module BABYLON { export interface IGetSetVerticesData { isVerticesDataPresent(kind: string): boolean; getVerticesData(kind: string): number[]; getIndices(): number[]; setVerticesData(kind: string, data: number[], updatable?: boolean): void; updateVerticesData(kind: string, data: number[], updateExtends?: boolean, makeItUnique?: boolean): void; setIndices(indices: number[]): void; } export class VertexData { public positions: number[]; public normals: number[]; public uvs: number[]; public uv2s: number[]; public colors: number[]; public matricesIndices: number[]; public matricesWeights: number[]; public indices: number[]; public set(data: number[], kind: string) { switch (kind) { case VertexBuffer.PositionKind: this.positions = data; break; case VertexBuffer.NormalKind: this.normals = data; break; case VertexBuffer.UVKind: this.uvs = data; break; case VertexBuffer.UV2Kind: this.uv2s = data; break; case VertexBuffer.ColorKind: this.colors = data; break; case VertexBuffer.MatricesIndicesKind: this.matricesIndices = data; break; case VertexBuffer.MatricesWeightsKind: this.matricesWeights = data; break; } } public applyToMesh(mesh: Mesh, updatable?: boolean): void { this._applyTo(mesh, updatable); } public applyToGeometry(geometry: Geometry, updatable?: boolean): void { this._applyTo(geometry, updatable); } public updateMesh(mesh: Mesh, updateExtends?: boolean, makeItUnique?: boolean): void { this._update(mesh); } public updateGeometry(geometry: Geometry, updateExtends?: boolean, makeItUnique?: boolean): void { this._update(geometry); } private _applyTo(meshOrGeometry: IGetSetVerticesData, updatable?: boolean) { if (this.positions) { meshOrGeometry.setVerticesData(VertexBuffer.PositionKind, this.positions, updatable); } if (this.normals) { meshOrGeometry.setVerticesData(VertexBuffer.NormalKind, this.normals, updatable); } if (this.uvs) { meshOrGeometry.setVerticesData(VertexBuffer.UVKind, this.uvs, updatable); } if (this.uv2s) { meshOrGeometry.setVerticesData(VertexBuffer.UV2Kind, this.uv2s, updatable); } if (this.colors) { meshOrGeometry.setVerticesData(VertexBuffer.ColorKind, this.colors, updatable); } if (this.matricesIndices) { meshOrGeometry.setVerticesData(VertexBuffer.MatricesIndicesKind, this.matricesIndices, updatable); } if (this.matricesWeights) { meshOrGeometry.setVerticesData(VertexBuffer.MatricesWeightsKind, this.matricesWeights, updatable); } if (this.indices) { meshOrGeometry.setIndices(this.indices); } } private _update(meshOrGeometry: IGetSetVerticesData, updateExtends?: boolean, makeItUnique?: boolean) { if (this.positions) { meshOrGeometry.updateVerticesData(VertexBuffer.PositionKind, this.positions, updateExtends, makeItUnique); } if (this.normals) { meshOrGeometry.updateVerticesData(VertexBuffer.NormalKind, this.normals, updateExtends, makeItUnique); } if (this.uvs) { meshOrGeometry.updateVerticesData(VertexBuffer.UVKind, this.uvs, updateExtends, makeItUnique); } if (this.uv2s) { meshOrGeometry.updateVerticesData(VertexBuffer.UV2Kind, this.uv2s, updateExtends, makeItUnique); } if (this.colors) { meshOrGeometry.updateVerticesData(VertexBuffer.ColorKind, this.colors, updateExtends, makeItUnique); } if (this.matricesIndices) { meshOrGeometry.updateVerticesData(VertexBuffer.MatricesIndicesKind, this.matricesIndices, updateExtends, makeItUnique); } if (this.matricesWeights) { meshOrGeometry.updateVerticesData(VertexBuffer.MatricesWeightsKind, this.matricesWeights, updateExtends, makeItUnique); } if (this.indices) { meshOrGeometry.setIndices(this.indices); } } public transform(matrix: Matrix): void { var transformed = Vector3.Zero(); if (this.positions) { var position = Vector3.Zero(); for (var index = 0; index < this.positions.length; index += 3) { Vector3.FromArrayToRef(this.positions, index, position); Vector3.TransformCoordinatesToRef(position, matrix, transformed); this.positions[index] = transformed.x; this.positions[index + 1] = transformed.y; this.positions[index + 2] = transformed.z; } } if (this.normals) { var normal = Vector3.Zero(); for (index = 0; index < this.normals.length; index += 3) { Vector3.FromArrayToRef(this.normals, index, normal); Vector3.TransformNormalToRef(normal, matrix, transformed); this.normals[index] = transformed.x; this.normals[index + 1] = transformed.y; this.normals[index + 2] = transformed.z; } } } public merge(other: VertexData): void { if (other.indices) { if (!this.indices) { this.indices = []; } var offset = this.positions ? this.positions.length / 3 : 0; for (var index = 0; index < other.indices.length; index++) { this.indices.push(other.indices[index] + offset); } } if (other.positions) { if (!this.positions) { this.positions = []; } for (index = 0; index < other.positions.length; index++) { this.positions.push(other.positions[index]); } } if (other.normals) { if (!this.normals) { this.normals = []; } for (index = 0; index < other.normals.length; index++) { this.normals.push(other.normals[index]); } } if (other.uvs) { if (!this.uvs) { this.uvs = []; } for (index = 0; index < other.uvs.length; index++) { this.uvs.push(other.uvs[index]); } } if (other.uv2s) { if (!this.uv2s) { this.uv2s = []; } for (index = 0; index < other.uv2s.length; index++) { this.uv2s.push(other.uv2s[index]); } } if (other.matricesIndices) { if (!this.matricesIndices) { this.matricesIndices = []; } for (index = 0; index < other.matricesIndices.length; index++) { this.matricesIndices.push(other.matricesIndices[index]); } } if (other.matricesWeights) { if (!this.matricesWeights) { this.matricesWeights = []; } for (index = 0; index < other.matricesWeights.length; index++) { this.matricesWeights.push(other.matricesWeights[index]); } } if (other.colors) { if (!this.colors) { this.colors = []; } for (index = 0; index < other.colors.length; index++) { this.colors.push(other.colors[index]); } } } // Statics public static ExtractFromMesh(mesh: Mesh): VertexData { return VertexData._ExtractFrom(mesh); } public static ExtractFromGeometry(geometry: Geometry): VertexData { return VertexData._ExtractFrom(geometry); } private static _ExtractFrom(meshOrGeometry: IGetSetVerticesData): VertexData { var result = new VertexData(); if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.PositionKind)) { result.positions = meshOrGeometry.getVerticesData(VertexBuffer.PositionKind); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.NormalKind)) { result.normals = meshOrGeometry.getVerticesData(VertexBuffer.NormalKind); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UVKind)) { result.uvs = meshOrGeometry.getVerticesData(VertexBuffer.UVKind); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.UV2Kind)) { result.uv2s = meshOrGeometry.getVerticesData(VertexBuffer.UV2Kind); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.ColorKind)) { result.colors = meshOrGeometry.getVerticesData(VertexBuffer.ColorKind); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.MatricesIndicesKind)) { result.matricesIndices = meshOrGeometry.getVerticesData(VertexBuffer.MatricesIndicesKind); } if (meshOrGeometry.isVerticesDataPresent(VertexBuffer.MatricesWeightsKind)) { result.matricesWeights = meshOrGeometry.getVerticesData(VertexBuffer.MatricesWeightsKind); } result.indices = meshOrGeometry.getIndices(); return result; } public static CreateRibbon(pathArray: Vector3[][], closeArray: boolean, closePath: boolean, offset: number): VertexData { closeArray = closeArray || false; closePath = closePath || false; var defaultOffset = Math.floor(pathArray[0].length / 2); offset = offset || defaultOffset; offset = offset > defaultOffset ? defaultOffset : Math.floor(offset); // offset max allowed : defaultOffset var positions: number[] = []; var indices: number[] = []; var normals: number[] = []; var uvs: number[] = []; var us: number[][] = []; // us[path_id] = [uDist1, uDist2, uDist3 ... ] distances between points on path path_id var vs: number[][] = []; // vs[i] = [vDist1, vDist2, vDist3, ... ] distances between points i of consecutives paths from pathArray var uTotalDistance: number[] = []; // uTotalDistance[p] : total distance of path p var vTotalDistance: number[] = []; // vTotalDistance[i] : total distance between points i of first and last path from pathArray var minlg: number; // minimal length among all paths from pathArray var lg: number[] = []; // array of path lengths : nb of vertex per path var idx: number[] = []; // array of path indexes : index of each path (first vertex) in positions array var p: number; // path iterator var i: number; // point iterator var j: number; // point iterator // if single path in pathArray if (pathArray.length < 2) { var ar1: Vector3[] = []; var ar2: Vector3[] = []; for (i = 0; i < pathArray[0].length - offset; i++) { ar1.push(pathArray[0][i]); ar2.push(pathArray[0][i + offset]); } pathArray = [ar1, ar2]; } // positions and horizontal distances (u) var idc: number = 0; minlg = pathArray[0].length; for (p = 0; p < pathArray.length; p++) { uTotalDistance[p] = 0; us[p] = [0]; var path: Vector3[] = pathArray[p]; var l: number = path.length; minlg = (minlg < l) ? minlg : l; lg[p] = l; idx[p] = idc; j = 0; while (j < l) { positions.push(path[j].x, path[j].y, path[j].z); if (j > 0) { var vectlg: number = path[j].subtract(path[j - 1]).length(); var dist: number = vectlg + uTotalDistance[p]; us[p].push(dist); uTotalDistance[p] = dist; } j++; } if (closePath) { vectlg = path[0].subtract(path[j - 1]).length(); dist = vectlg + uTotalDistance[p]; uTotalDistance[p] = dist; } idc += l; } // vertical distances (v) for (i = 0; i < minlg; i++) { vTotalDistance[i] = 0; vs[i] = [0]; var path1: Vector3[]; var path2: Vector3[]; for (p = 0; p < pathArray.length - 1; p++) { path1 = pathArray[p]; path2 = pathArray[p + 1]; vectlg = path2[i].subtract(path1[i]).length(); dist = vectlg + vTotalDistance[i]; vs[i].push(dist); vTotalDistance[i] = dist; } if (closeArray) { path1 = pathArray[p]; path2 = pathArray[0]; vectlg = path2[i].subtract(path1[i]).length(); dist = vectlg + vTotalDistance[i]; vTotalDistance[i] = dist; } } // uvs var u: number; var v: number; for (p = 0; p < pathArray.length; p++) { for (i = 0; i < minlg; i++) { u = us[p][i] / uTotalDistance[p]; v = vs[i][p] / vTotalDistance[i]; uvs.push(u, v); } } // indices p = 0; // path index var pi: number = 0; // positions array index var l1: number = lg[p] - 1; // path1 length var l2: number = lg[p + 1] - 1; // path2 length var min: number = (l1 < l2) ? l1 : l2; // current path stop index var shft: number = idx[1] - idx[0]; // shift var path1nb: number = closeArray ? lg.length : lg.length - 1; // number of path1 to iterate var t1: number; // two consecutive triangles, so 4 points : point1 var t2: number; // point2 var t3: number; // point3 var t4: number; // point4 while (pi <= min && p < path1nb) { // stay under min and don't go over next to last path // draw two triangles between path1 (p1) and path2 (p2) : (p1.pi, p2.pi, p1.pi+1) and (p2.pi+1, p1.pi+1, p2.pi) clockwise t1 = pi; t2 = pi + shft; t3 = pi + 1; t4 = pi + shft + 1; indices.push(pi, pi + shft, pi + 1); indices.push(pi + shft + 1, pi + 1, pi + shft); pi += 1; if (pi === min) { // if end of one of two consecutive paths reached, go next existing path if (closePath) { // if closePath, add last triangles between start and end of the paths indices.push(pi, pi + shft, idx[p]); indices.push(idx[p] + shft, idx[p], pi + shft); t3 = idx[p]; t4 = idx[p] + shft; } p++; if (p === lg.length - 1) { // last path of pathArray reached <=> closeArray == true shft = idx[0] - idx[p]; l1 = lg[p] - 1; l2 = lg[0] - 1; } else { shft = idx[p + 1] - idx[p]; l1 = lg[p] - 1; l2 = lg[p + 1] - 1; } pi = idx[p]; min = (l1 < l2) ? l1 + pi : l2 + pi; } } // normals VertexData.ComputeNormals(positions, indices, normals); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateBox(size: number): VertexData { var normalsSource = [ new Vector3(0, 0, 1), new Vector3(0, 0, -1), new Vector3(1, 0, 0), new Vector3(-1, 0, 0), new Vector3(0, 1, 0), new Vector3(0, -1, 0) ]; var indices = []; var positions = []; var normals = []; var uvs = []; size = size || 1; // Create each face in turn. for (var index = 0; index < normalsSource.length; index++) { var normal = normalsSource[index]; // Get two vectors perpendicular to the face normal and to each other. var side1 = new Vector3(normal.y, normal.z, normal.x); var side2 = Vector3.Cross(normal, side1); // Six indices (two triangles) per face. var verticesLength = positions.length / 3; indices.push(verticesLength); indices.push(verticesLength + 1); indices.push(verticesLength + 2); indices.push(verticesLength); indices.push(verticesLength + 2); indices.push(verticesLength + 3); // Four vertices per face. var vertex = normal.subtract(side1).subtract(side2).scale(size / 2); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(1.0, 1.0); vertex = normal.subtract(side1).add(side2).scale(size / 2); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(0.0, 1.0); vertex = normal.add(side1).add(side2).scale(size / 2); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(0.0, 0.0); vertex = normal.add(side1).subtract(side2).scale(size / 2); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(1.0, 0.0); } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateSphere(segments: number, diameter: number): VertexData { segments = segments || 32; diameter = diameter || 1; var radius = diameter / 2; var totalZRotationSteps = 2 + segments; var totalYRotationSteps = 2 * totalZRotationSteps; var indices = []; var positions = []; var normals = []; var uvs = []; for (var zRotationStep = 0; zRotationStep <= totalZRotationSteps; zRotationStep++) { var normalizedZ = zRotationStep / totalZRotationSteps; var angleZ = (normalizedZ * Math.PI); for (var yRotationStep = 0; yRotationStep <= totalYRotationSteps; yRotationStep++) { var normalizedY = yRotationStep / totalYRotationSteps; var angleY = normalizedY * Math.PI * 2; var rotationZ = Matrix.RotationZ(-angleZ); var rotationY = Matrix.RotationY(angleY); var afterRotZ = Vector3.TransformCoordinates(Vector3.Up(), rotationZ); var complete = Vector3.TransformCoordinates(afterRotZ, rotationY); var vertex = complete.scale(radius); var normal = Vector3.Normalize(vertex); positions.push(vertex.x, vertex.y, vertex.z); normals.push(normal.x, normal.y, normal.z); uvs.push(normalizedZ, normalizedY); } if (zRotationStep > 0) { var verticesCount = positions.length / 3; for (var firstIndex = verticesCount - 2 * (totalYRotationSteps + 1); (firstIndex + totalYRotationSteps + 2) < verticesCount; firstIndex++) { indices.push((firstIndex)); indices.push((firstIndex + 1)); indices.push(firstIndex + totalYRotationSteps + 1); indices.push((firstIndex + totalYRotationSteps + 1)); indices.push((firstIndex + 1)); indices.push((firstIndex + totalYRotationSteps + 2)); } } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateCylinder(height: number, diameterTop: number, diameterBottom: number, tessellation: number, subdivisions: number = 1): VertexData { var radiusTop = diameterTop / 2; var radiusBottom = diameterBottom / 2; var indices = []; var positions = []; var normals = []; var uvs = []; height = height || 1; diameterTop = diameterTop || 0.5; diameterBottom = diameterBottom || 1; tessellation = tessellation || 16; subdivisions = subdivisions || 1; subdivisions = (subdivisions < 1) ? 1 : subdivisions; var getCircleVector = i => { var angle = (i * 2.0 * Math.PI / tessellation); var dx = Math.cos(angle); var dz = Math.sin(angle); return new Vector3(dx, 0, dz); }; var createCylinderCap = isTop => { var radius = isTop ? radiusTop : radiusBottom; if (radius === 0) { return; } var vbase = positions.length / 3; var offset = new Vector3(0, height / 2, 0); var textureScale = new Vector2(0.5, 0.5); if (!isTop) { offset.scaleInPlace(-1); textureScale.x = -textureScale.x; } // Positions, normals & uvs for (var i = 0; i < tessellation; i++) { var circleVector = getCircleVector(i); var position = circleVector.scale(radius).add(offset); var textureCoordinate = new Vector2( circleVector.x * textureScale.x + 0.5, circleVector.z * textureScale.y + 0.5 ); positions.push(position.x, position.y, position.z); uvs.push(textureCoordinate.x, textureCoordinate.y); } // Indices for (i = 0; i < tessellation - 2; i++) { if (!isTop) { indices.push(vbase); indices.push(vbase + (i + 2) % tessellation); indices.push(vbase + (i + 1) % tessellation); } else { indices.push(vbase); indices.push(vbase + (i + 1) % tessellation); indices.push(vbase + (i + 2) % tessellation); } } }; var base = new Vector3(0, -1, 0).scale(height / 2); var offset = new Vector3(0, 1, 0).scale(height / subdivisions); var stride = tessellation + 1; // Positions, normals & uvs for (var i = 0; i <= tessellation; i++) { var circleVector = getCircleVector(i); var textureCoordinate = new Vector2(i / tessellation, 0); var position: Vector3, radius = radiusBottom; for (var s = 0; s <= subdivisions; s++) { // Update variables position = circleVector.scale(radius); position.addInPlace(base.add(offset.scale(s))); textureCoordinate.y += 1 / subdivisions; radius += (radiusTop - radiusBottom) / subdivisions; // Push in arrays positions.push(position.x, position.y, position.z); uvs.push(textureCoordinate.x, textureCoordinate.y); } } subdivisions += 1; // Indices for (s = 0; s < subdivisions - 1; s++) { for (i = 0; i <= tessellation; i++) { indices.push(i * subdivisions + s); indices.push((i * subdivisions + (s + subdivisions)) % (stride * subdivisions)); indices.push(i * subdivisions + (s + 1)); indices.push(i * subdivisions + (s + 1)); indices.push((i * subdivisions + (s + subdivisions)) % (stride * subdivisions)); indices.push((i * subdivisions + (s + subdivisions + 1)) % (stride * subdivisions)); } } // Create flat triangle fan caps to seal the top and bottom. createCylinderCap(true); createCylinderCap(false); // Normals VertexData.ComputeNormals(positions, indices, normals); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateTorus(diameter, thickness, tessellation) { var indices = []; var positions = []; var normals = []; var uvs = []; diameter = diameter || 1; thickness = thickness || 0.5; tessellation = tessellation || 16; var stride = tessellation + 1; for (var i = 0; i <= tessellation; i++) { var u = i / tessellation; var outerAngle = i * Math.PI * 2.0 / tessellation - Math.PI / 2.0; var transform = Matrix.Translation(diameter / 2.0, 0, 0).multiply(Matrix.RotationY(outerAngle)); for (var j = 0; j <= tessellation; j++) { var v = 1 - j / tessellation; var innerAngle = j * Math.PI * 2.0 / tessellation + Math.PI; var dx = Math.cos(innerAngle); var dy = Math.sin(innerAngle); // Create a vertex. var normal = new Vector3(dx, dy, 0); var position = normal.scale(thickness / 2); var textureCoordinate = new Vector2(u, v); position = Vector3.TransformCoordinates(position, transform); normal = Vector3.TransformNormal(normal, transform); positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(textureCoordinate.x, textureCoordinate.y); // And create indices for two triangles. var nextI = (i + 1) % stride; var nextJ = (j + 1) % stride; indices.push(i * stride + j); indices.push(i * stride + nextJ); indices.push(nextI * stride + j); indices.push(i * stride + nextJ); indices.push(nextI * stride + nextJ); indices.push(nextI * stride + j); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateLines(points: Vector3[]): VertexData { var indices = []; var positions = []; for (var index = 0; index < points.length; index++) { positions.push(points[index].x, points[index].y, points[index].z); if (index > 0) { indices.push(index - 1); indices.push(index); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; return vertexData; } public static CreateGround(width: number, height: number, subdivisions: number): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var row: number, col: number; width = width || 1; height = height || 1; subdivisions = subdivisions || 1; for (row = 0; row <= subdivisions; row++) { for (col = 0; col <= subdivisions; col++) { var position = new Vector3((col * width) / subdivisions - (width / 2.0), 0, ((subdivisions - row) * height) / subdivisions - (height / 2.0)); var normal = new Vector3(0, 1.0, 0); positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(col / subdivisions, 1.0 - row / subdivisions); } } for (row = 0; row < subdivisions; row++) { for (col = 0; col < subdivisions; col++) { indices.push(col + 1 + (row + 1) * (subdivisions + 1)); indices.push(col + 1 + row * (subdivisions + 1)); indices.push(col + row * (subdivisions + 1)); indices.push(col + (row + 1) * (subdivisions + 1)); indices.push(col + 1 + (row + 1) * (subdivisions + 1)); indices.push(col + row * (subdivisions + 1)); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateTiledGround(xmin: number, zmin: number, xmax: number, zmax: number, subdivisions = { w: 1, h: 1 }, precision = { w: 1, h: 1 }): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var row: number, col: number, tileRow: number, tileCol: number; subdivisions.h = (subdivisions.w < 1) ? 1 : subdivisions.h; subdivisions.w = (subdivisions.w < 1) ? 1 : subdivisions.w; precision.w = (precision.w < 1) ? 1 : precision.w; precision.h = (precision.h < 1) ? 1 : precision.h; var tileSize = { 'w': (xmax - xmin) / subdivisions.w, 'h': (zmax - zmin) / subdivisions.h }; function applyTile(xTileMin: number, zTileMin: number, xTileMax: number, zTileMax: number) { // Indices var base = positions.length / 3; var rowLength = precision.w + 1; for (row = 0; row < precision.h; row++) { for (col = 0; col < precision.w; col++) { var square = [ base + col + row * rowLength, base + (col + 1) + row * rowLength, base + (col + 1) + (row + 1) * rowLength, base + col + (row + 1) * rowLength ]; indices.push(square[1]); indices.push(square[2]); indices.push(square[3]); indices.push(square[0]); indices.push(square[1]); indices.push(square[3]); } } // Position, normals and uvs var position = Vector3.Zero(); var normal = new Vector3(0, 1.0, 0); for (row = 0; row <= precision.h; row++) { position.z = (row * (zTileMax - zTileMin)) / precision.h + zTileMin; for (col = 0; col <= precision.w; col++) { position.x = (col * (xTileMax - xTileMin)) / precision.w + xTileMin; position.y = 0; positions.push(position.x, position.y, position.z); normals.push(normal.x, normal.y, normal.z); uvs.push(col / precision.w, row / precision.h); } } } for (tileRow = 0; tileRow < subdivisions.h; tileRow++) { for (tileCol = 0; tileCol < subdivisions.w; tileCol++) { applyTile( xmin + tileCol * tileSize.w, zmin + tileRow * tileSize.h, xmin + (tileCol + 1) * tileSize.w, zmin + (tileRow + 1) * tileSize.h ); } } // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreateGroundFromHeightMap(width: number, height: number, subdivisions: number, minHeight: number, maxHeight: number, buffer: Uint8Array, bufferWidth: number, bufferHeight: number): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; var row, col; // Vertices for (row = 0; row <= subdivisions; row++) { for (col = 0; col <= subdivisions; col++) { var position = new Vector3((col * width) / subdivisions - (width / 2.0), 0, ((subdivisions - row) * height) / subdivisions - (height / 2.0)); // Compute height var heightMapX = (((position.x + width / 2) / width) * (bufferWidth - 1)) | 0; var heightMapY = ((1.0 - (position.z + height / 2) / height) * (bufferHeight - 1)) | 0; var pos = (heightMapX + heightMapY * bufferWidth) * 4; var r = buffer[pos] / 255.0; var g = buffer[pos + 1] / 255.0; var b = buffer[pos + 2] / 255.0; var gradient = r * 0.3 + g * 0.59 + b * 0.11; position.y = minHeight + (maxHeight - minHeight) * gradient; // Add vertex positions.push(position.x, position.y, position.z); normals.push(0, 0, 0); uvs.push(col / subdivisions, 1.0 - row / subdivisions); } } // Indices for (row = 0; row < subdivisions; row++) { for (col = 0; col < subdivisions; col++) { indices.push(col + 1 + (row + 1) * (subdivisions + 1)); indices.push(col + 1 + row * (subdivisions + 1)); indices.push(col + row * (subdivisions + 1)); indices.push(col + (row + 1) * (subdivisions + 1)); indices.push(col + 1 + (row + 1) * (subdivisions + 1)); indices.push(col + row * (subdivisions + 1)); } } // Normals VertexData.ComputeNormals(positions, indices, normals); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } public static CreatePlane(size: number): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; size = size || 1; // Vertices var halfSize = size / 2.0; positions.push(-halfSize, -halfSize, 0); normals.push(0, 0, -1.0); uvs.push(0.0, 0.0); positions.push(halfSize, -halfSize, 0); normals.push(0, 0, -1.0); uvs.push(1.0, 0.0); positions.push(halfSize, halfSize, 0); normals.push(0, 0, -1.0); uvs.push(1.0, 1.0); positions.push(-halfSize, halfSize, 0); normals.push(0, 0, -1.0); uvs.push(0.0, 1.0); // Indices indices.push(0); indices.push(1); indices.push(2); indices.push(0); indices.push(2); indices.push(3); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } // based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473 public static CreateTorusKnot(radius: number, tube: number, radialSegments: number, tubularSegments: number, p: number, q: number): VertexData { var indices = []; var positions = []; var normals = []; var uvs = []; radius = radius || 2; tube = tube || 0.5; radialSegments = radialSegments || 32; tubularSegments = tubularSegments || 32; p = p || 2; q = q || 3; // Helper var getPos = (angle) => { var cu = Math.cos(angle); var su = Math.sin(angle); var quOverP = q / p * angle; var cs = Math.cos(quOverP); var tx = radius * (2 + cs) * 0.5 * cu; var ty = radius * (2 + cs) * su * 0.5; var tz = radius * Math.sin(quOverP) * 0.5; return new Vector3(tx, ty, tz); }; // Vertices for (var i = 0; i <= radialSegments; i++) { var modI = i % radialSegments; var u = modI / radialSegments * 2 * p * Math.PI; var p1 = getPos(u); var p2 = getPos(u + 0.01); var tang = p2.subtract(p1); var n = p2.add(p1); var bitan = Vector3.Cross(tang, n); n = Vector3.Cross(bitan, tang); bitan.normalize(); n.normalize(); for (var j = 0; j < tubularSegments; j++) { var modJ = j % tubularSegments; var v = modJ / tubularSegments * 2 * Math.PI; var cx = -tube * Math.cos(v); var cy = tube * Math.sin(v); positions.push(p1.x + cx * n.x + cy * bitan.x); positions.push(p1.y + cx * n.y + cy * bitan.y); positions.push(p1.z + cx * n.z + cy * bitan.z); uvs.push(i / radialSegments); uvs.push(j / tubularSegments); } } for (i = 0; i < radialSegments; i++) { for (j = 0; j < tubularSegments; j++) { var jNext = (j + 1) % tubularSegments; var a = i * tubularSegments + j; var b = (i + 1) * tubularSegments + j; var c = (i + 1) * tubularSegments + jNext; var d = i * tubularSegments + jNext; indices.push(d); indices.push(b); indices.push(a); indices.push(d); indices.push(c); indices.push(b); } } // Normals VertexData.ComputeNormals(positions, indices, normals); // Result var vertexData = new VertexData(); vertexData.indices = indices; vertexData.positions = positions; vertexData.normals = normals; vertexData.uvs = uvs; return vertexData; } // Tools public static ComputeNormals(positions: number[], indices: number[], normals: number[]) { var positionVectors = []; var facesOfVertices = []; var index; for (index = 0; index < positions.length; index += 3) { var vector3 = new Vector3(positions[index], positions[index + 1], positions[index + 2]); positionVectors.push(vector3); facesOfVertices.push([]); } // Compute normals var facesNormals = []; for (index = 0; index < indices.length / 3; index++) { var i1 = indices[index * 3]; var i2 = indices[index * 3 + 1]; var i3 = indices[index * 3 + 2]; var p1 = positionVectors[i1]; var p2 = positionVectors[i2]; var p3 = positionVectors[i3]; var p1p2 = p1.subtract(p2); var p3p2 = p3.subtract(p2); facesNormals[index] = Vector3.Normalize(Vector3.Cross(p1p2, p3p2)); facesOfVertices[i1].push(index); facesOfVertices[i2].push(index); facesOfVertices[i3].push(index); } for (index = 0; index < positionVectors.length; index++) { var faces = facesOfVertices[index]; var normal = Vector3.Zero(); for (var faceIndex = 0; faceIndex < faces.length; faceIndex++) { normal.addInPlace(facesNormals[faces[faceIndex]]); } normal = Vector3.Normalize(normal.scale(1.0 / faces.length)); normals[index * 3] = normal.x; normals[index * 3 + 1] = normal.y; normals[index * 3 + 2] = normal.z; } } } }