add(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].x, faceUV[index].y); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } vertex = normal.add(side1).subtract(side2).multiply(scaleVector); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(faceUV[index].z, faceUV[index].y); if (faceColors) { colors.push(faceColors[index].r, faceColors[index].g, faceColors[index].b, faceColors[index].a); } } // sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; if (faceColors) { var totalColors = (sideOrientation === BABYLON.Mesh.DOUBLESIDE) ? colors.concat(colors) : colors; vertexData.colors = totalColors; } return vertexData; }; VertexData.CreateSphere = function (options) { var segments = options.segments || 32; var diameterX = options.diameterX || options.diameter || 1; var diameterY = options.diameterY || options.diameter || 1; var diameterZ = options.diameterZ || options.diameter || 1; var arc = (options.arc <= 0) ? 1.0 : options.arc || 1.0; var slice = (options.slice <= 0) ? 1.0 : options.slice || 1.0; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; var radius = new BABYLON.Vector3(diameterX / 2, diameterY / 2, diameterZ / 2); var totalZRotationSteps = 2 + segments; var totalYRotationSteps = 2 * totalZRotationSteps; var indices = []; var positions = []; var normals = []; var uvs = []; for (var zRotationStep = 0; zRotationStep <= totalZRotationSteps; zRotationStep++) { var normalizedZ = zRotationStep / totalZRotationSteps; var angleZ = normalizedZ * Math.PI * slice; for (var yRotationStep = 0; yRotationStep <= totalYRotationSteps; yRotationStep++) { var normalizedY = yRotationStep / totalYRotationSteps; var angleY = normalizedY * Math.PI * 2 * arc; var rotationZ = BABYLON.Matrix.RotationZ(-angleZ); var rotationY = BABYLON.Matrix.RotationY(angleY); var afterRotZ = BABYLON.Vector3.TransformCoordinates(BABYLON.Vector3.Up(), rotationZ); var complete = BABYLON.Vector3.TransformCoordinates(afterRotZ, rotationY); var vertex = complete.multiply(radius); var normal = BABYLON.Vector3.Normalize(vertex); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(normalizedY, normalizedZ); } if (zRotationStep > 0) { var verticesCount = positions.length / 3; for (var firstIndex = verticesCount - 2 * (totalYRotationSteps + 1); (firstIndex + totalYRotationSteps + 2) < verticesCount; firstIndex++) { indices.push((firstIndex)); indices.push((firstIndex + 1)); indices.push(firstIndex + totalYRotationSteps + 1); indices.push((firstIndex + totalYRotationSteps + 1)); indices.push((firstIndex + 1)); indices.push((firstIndex + totalYRotationSteps + 2)); } } } // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; // Cylinder and cone VertexData.CreateCylinder = function (options) { var height = options.height || 2; var diameterTop = (options.diameterTop === 0) ? 0 : options.diameterTop || options.diameter || 1; var diameterBottom = options.diameterBottom || options.diameter || 1; var tessellation = options.tessellation || 24; var subdivisions = options.subdivisions || 1; var arc = (options.arc <= 0) ? 1.0 : options.arc || 1.0; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; var faceUV = options.faceUV || new Array(3); var faceColors = options.faceColors; // default face colors and UV if undefined for (var f = 0; f < 3; f++) { if (faceColors && faceColors[f] === undefined) { faceColors[f] = new BABYLON.Color4(1, 1, 1, 1); } if (faceUV && faceUV[f] === undefined) { faceUV[f] = new BABYLON.Vector4(0, 0, 1, 1); } } var indices = []; var positions = []; var normals = []; var uvs = []; var colors = []; var angle_step = Math.PI * 2 * arc / tessellation; var angle; var h; var radius; var tan = (diameterBottom - diameterTop) / 2 / height; var ringVertex = BABYLON.Vector3.Zero(); var ringNormal = BABYLON.Vector3.Zero(); // positions, normals, uvs var i; var j; for (i = 0; i <= subdivisions; i++) { h = i / subdivisions; radius = (h * (diameterTop - diameterBottom) + diameterBottom) / 2; for (j = 0; j <= tessellation; j++) { angle = j * angle_step; ringVertex.x = Math.cos(-angle) * radius; ringVertex.y = -height / 2 + h * height; ringVertex.z = Math.sin(-angle) * radius; if (diameterTop === 0 && i === subdivisions) { // if no top cap, reuse former normals ringNormal.x = normals[normals.length - (tessellation + 1) * 3]; ringNormal.y = normals[normals.length - (tessellation + 1) * 3 + 1]; ringNormal.z = normals[normals.length - (tessellation + 1) * 3 + 2]; } else { ringNormal.x = ringVertex.x; ringNormal.z = ringVertex.z; ringNormal.y = Math.sqrt(ringNormal.x * ringNormal.x + ringNormal.z * ringNormal.z) * tan; ringNormal.normalize(); } positions.push(ringVertex.x, ringVertex.y, ringVertex.z); normals.push(ringNormal.x, ringNormal.y, ringNormal.z); uvs.push(faceUV[1].x + (faceUV[1].z - faceUV[1].x) * j / tessellation, faceUV[1].y + (faceUV[1].w - faceUV[1].y) * h); if (faceColors) { colors.push(faceColors[1].r, faceColors[1].g, faceColors[1].b, faceColors[1].a); } } } // indices for (i = 0; i < subdivisions; i++) { for (j = 0; j < tessellation; j++) { var i0 = i * (tessellation + 1) + j; var i1 = (i + 1) * (tessellation + 1) + j; var i2 = i * (tessellation + 1) + (j + 1); var i3 = (i + 1) * (tessellation + 1) + (j + 1); indices.push(i0, i1, i2); indices.push(i3, i2, i1); } } // Caps var createCylinderCap = function (isTop) { var radius = isTop ? diameterTop / 2 : diameterBottom / 2; if (radius === 0) { return; } // Cap positions, normals & uvs var angle; var circleVector; var i; var u = (isTop) ? faceUV[2] : faceUV[0]; var c; if (faceColors) { c = (isTop) ? faceColors[2] : faceColors[0]; } // cap center var vbase = positions.length / 3; var offset = isTop ? height / 2 : -height / 2; var center = new BABYLON.Vector3(0, offset, 0); positions.push(center.x, center.y, center.z); normals.push(0, isTop ? 1 : -1, 0); uvs.push(u.x + (u.z - u.x) * 0.5, u.y + (u.w - u.y) * 0.5); if (faceColors) { colors.push(c.r, c.g, c.b, c.a); } var textureScale = new BABYLON.Vector2(0.5, 0.5); for (i = 0; i <= tessellation; i++) { angle = Math.PI * 2 * i * arc / tessellation; var cos = Math.cos(-angle); var sin = Math.sin(-angle); circleVector = new BABYLON.Vector3(cos * radius, offset, sin * radius); var textureCoordinate = new BABYLON.Vector2(cos * textureScale.x + 0.5, sin * textureScale.y + 0.5); positions.push(circleVector.x, circleVector.y, circleVector.z); normals.push(0, isTop ? 1 : -1, 0); uvs.push(u.x + (u.z - u.x) * textureCoordinate.x, u.y + (u.w - u.y) * textureCoordinate.y); if (faceColors) { colors.push(c.r, c.g, c.b, c.a); } } // Cap indices for (i = 0; i < tessellation; i++) { if (!isTop) { indices.push(vbase); indices.push(vbase + (i + 1)); indices.push(vbase + (i + 2)); } else { indices.push(vbase); indices.push(vbase + (i + 2)); indices.push(vbase + (i + 1)); } } }; // add caps to geometry createCylinderCap(false); createCylinderCap(true); // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; if (faceColors) { vertexData.colors = colors; } return vertexData; }; VertexData.CreateTorus = function (options) { var indices = []; var positions = []; var normals = []; var uvs = []; var diameter = options.diameter || 1; var thickness = options.thickness || 0.5; var tessellation = options.tessellation || 16; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; var stride = tessellation + 1; for (var i = 0; i <= tessellation; i++) { var u = i / tessellation; var outerAngle = i * Math.PI * 2.0 / tessellation - Math.PI / 2.0; var transform = BABYLON.Matrix.Translation(diameter / 2.0, 0, 0).multiply(BABYLON.Matrix.RotationY(outerAngle)); for (var j = 0; j <= tessellation; j++) { var v = 1 - j / tessellation; var innerAngle = j * Math.PI * 2.0 / tessellation + Math.PI; var dx = Math.cos(innerAngle); var dy = Math.sin(innerAngle); // Create a vertex. var normal = new BABYLON.Vector3(dx, dy, 0); var position = normal.scale(thickness / 2); var textureCoordinate = new BABYLON.Vector2(u, v); position = BABYLON.Vector3.TransformCoordinates(position, transform); normal = BABYLON.Vector3.TransformNormal(normal, transform); positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(textureCoordinate.x, textureCoordinate.y); // And create indices for two triangles. var nextI = (i + 1) % stride; var nextJ = (j + 1) % stride; indices.push(i * stride + j); indices.push(i * stride + nextJ); indices.push(nextI * stride + j); indices.push(i * stride + nextJ); indices.push(nextI * stride + nextJ); indices.push(nextI * stride + j); } } // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; VertexData.CreateLines = function (options) { var indices = []; var positions = []; var points = options.points; for (var index = 0; index < points.length; index++) { positions.push(points[index].x, points[index].y, points[index].z); if (index > 0) { indices.push(index - 1); indices.push(index); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; return vertexData; }; VertexData.CreateDashedLines = function (options) { var dashSize = options.dashSize || 3; var gapSize = options.gapSize || 1; var dashNb = options.dashNb || 200; var points = options.points; var positions = new Array(); var indices = new Array(); var curvect = BABYLON.Vector3.Zero(); var lg = 0; var nb = 0; var shft = 0; var dashshft = 0; var curshft = 0; var idx = 0; var i = 0; for (i = 0; i < points.length - 1; i++) { points[i + 1].subtractToRef(points[i], curvect); lg += curvect.length(); } shft = lg / dashNb; dashshft = dashSize * shft / (dashSize + gapSize); for (i = 0; i < points.length - 1; i++) { points[i + 1].subtractToRef(points[i], curvect); nb = Math.floor(curvect.length() / shft); curvect.normalize(); for (var j = 0; j < nb; j++) { curshft = shft * j; positions.push(points[i].x + curshft * curvect.x, points[i].y + curshft * curvect.y, points[i].z + curshft * curvect.z); positions.push(points[i].x + (curshft + dashshft) * curvect.x, points[i].y + (curshft + dashshft) * curvect.y, points[i].z + (curshft + dashshft) * curvect.z); indices.push(idx, idx + 1); idx += 2; } } // Result var vertexData = new VertexData(); vertexData.positions = positions; vertexData.indices = indices; return vertexData; }; VertexData.CreateGround = function (options) { var indices = []; var positions = []; var normals = []; var uvs = []; var row, col; var width = options.width || 1; var height = options.height || 1; var subdivisions = options.subdivisions || 1; for (row = 0; row <= subdivisions; row++) { for (col = 0; col <= subdivisions; col++) { var position = new BABYLON.Vector3((col * width) / subdivisions - (width / 2.0), 0, ((subdivisions - row) * height) / subdivisions - (height / 2.0)); var normal = new BABYLON.Vector3(0, 1.0, 0); positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(col / subdivisions, 1.0 - row / subdivisions); } } for (row = 0; row < subdivisions; row++) { for (col = 0; col < subdivisions; col++) { indices.push(col + 1 + (row + 1) * (subdivisions + 1)); indices.push(col + 1 + row * (subdivisions + 1)); indices.push(col + row * (subdivisions + 1)); indices.push(col + (row + 1) * (subdivisions + 1)); indices.push(col + 1 + (row + 1) * (subdivisions + 1)); indices.push(col + row * (subdivisions + 1)); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; VertexData.CreateTiledGround = function (options) { var xmin = options.xmin; var zmin = options.zmin; var xmax = options.xmax; var zmax = options.zmax; var subdivisions = options.subdivisions || { w: 1, h: 1 }; var precision = options.precision || { w: 1, h: 1 }; var indices = []; var positions = []; var normals = []; var uvs = []; var row, col, tileRow, tileCol; subdivisions.h = (subdivisions.w < 1) ? 1 : subdivisions.h; subdivisions.w = (subdivisions.w < 1) ? 1 : subdivisions.w; precision.w = (precision.w < 1) ? 1 : precision.w; precision.h = (precision.h < 1) ? 1 : precision.h; var tileSize = { 'w': (xmax - xmin) / subdivisions.w, 'h': (zmax - zmin) / subdivisions.h }; function applyTile(xTileMin, zTileMin, xTileMax, zTileMax) { // Indices var base = positions.length / 3; var rowLength = precision.w + 1; for (row = 0; row < precision.h; row++) { for (col = 0; col < precision.w; col++) { var square = [ base + col + row * rowLength, base + (col + 1) + row * rowLength, base + (col + 1) + (row + 1) * rowLength, base + col + (row + 1) * rowLength ]; indices.push(square[1]); indices.push(square[2]); indices.push(square[3]); indices.push(square[0]); indices.push(square[1]); indices.push(square[3]); } } // Position, normals and uvs var position = BABYLON.Vector3.Zero(); var normal = new BABYLON.Vector3(0, 1.0, 0); for (row = 0; row <= precision.h; row++) { position.z = (row * (zTileMax - zTileMin)) / precision.h + zTileMin; for (col = 0; col <= precision.w; col++) { position.x = (col * (xTileMax - xTileMin)) / precision.w + xTileMin; position.y = 0; positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(col / precision.w, row / precision.h); } } } for (tileRow = 0; tileRow < subdivisions.h; tileRow++) { for (tileCol = 0; tileCol < subdivisions.w; tileCol++) { applyTile(xmin + tileCol * tileSize.w, zmin + tileRow * tileSize.h, xmin + (tileCol + 1) * tileSize.w, zmin + (tileRow + 1) * tileSize.h); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; VertexData.CreateGroundFromHeightMap = function (options) { var indices = []; var positions = []; var normals = []; var uvs = []; var row, col; // Vertices for (row = 0; row <= options.subdivisions; row++) { for (col = 0; col <= options.subdivisions; col++) { var position = new BABYLON.Vector3((col * options.width) / options.subdivisions - (options.width / 2.0), 0, ((options.subdivisions - row) * options.height) / options.subdivisions - (options.height / 2.0)); // Compute height var heightMapX = (((position.x + options.width / 2) / options.width) * (options.bufferWidth - 1)) | 0; var heightMapY = ((1.0 - (position.z + options.height / 2) / options.height) * (options.bufferHeight - 1)) | 0; var pos = (heightMapX + heightMapY * options.bufferWidth) * 4; var r = options.buffer[pos] / 255.0; var g = options.buffer[pos + 1] / 255.0; var b = options.buffer[pos + 2] / 255.0; var gradient = r * 0.3 + g * 0.59 + b * 0.11; position.y = options.minHeight + (options.maxHeight - options.minHeight) * gradient; // Add vertex positions.push(position.x, position.y, position.z); normals.push(0, 0, 0); uvs.push(col / options.subdivisions, 1.0 - row / options.subdivisions); } } // Indices for (row = 0; row < options.subdivisions; row++) { for (col = 0; col < options.subdivisions; col++) { indices.push(col + 1 + (row + 1) * (options.subdivisions + 1)); indices.push(col + 1 + row * (options.subdivisions + 1)); indices.push(col + row * (options.subdivisions + 1)); indices.push(col + (row + 1) * (options.subdivisions + 1)); indices.push(col + 1 + (row + 1) * (options.subdivisions + 1)); indices.push(col + row * (options.subdivisions + 1)); } } // Normals VertexData.ComputeNormals(positions, indices, normals); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; VertexData.CreatePlane = function (options) { var indices = []; var positions = []; var normals = []; var uvs = []; var width = options.width || options.size || 1; var height = options.height || options.size || 1; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; // Vertices var halfWidth = width / 2.0; var halfHeight = height / 2.0; positions.push(-halfWidth, -halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(0.0, 0.0); positions.push(halfWidth, -halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(1.0, 0.0); positions.push(halfWidth, halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(1.0, 1.0); positions.push(-halfWidth, halfHeight, 0); normals.push(0, 0, -1.0); uvs.push(0.0, 1.0); // Indices indices.push(0); indices.push(1); indices.push(2); indices.push(0); indices.push(2); indices.push(3); // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; VertexData.CreateDisc = function (options) { var positions = []; var indices = []; var normals = []; var uvs = []; var radius = options.radius || 0.5; var tessellation = options.tessellation || 64; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; // positions and uvs positions.push(0, 0, 0); // disc center first uvs.push(0.5, 0.5); var step = Math.PI * 2 / tessellation; for (var a = 0; a < Math.PI * 2; a += step) { var x = Math.cos(a); var y = Math.sin(a); var u = (x + 1) / 2; var v = (1 - y) / 2; positions.push(radius * x, radius * y, 0); uvs.push(u, v); } positions.push(positions[3], positions[4], positions[5]); // close the circle uvs.push(uvs[2], uvs[3]); //indices var vertexNb = positions.length / 3; for (var i = 1; i < vertexNb - 1; i++) { indices.push(i + 1, 0, i); } // result VertexData.ComputeNormals(positions, indices, normals); VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; // based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473 VertexData.CreateTorusKnot = function (options) { var indices = []; var positions = []; var normals = []; var uvs = []; var radius = options.radius || 2; var tube = options.tube || 0.5; var radialSegments = options.radialSegments || 32; var tubularSegments = options.tubularSegments || 32; var p = options.p || 2; var q = options.q || 3; var sideOrientation = (options.sideOrientation === 0) ? 0 : options.sideOrientation || BABYLON.Mesh.DEFAULTSIDE; // Helper var getPos = function (angle) { var cu = Math.cos(angle); var su = Math.sin(angle); var quOverP = q / p * angle; var cs = Math.cos(quOverP); var tx = radius * (2 + cs) * 0.5 * cu; var ty = radius * (2 + cs) * su * 0.5; var tz = radius * Math.sin(quOverP) * 0.5; return new BABYLON.Vector3(tx, ty, tz); }; // Vertices var i; var j; for (i = 0; i <= radialSegments; i++) { var modI = i % radialSegments; var u = modI / radialSegments * 2 * p * Math.PI; var p1 = getPos(u); var p2 = getPos(u + 0.01); var tang = p2.subtract(p1); var n = p2.add(p1); var bitan = BABYLON.Vector3.Cross(tang, n); n = BABYLON.Vector3.Cross(bitan, tang); bitan.normalize(); n.normalize(); for (j = 0; j < tubularSegments; j++) { var modJ = j % tubularSegments; var v = modJ / tubularSegments * 2 * Math.PI; var cx = -tube * Math.cos(v); var cy = tube * Math.sin(v); positions.push(p1.x + cx * n.x + cy * bitan.x); positions.push(p1.y + cx * n.y + cy * bitan.y); positions.push(p1.z + cx * n.z + cy * bitan.z); uvs.push(i / radialSegments); uvs.push(j / tubularSegments); } } for (i = 0; i < radialSegments; i++) { for (j = 0; j < tubularSegments; j++) { var jNext = (j + 1) % tubularSegments; var a = i * tubularSegments + j; var b = (i + 1) * tubularSegments + j; var c = (i + 1) * tubularSegments + jNext; var d = i * tubularSegments + jNext; indices.push(d); indices.push(b); indices.push(a); indices.push(d); indices.push(c); indices.push(b); } } // Normals VertexData.ComputeNormals(positions, indices, normals); // Sides VertexData._ComputeSides(sideOrientation, positions, indices, normals, uvs); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; }; // Tools /** * @param {any} - positions (number[] or Float32Array) * @param {any} - indices (number[] or Uint16Array) * @param {any} - normals (number[] or Float32Array) */ VertexData.ComputeNormals = function (positions, indices, normals) { var index = 0; // temp Vector3 var p1p2 = BABYLON.Vector3.Zero(); var p3p2 = BABYLON.Vector3.Zero(); var faceNormal = BABYLON.Vector3.Zero(); var vertexNormali1 = BABYLON.Vector3.Zero(); for (index = 0; index < positions.length; index++) { normals[index] = 0.0; } // indice triplet = 1 face var nbFaces = indices.length / 3; for (index = 0; index < nbFaces; index++) { var i1 = indices[index * 3]; var i2 = indices[index * 3 + 1]; var i3 = indices[index * 3 + 2]; p1p2.x = positions[i1 * 3] - positions[i2 * 3]; p1p2.y = positions[i1 * 3 + 1] - positions[i2 * 3 + 1]; p1p2.z = positions[i1 * 3 + 2] - positions[i2 * 3 + 2]; p3p2.x = positions[i3 * 3] - positions[i2 * 3]; p3p2.y = positions[i3 * 3 + 1] - positions[i2 * 3 + 1]; p3p2.z = positions[i3 * 3 + 2] - positions[i2 * 3 + 2]; BABYLON.Vector3.CrossToRef(p1p2, p3p2, faceNormal); faceNormal.normalize(); normals[i1 * 3] += faceNormal.x; normals[i1 * 3 + 1] += faceNormal.y; normals[i1 * 3 + 2] += faceNormal.z; normals[i2 * 3] += faceNormal.x; normals[i2 * 3 + 1] += faceNormal.y; normals[i2 * 3 + 2] += faceNormal.z; normals[i3 * 3] += faceNormal.x; normals[i3 * 3 + 1] += faceNormal.y; normals[i3 * 3 + 2] += faceNormal.z; } // last normalization for (index = 0; index < normals.length / 3; index++) { BABYLON.Vector3.FromFloatsToRef(normals[index * 3], normals[index * 3 + 1], normals[index * 3 + 2], vertexNormali1); vertexNormali1.normalize(); normals[index * 3] = vertexNormali1.x; normals[index * 3 + 1] = vertexNormali1.y; normals[index * 3 + 2] = vertexNormali1.z; } }; VertexData._ComputeSides = function (sideOrientation, positions, indices, normals, uvs) { var li = indices.length; var ln = normals.length; var i; var n; sideOrientation = sideOrientation || BABYLON.Mesh.DEFAULTSIDE; switch (sideOrientation) { case BABYLON.Mesh.FRONTSIDE: // nothing changed break; case BABYLON.Mesh.BACKSIDE: var tmp; // indices for (i = 0; i < li; i += 3) { tmp = indices[i]; indices[i] = indices[i + 2]; indices[i + 2] = tmp; } // normals for (n = 0; n < ln; n++) { normals[n] = -normals[n]; } break; case BABYLON.Mesh.DOUBLESIDE: // positions var lp = positions.length; var l = lp / 3; for (var p = 0; p < lp; p++) { positions[lp + p] = positions[p]; } // indices for (i = 0; i < li; i += 3) { indices[i + li] = indices[i + 2] + l; indices[i + 1 + li] = indices[i + 1] + l; indices[i + 2 + li] = indices[i] + l; } // normals for (n = 0; n < ln; n++) { normals[ln + n] = -normals[n]; } // uvs var lu = uvs.length; for (var u = 0; u < lu; u++) { uvs[u + lu] = uvs[u]; } break; } }; return VertexData; })(); BABYLON.VertexData = VertexData; })(BABYLON || (BABYLON = {}));