|
@@ -0,0 +1,885 @@
|
|
|
+import { DeepImmutable, Nullable } from "../types";
|
|
|
+import { Matrix, Vector3 } from "../Maths/math.vector";
|
|
|
+
|
|
|
+// This implementation was based on the original MIT-licensed TRACE repository
|
|
|
+// from https://github.com/septagon/TRACE.
|
|
|
+
|
|
|
+/**
|
|
|
+ * Generic implementation of Levenshtein distance.
|
|
|
+ */
|
|
|
+namespace Levenshtein {
|
|
|
+ /**
|
|
|
+ * Alphabet from which to construct sequences to be compared using Levenshtein
|
|
|
+ * distance.
|
|
|
+ */
|
|
|
+ export class Alphabet<T> {
|
|
|
+ private _characterToIdx: Map<T, number>;
|
|
|
+ private _insertionCosts: number[];
|
|
|
+ private _deletionCosts: number[];
|
|
|
+ private _substitutionCosts: number[][];
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize the Alphabet to JSON string.
|
|
|
+ * @returns JSON serialization
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ let jsonObject: any = {};
|
|
|
+
|
|
|
+ let characters = new Array<T>(this._characterToIdx.size);
|
|
|
+ this._characterToIdx.forEach((v, k) => {
|
|
|
+ characters[v] = k;
|
|
|
+ });
|
|
|
+ jsonObject["characters"] = characters;
|
|
|
+
|
|
|
+ jsonObject["insertionCosts"] = this._insertionCosts;
|
|
|
+ jsonObject["deletionCosts"] = this._deletionCosts;
|
|
|
+ jsonObject["substitutionCosts"] = this._substitutionCosts;
|
|
|
+
|
|
|
+ return JSON.stringify(jsonObject);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Parse an Alphabet from a JSON serialization.
|
|
|
+ * @param json JSON string to deserialize
|
|
|
+ * @returns deserialized Alphabet
|
|
|
+ */
|
|
|
+ public static Deserialize<T>(json: string): Alphabet<T> {
|
|
|
+ let jsonObject = JSON.parse(json);
|
|
|
+ let alphabet = new Alphabet(jsonObject["characters"] as T[]);
|
|
|
+ alphabet._insertionCosts = jsonObject["insertionCosts"];
|
|
|
+ alphabet._deletionCosts = jsonObject["deletionCosts"];
|
|
|
+ alphabet._substitutionCosts = jsonObject["substitutionCosts"];
|
|
|
+ return alphabet;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new Alphabet.
|
|
|
+ * @param characters characters of the alphabet
|
|
|
+ * @param charToInsertionCost function mapping characters to insertion costs
|
|
|
+ * @param charToDeletionCost function mapping characters to deletion costs
|
|
|
+ * @param charsToSubstitutionCost function mapping character pairs to substitution costs
|
|
|
+ */
|
|
|
+ public constructor(
|
|
|
+ characters: Array<T>,
|
|
|
+ charToInsertionCost: Nullable<(char: T) => number> = null,
|
|
|
+ charToDeletionCost: Nullable<(char: T) => number> = null,
|
|
|
+ charsToSubstitutionCost: Nullable<(outChar: T, inChar: T) => number> = null) {
|
|
|
+
|
|
|
+ charToInsertionCost = charToInsertionCost ?? (() => 1);
|
|
|
+ charToDeletionCost = charToDeletionCost ?? (() => 1);
|
|
|
+ charsToSubstitutionCost = charsToSubstitutionCost ?? ((a: T, b: T) => a === b ? 0 : 1);
|
|
|
+
|
|
|
+ this._characterToIdx = new Map<T, number>();
|
|
|
+ this._insertionCosts = new Array<number>(characters.length);
|
|
|
+ this._deletionCosts = new Array<number>(characters.length);
|
|
|
+ this._substitutionCosts = new Array<Array<number>>(characters.length);
|
|
|
+
|
|
|
+ let c: T;
|
|
|
+ for (let outerIdx = 0; outerIdx < characters.length; ++outerIdx) {
|
|
|
+ c = characters[outerIdx];
|
|
|
+ this._characterToIdx.set(c, outerIdx);
|
|
|
+ this._insertionCosts[outerIdx] = charToInsertionCost(c);
|
|
|
+ this._deletionCosts[outerIdx] = charToDeletionCost(c);
|
|
|
+
|
|
|
+ this._substitutionCosts[outerIdx] = new Array<number>(characters.length);
|
|
|
+ for (let innerIdx = outerIdx; innerIdx < characters.length; ++innerIdx) {
|
|
|
+ this._substitutionCosts[outerIdx][innerIdx] = charsToSubstitutionCost(c, characters[innerIdx]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Get the index (internally-assigned number) for a character.
|
|
|
+ * @param char character
|
|
|
+ * @returns index
|
|
|
+ */
|
|
|
+ public getCharacterIdx(char: T): number {
|
|
|
+ return this._characterToIdx.get(char)!;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Get the insertion cost of a character from its index.
|
|
|
+ * @param idx character index
|
|
|
+ * @returns insertion cost
|
|
|
+ */
|
|
|
+ public getInsertionCost(idx: number): number {
|
|
|
+ return this._insertionCosts[idx];
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Get the deletion cost of a character from its index.
|
|
|
+ * @param idx character index
|
|
|
+ * @returns deletion cost
|
|
|
+ */
|
|
|
+ public getDeletionCost(idx: number): number {
|
|
|
+ return this._deletionCosts[idx];
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Gets the cost to substitute two characters. NOTE: this cost is
|
|
|
+ * required to be bi-directional, meaning it cannot matter which of
|
|
|
+ * the provided characters is being removed and which is being inserted.
|
|
|
+ * @param idx1 the first character index
|
|
|
+ * @param idx2 the second character index
|
|
|
+ * @returns substitution cost
|
|
|
+ */
|
|
|
+ public getSubstitutionCost(idx1: number, idx2: number): number {
|
|
|
+ let min = Math.min(idx1, idx2);
|
|
|
+ let max = Math.max(idx1, idx2);
|
|
|
+
|
|
|
+ return this._substitutionCosts[min][max];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Character sequence intended to be compared against other Sequences created
|
|
|
+ * with the same Alphabet in order to compute Levenshtein distance.
|
|
|
+ */
|
|
|
+ export class Sequence<T> {
|
|
|
+ private _alphabet: Alphabet<T>;
|
|
|
+ private _characters: number[];
|
|
|
+
|
|
|
+ // Scratch values
|
|
|
+ private static readonly MAX_SEQUENCE_LENGTH = 256;
|
|
|
+ private static _costMatrix =
|
|
|
+ [...Array(Sequence.MAX_SEQUENCE_LENGTH + 1)].map((n) => new Array<number>(Sequence.MAX_SEQUENCE_LENGTH + 1));
|
|
|
+ private static _insertionCost: number;
|
|
|
+ private static _deletionCost: number;
|
|
|
+ private static _substitutionCost: number;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize to JSON string. JSON representation does NOT include the Alphabet
|
|
|
+ * from which this Sequence was created; Alphabet must be independently
|
|
|
+ * serialized.
|
|
|
+ * @returns JSON string
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ return JSON.stringify(this._characters);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Deserialize from JSON string and Alphabet. This should be the same Alphabet
|
|
|
+ * from which the Sequence was originally created, which must be serialized and
|
|
|
+ * deserialized independently so that it can be passed in here.
|
|
|
+ * @param json JSON string representation of Sequence
|
|
|
+ * @param alphabet Alphabet from which Sequence was originally created
|
|
|
+ * @returns Sequence
|
|
|
+ */
|
|
|
+ public static Deserialize<T>(json: string, alphabet: Alphabet<T>): Sequence<T> {
|
|
|
+ let sequence = new Sequence([], alphabet);
|
|
|
+ sequence._characters = JSON.parse(json);
|
|
|
+ return sequence;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new Sequence.
|
|
|
+ * @param characters characters in the new Sequence
|
|
|
+ * @param alphabet Alphabet, which must include all used characters
|
|
|
+ */
|
|
|
+ public constructor(characters: T[], alphabet: Alphabet<T>) {
|
|
|
+ if (characters.length > Sequence.MAX_SEQUENCE_LENGTH) {
|
|
|
+ throw new Error("Sequences longer than " + Sequence.MAX_SEQUENCE_LENGTH + " not supported.");
|
|
|
+ }
|
|
|
+ this._alphabet = alphabet;
|
|
|
+ this._characters = characters.map((c) => this._alphabet.getCharacterIdx(c));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Get the distance between this Sequence and another.
|
|
|
+ * @param other sequence to compare to
|
|
|
+ * @returns Levenshtein distance
|
|
|
+ */
|
|
|
+ public distance(other: Sequence<T>): number {
|
|
|
+ return Sequence._distance<T>(this, other);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Compute the Levenshtein distance between two Sequences.
|
|
|
+ * @param a first Sequence
|
|
|
+ * @param b second Sequence
|
|
|
+ * @returns Levenshtein distance
|
|
|
+ */
|
|
|
+ private static _distance<T>(a: Sequence<T>, b: Sequence<T>): number {
|
|
|
+ const alphabet = a._alphabet;
|
|
|
+ if (alphabet !== b._alphabet) {
|
|
|
+ throw new Error("Cannot Levenshtein compare Sequences built from different alphabets.");
|
|
|
+ }
|
|
|
+ const aChars = a._characters;
|
|
|
+ const bChars = b._characters;
|
|
|
+ const aLength = aChars.length;
|
|
|
+ const bLength = bChars.length;
|
|
|
+
|
|
|
+ let costMatrix = Sequence._costMatrix;
|
|
|
+ costMatrix[0][0] = 0;
|
|
|
+ for (let idx = 0; idx < aLength; ++idx) {
|
|
|
+ costMatrix[idx + 1][0] = costMatrix[idx][0] + alphabet.getInsertionCost(aChars[idx]);
|
|
|
+ }
|
|
|
+ for (let idx = 0; idx < bLength; ++idx) {
|
|
|
+ costMatrix[0][idx + 1] = costMatrix[0][idx] + alphabet.getInsertionCost(bChars[idx]);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (let aIdx = 0; aIdx < aLength; ++aIdx) {
|
|
|
+ for (let bIdx = 0; bIdx < bLength; ++bIdx) {
|
|
|
+ Sequence._insertionCost = costMatrix[aIdx + 1][bIdx] + alphabet.getInsertionCost(bChars[bIdx]);
|
|
|
+ Sequence._deletionCost = costMatrix[aIdx][bIdx + 1] + alphabet.getDeletionCost(aChars[aIdx]);
|
|
|
+ Sequence._substitutionCost = costMatrix[aIdx][bIdx] + alphabet.getSubstitutionCost(aChars[aIdx], bChars[bIdx]);
|
|
|
+
|
|
|
+ costMatrix[aIdx + 1][bIdx + 1] = Math.min(
|
|
|
+ Sequence._insertionCost,
|
|
|
+ Sequence._deletionCost,
|
|
|
+ Sequence._substitutionCost);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return costMatrix[aLength][bLength];
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * A 3D trajectory consisting of an order list of vectors describing a
|
|
|
+ * path of motion through 3D space.
|
|
|
+ */
|
|
|
+export class Trajectory {
|
|
|
+ private _points: Vector3[];
|
|
|
+ private readonly _segmentLength: number;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize to JSON.
|
|
|
+ * @returns serialized JSON string
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ return JSON.stringify(this);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Deserialize from JSON.
|
|
|
+ * @param json serialized JSON string
|
|
|
+ * @returns deserialized Trajectory
|
|
|
+ */
|
|
|
+ public static Deserialize(json: string): Trajectory {
|
|
|
+ let jsonObject = JSON.parse(json);
|
|
|
+ let trajectory = new Trajectory(jsonObject["_segmentLength"]);
|
|
|
+ trajectory._points = jsonObject["_points"].map((pt: any) => {
|
|
|
+ return new Vector3(pt["_x"], pt["_y"], pt["_z"]);
|
|
|
+ });
|
|
|
+ return trajectory;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new empty Trajectory.
|
|
|
+ * @param segmentLength radius of discretization for Trajectory points
|
|
|
+ */
|
|
|
+ public constructor(segmentLength: number = 0.01) {
|
|
|
+ this._points = [];
|
|
|
+ this._segmentLength = segmentLength;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Get the length of the Trajectory.
|
|
|
+ * @returns length of the Trajectory
|
|
|
+ */
|
|
|
+ public getLength(): number {
|
|
|
+ return this._points.length * this._segmentLength;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Append a new point to the Trajectory.
|
|
|
+ * NOTE: This implementation has many allocations.
|
|
|
+ * @param point point to append to the Trajectory
|
|
|
+ */
|
|
|
+ public add(point: DeepImmutable<Vector3>): void {
|
|
|
+ let numPoints = this._points.length;
|
|
|
+ if (numPoints === 0) {
|
|
|
+ this._points.push(point.clone());
|
|
|
+ } else {
|
|
|
+ const getT = () =>
|
|
|
+ this._segmentLength / Vector3.Distance(this._points[numPoints - 1], point);
|
|
|
+ for (let t = getT(); t <= 1.0; t = getT()) {
|
|
|
+ let newPoint = this._points[numPoints - 1].scale(1.0 - t);
|
|
|
+ point.scaleAndAddToRef(t, newPoint);
|
|
|
+ this._points.push(newPoint);
|
|
|
+ ++numPoints;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new Trajectory with a segment length chosen to make it
|
|
|
+ * probable that the new Trajectory will have a specified number of
|
|
|
+ * segments. This operation is imprecise.
|
|
|
+ * @param targetResolution number of segments desired
|
|
|
+ * @returns new Trajectory with approximately the requested number of segments
|
|
|
+ */
|
|
|
+ public resampleAtTargetResolution(targetResolution: number): Trajectory {
|
|
|
+ var resampled = new Trajectory(this.getLength() / targetResolution);
|
|
|
+ this._points.forEach((pt) => {
|
|
|
+ resampled.add(pt);
|
|
|
+ });
|
|
|
+ return resampled;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Convert Trajectory segments into tokenized representation. This
|
|
|
+ * representation is an array of numbers where each nth number is the
|
|
|
+ * index of the token which is most similar to the nth segment of the
|
|
|
+ * Trajectory.
|
|
|
+ * @param tokens list of vectors which serve as discrete tokens
|
|
|
+ * @returns list of indices of most similar token per segment
|
|
|
+ */
|
|
|
+ public tokenize(tokens: DeepImmutable<Vector3[]>): number[] {
|
|
|
+ let tokenization: number[] = [];
|
|
|
+
|
|
|
+ let segmentDir = new Vector3();
|
|
|
+ for (let idx = 2; idx < this._points.length; ++idx) {
|
|
|
+ if (Trajectory._transformSegmentDirToRef(
|
|
|
+ this._points[idx - 2],
|
|
|
+ this._points[idx - 1],
|
|
|
+ this._points[idx],
|
|
|
+ segmentDir)) {
|
|
|
+
|
|
|
+ tokenization.push(Trajectory._tokenizeSegment(segmentDir, tokens));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return tokenization;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static _forwardDir = new Vector3();
|
|
|
+ private static _inverseFromVec = new Vector3();
|
|
|
+ private static _upDir = new Vector3();
|
|
|
+ private static _fromToVec = new Vector3();
|
|
|
+ private static _lookMatrix = new Matrix();
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Transform the rotation (i.e., direction) of a segment to isolate
|
|
|
+ * the relative transformation represented by the segment. This operation
|
|
|
+ * may or may not succeed due to singularities in the equations that define
|
|
|
+ * motion relativity in this context.
|
|
|
+ * @param priorVec the origin of the prior segment
|
|
|
+ * @param fromVec the origin of the current segment
|
|
|
+ * @param toVec the destination of the current segment
|
|
|
+ * @param result reference to output variable
|
|
|
+ * @returns whether or not transformation was successful
|
|
|
+ */
|
|
|
+ private static _transformSegmentDirToRef(
|
|
|
+ priorVec: DeepImmutable<Vector3>,
|
|
|
+ fromVec: DeepImmutable<Vector3>,
|
|
|
+ toVec: DeepImmutable<Vector3>,
|
|
|
+ result: Vector3): boolean {
|
|
|
+
|
|
|
+ const DOT_PRODUCT_SAMPLE_REJECTION_THRESHOLD = 0.98;
|
|
|
+
|
|
|
+ fromVec.subtractToRef(priorVec, Trajectory._forwardDir);
|
|
|
+ Trajectory._forwardDir.normalize();
|
|
|
+ fromVec.scaleToRef(-1, Trajectory._inverseFromVec);
|
|
|
+ Trajectory._inverseFromVec.normalize();
|
|
|
+
|
|
|
+ if (Math.abs(Vector3.Dot(Trajectory._forwardDir, Trajectory._inverseFromVec)) > DOT_PRODUCT_SAMPLE_REJECTION_THRESHOLD) {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ Vector3.CrossToRef(Trajectory._forwardDir, Trajectory._inverseFromVec, Trajectory._upDir);
|
|
|
+ Trajectory._upDir.normalize();
|
|
|
+ Matrix.LookAtLHToRef(priorVec, fromVec, Trajectory._upDir, Trajectory._lookMatrix);
|
|
|
+ toVec.subtractToRef(fromVec, Trajectory._fromToVec);
|
|
|
+ Trajectory._fromToVec.normalize();
|
|
|
+ Vector3.TransformNormalToRef(Trajectory._fromToVec, Trajectory._lookMatrix, result);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ private static _bestMatch: number;
|
|
|
+ private static _score: number;
|
|
|
+ private static _bestScore: number;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Determine which token vector is most similar to the
|
|
|
+ * segment vector.
|
|
|
+ * @param segment segment vector
|
|
|
+ * @param tokens token vector list
|
|
|
+ * @returns index of the most similar token to the segment
|
|
|
+ */
|
|
|
+ private static _tokenizeSegment(
|
|
|
+ segment: DeepImmutable<Vector3>,
|
|
|
+ tokens: DeepImmutable<Vector3[]>): number {
|
|
|
+
|
|
|
+ Trajectory._bestMatch = 0;
|
|
|
+ Trajectory._score = Vector3.Dot(segment, tokens[0]);
|
|
|
+ Trajectory._bestScore = Trajectory._score;
|
|
|
+ for (let idx = 1; idx < tokens.length; ++idx) {
|
|
|
+ Trajectory._score = Vector3.Dot(segment, tokens[idx]);
|
|
|
+ if (Trajectory._score > Trajectory._bestScore) {
|
|
|
+ Trajectory._bestMatch = idx;
|
|
|
+ Trajectory._bestScore = Trajectory._score;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return Trajectory._bestMatch;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Collection of vectors intended to be used as the basis of Trajectory
|
|
|
+ * tokenization for Levenshtein distance comparison. Canonically, a
|
|
|
+ * Vector3Alphabet will resemble a "spikeball" of vectors distributed
|
|
|
+ * roughly evenly over the surface of the unit sphere.
|
|
|
+ */
|
|
|
+class Vector3Alphabet {
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Characters in the alphabet.
|
|
|
+ * NOTE: There is no reason for this property to exist and this class should just extend
|
|
|
+ * Array<Vector3>, except that doing so produces bizarre build-time errors indicating that
|
|
|
+ * the ES5 library itself fails its own TypeDoc validation.
|
|
|
+ */
|
|
|
+ public chars: Vector3[];
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Helper method to create new "spikeball" Vector3Alphabets. Uses a naive
|
|
|
+ * optimize-from-random strategy to space points around the unit sphere
|
|
|
+ * surface as a simple alternative to really doing the math to tile the
|
|
|
+ * sphere.
|
|
|
+ * @param alphabetSize size of the desired alphabet
|
|
|
+ * @param iterations number of iterations over which to optimize the "spikeball"
|
|
|
+ * @param startingStepSize distance factor to move points in early optimization iterations
|
|
|
+ * @param endingStepSize distance factor to move points in late optimization iterations
|
|
|
+ * @param fixedValues alphabet "characters" that are required and cannot be moved by optimization
|
|
|
+ * @returns a new randomly generated and optimized Vector3Alphabet of the specified size
|
|
|
+ */
|
|
|
+ public static Generate(
|
|
|
+ alphabetSize: number = 64,
|
|
|
+ iterations: number = 256,
|
|
|
+ startingStepSize: number = 0.1,
|
|
|
+ endingStepSize: number = 0.001,
|
|
|
+ fixedValues: DeepImmutable<Vector3[]> = []): Vector3Alphabet {
|
|
|
+
|
|
|
+ const EPSILON = 0.001;
|
|
|
+ const EPSILON_SQUARED = EPSILON * EPSILON;
|
|
|
+
|
|
|
+ let alphabet = new Vector3Alphabet(alphabetSize);
|
|
|
+ for (let idx = 0; idx < alphabetSize; ++idx) {
|
|
|
+ alphabet.chars[idx] = new Vector3(
|
|
|
+ Math.random() - 0.5,
|
|
|
+ Math.random() - 0.5,
|
|
|
+ Math.random() - 0.5);
|
|
|
+ alphabet.chars[idx].normalize();
|
|
|
+ }
|
|
|
+
|
|
|
+ for (let idx = 0; idx < fixedValues.length; ++idx) {
|
|
|
+ alphabet.chars[idx].copyFrom(fixedValues[idx]);
|
|
|
+ }
|
|
|
+
|
|
|
+ let stepSize: number;
|
|
|
+ let distSq: number;
|
|
|
+ let force = new Vector3();
|
|
|
+ let scratch = new Vector3();
|
|
|
+ const lerp = (l: number, r: number, t: number) => (1.0 - t) * l + t * r;
|
|
|
+ for (let iteration = 0; iteration < iterations; ++iteration) {
|
|
|
+ stepSize = lerp(startingStepSize, endingStepSize, iteration / (iterations - 1));
|
|
|
+ for (let idx = fixedValues.length; idx < alphabet.chars.length; ++idx) {
|
|
|
+ force.copyFromFloats(0, 0, 0);
|
|
|
+ alphabet.chars.forEach((pt) => {
|
|
|
+ alphabet.chars[idx].subtractToRef(pt, scratch);
|
|
|
+ distSq = scratch.lengthSquared();
|
|
|
+ if (distSq > EPSILON_SQUARED) {
|
|
|
+ scratch.scaleAndAddToRef(1 / (scratch.lengthSquared() * distSq), force);
|
|
|
+ }
|
|
|
+ });
|
|
|
+ force.scaleInPlace(stepSize);
|
|
|
+ alphabet.chars[idx].addInPlace(force);
|
|
|
+ alphabet.chars[idx].normalize();
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return alphabet;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize to JSON.
|
|
|
+ * @returns JSON serialization
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ return JSON.stringify(this.chars);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Deserialize from JSON.
|
|
|
+ * @param json JSON serialization
|
|
|
+ * @returns deserialized Vector3Alphabet
|
|
|
+ */
|
|
|
+ public static Deserialize(json: string): Vector3Alphabet {
|
|
|
+ let jsonObject = JSON.parse(json);
|
|
|
+ let alphabet = new Vector3Alphabet(jsonObject.length);
|
|
|
+ for (let idx = 0; idx < jsonObject.length; ++idx) {
|
|
|
+ alphabet.chars[idx] = new Vector3(
|
|
|
+ jsonObject[idx]["_x"],
|
|
|
+ jsonObject[idx]["_y"],
|
|
|
+ jsonObject[idx]["_z"]);
|
|
|
+ }
|
|
|
+ return alphabet;
|
|
|
+ }
|
|
|
+
|
|
|
+ private constructor(size: number) {
|
|
|
+ this.chars = new Array(size);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Class which formalizes the manner in which a Vector3Alphabet is used to tokenize and
|
|
|
+ * describe a Trajectory. This class houses the functionality which determines what
|
|
|
+ * attributes of Trajectories are and are not considered important, such as scale.
|
|
|
+ */
|
|
|
+class TrajectoryDescriptor {
|
|
|
+ private static readonly FINEST_DESCRIPTOR_RESOLUTION = 32;
|
|
|
+
|
|
|
+ private _sequences: Levenshtein.Sequence<number>[];
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize to JSON.
|
|
|
+ * @returns JSON serialization
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ return JSON.stringify(this._sequences.map((sequence) => sequence.serialize()));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Deserialize from JSON string and Alphabet. This should be the same Alphabet
|
|
|
+ * from which the descriptor was originally created, which must be serialized and
|
|
|
+ * deserialized independently so that it can be passed in here.
|
|
|
+ * @param json JSON serialization
|
|
|
+ * @param alphabet Alphabet from which descriptor was originally created
|
|
|
+ * @returns deserialized TrajectoryDescriptor
|
|
|
+ */
|
|
|
+ public static Deserialize(json: string, alphabet: Levenshtein.Alphabet<number>): TrajectoryDescriptor {
|
|
|
+ let descriptor = new TrajectoryDescriptor();
|
|
|
+ descriptor._sequences =
|
|
|
+ (JSON.parse(json) as string[]).map(
|
|
|
+ (s) => Levenshtein.Sequence.Deserialize(s, alphabet));
|
|
|
+ return descriptor;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new TrajectoryDescriptor to describe a provided Trajectory according
|
|
|
+ * to the provided alphabets.
|
|
|
+ * @param trajectory Trajectory to be described
|
|
|
+ * @param vector3Alphabet Vector3Alphabet to be used to tokenize the Trajectory
|
|
|
+ * @param levenshteinAlphabet Levenshtein.Alphabet to be used as basis for comparison with other descriptors
|
|
|
+ * @returns TrajectoryDescriptor describing provided Trajectory
|
|
|
+ */
|
|
|
+ public static CreateFromTrajectory(
|
|
|
+ trajectory: Trajectory,
|
|
|
+ vector3Alphabet: Vector3Alphabet,
|
|
|
+ levenshteinAlphabet: Levenshtein.Alphabet<number>): TrajectoryDescriptor {
|
|
|
+
|
|
|
+ return TrajectoryDescriptor.CreateFromTokenizationPyramid(
|
|
|
+ TrajectoryDescriptor._getTokenizationPyramid(trajectory, vector3Alphabet),
|
|
|
+ levenshteinAlphabet);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new TrajectoryDescriptor from a pre-existing pyramid of tokens.
|
|
|
+ * NOTE: This function exists to support an outdated serialization mechanism and should
|
|
|
+ * be deleted if it is no longer useful.
|
|
|
+ * @param pyramid tokenization pyramid
|
|
|
+ * @param levenshteinAlphabet Levenshtein.Alphabet to be uses as basis for comparison with other descriptors
|
|
|
+ * @returns TrajectoryDescriptor describing the Trajectory from which the pyramid was built
|
|
|
+ */
|
|
|
+ public static CreateFromTokenizationPyramid(
|
|
|
+ pyramid: number[][],
|
|
|
+ levenshteinAlphabet: Levenshtein.Alphabet<number>) : TrajectoryDescriptor {
|
|
|
+
|
|
|
+ let descriptor = new TrajectoryDescriptor();
|
|
|
+ descriptor._sequences = pyramid.map((tokens) => new Levenshtein.Sequence<number>(tokens, levenshteinAlphabet));
|
|
|
+ return descriptor;
|
|
|
+ }
|
|
|
+
|
|
|
+ private constructor() {
|
|
|
+ this._sequences = [];
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create the tokenization pyramid for the provided Trajectory according to the given
|
|
|
+ * Vector3Alphabet.
|
|
|
+ * @param trajectory Trajectory to be tokenized
|
|
|
+ * @param alphabet Vector3Alphabet containing tokens
|
|
|
+ * @param targetResolution finest resolution of descriptor
|
|
|
+ * @returns tokenization pyramid for Trajectory
|
|
|
+ */
|
|
|
+ private static _getTokenizationPyramid(
|
|
|
+ trajectory: Trajectory,
|
|
|
+ alphabet: Vector3Alphabet,
|
|
|
+ targetResolution: number = TrajectoryDescriptor.FINEST_DESCRIPTOR_RESOLUTION): number[][] {
|
|
|
+
|
|
|
+ let pyramid: number[][] = [];
|
|
|
+ for (let res = targetResolution; res > 4; res = Math.floor(res / 2)) {
|
|
|
+ pyramid.push(trajectory.resampleAtTargetResolution(res).tokenize(alphabet.chars));
|
|
|
+ }
|
|
|
+ return pyramid;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Calculate a distance metric between this TrajectoryDescriptor and another. This is
|
|
|
+ * essentially a similarity score and does not directly represent Euclidean distance,
|
|
|
+ * edit distance, or any other formal distance metric.
|
|
|
+ * @param other TrajectoryDescriptor from which to determine distance
|
|
|
+ * @returns distance, a nonnegative similarity score where larger values indicate dissimilarity
|
|
|
+ */
|
|
|
+ public distance(other: TrajectoryDescriptor): number {
|
|
|
+ let totalDistance = 0;
|
|
|
+ let weight: number;
|
|
|
+ for (let idx = 0; idx < this._sequences.length; ++idx) {
|
|
|
+ weight = Math.pow(2, idx);
|
|
|
+ totalDistance += (weight * this._sequences[idx].distance(other._sequences[idx]));
|
|
|
+ }
|
|
|
+ return totalDistance;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * A set of TrajectoryDescriptors defined to be "the same." This is essentially a helper
|
|
|
+ * class to facilitate methods of Trajectory clustering.
|
|
|
+ */
|
|
|
+class TrajectoryClass {
|
|
|
+ private static readonly MIN_AVERAGE_DISTANCE = 1;
|
|
|
+
|
|
|
+ private _descriptors: TrajectoryDescriptor[];
|
|
|
+ private _centroidIdx: number;
|
|
|
+ private _averageDistance: number;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize to JSON.
|
|
|
+ * @returns JSON serialization
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ let jsonObject: any = {};
|
|
|
+ jsonObject.descriptors = this._descriptors.map((desc) => desc.serialize());
|
|
|
+ jsonObject.centroidIdx = this._centroidIdx;
|
|
|
+ jsonObject.averageDistance = this._averageDistance;
|
|
|
+ return JSON.stringify(jsonObject);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Deserialize from JSON string and Alphabet. This should be the same Alphabet
|
|
|
+ * from which the descriptors were originally created, which must be serialized and
|
|
|
+ * deserialized independently so that it can be passed in here.
|
|
|
+ * @param json JSON string representation
|
|
|
+ * @param alphabet Alphabet from which TrajectoryDescriptors were originally created
|
|
|
+ * @returns deserialized TrajectoryDescriptor
|
|
|
+ */
|
|
|
+ public static Deserialize(json: string, alphabet: Levenshtein.Alphabet<number>): TrajectoryClass {
|
|
|
+ let jsonObject = JSON.parse(json);
|
|
|
+ let described = new TrajectoryClass();
|
|
|
+ described._descriptors = jsonObject.descriptors.map((s: string) => TrajectoryDescriptor.Deserialize(s, alphabet));
|
|
|
+ described._centroidIdx = jsonObject.centroidIdx;
|
|
|
+ described._averageDistance = jsonObject.averageDistance;
|
|
|
+ return described;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Create a new DescribedTrajectory.
|
|
|
+ * @param descriptors currently-known TrajectoryDescriptors, if any
|
|
|
+ */
|
|
|
+ public constructor(descriptors: TrajectoryDescriptor[] = []) {
|
|
|
+ this._descriptors = descriptors;
|
|
|
+ this._centroidIdx = -1;
|
|
|
+ this._averageDistance = 0;
|
|
|
+
|
|
|
+ this._refreshDescription();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Add a new TrajectoryDescriptor to the list of descriptors known to describe
|
|
|
+ * this same DescribedTrajectory.
|
|
|
+ * @param descriptor descriptor to be added
|
|
|
+ */
|
|
|
+ public add(descriptor: TrajectoryDescriptor): void {
|
|
|
+ this._descriptors.push(descriptor);
|
|
|
+ this._refreshDescription();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Compute the cost, which is inversely related to the likelihood that the provided
|
|
|
+ * TrajectoryDescriptor describes a Trajectory that is considered to be the same as
|
|
|
+ * the class represented by this DescribedTrajectory.
|
|
|
+ * @param descriptor the descriptor to be costed
|
|
|
+ * @returns cost of the match, which is a nonnegative similarity metric where larger values indicate dissimiliarity
|
|
|
+ */
|
|
|
+ public getMatchCost(descriptor: TrajectoryDescriptor): number {
|
|
|
+ return descriptor.distance(this._descriptors[this._centroidIdx]) / this._averageDistance;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Compute the minimum distance between the queried TrajectoryDescriptor and a
|
|
|
+ * descriptor which is a member of this collection. This is an alternative way of
|
|
|
+ * conceptualizing match cost from getMatchCost(), and it serves a different function.
|
|
|
+ * @param descriptor the descriptor to find the minimum distance to
|
|
|
+ * @returns minimum descriptor distance to a member descriptor of this DescribedTrajectory
|
|
|
+ */
|
|
|
+ public getMatchMinimumDistance(descriptor: TrajectoryDescriptor): number {
|
|
|
+ return Math.min(...this._descriptors.map((desc) => desc.distance(descriptor)));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Refreshes the internal representation of this DescribedTrajectory.
|
|
|
+ */
|
|
|
+ private _refreshDescription(): void {
|
|
|
+
|
|
|
+ this._centroidIdx = -1;
|
|
|
+ let sum: number;
|
|
|
+ let distances = this._descriptors.map((a) => {
|
|
|
+ sum = 0;
|
|
|
+ this._descriptors.forEach((b) => {
|
|
|
+ sum += a.distance(b);
|
|
|
+ });
|
|
|
+ return sum;
|
|
|
+ });
|
|
|
+ for (let idx = 0; idx < distances.length; ++idx) {
|
|
|
+ if (this._centroidIdx < 0 || distances[idx] < distances[this._centroidIdx]) {
|
|
|
+ this._centroidIdx = idx;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ this._averageDistance = 0;
|
|
|
+ this._descriptors.forEach((desc) => {
|
|
|
+ this._averageDistance += desc.distance(this._descriptors[this._centroidIdx]);
|
|
|
+ });
|
|
|
+ if (this._descriptors.length > 0) {
|
|
|
+ this._averageDistance = Math.max(this._averageDistance / this._descriptors.length, TrajectoryClass.MIN_AVERAGE_DISTANCE);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * Class representing a set of known, named trajectories to which Trajectories can be
|
|
|
+ * added and using which Trajectories can be recognized.
|
|
|
+ */
|
|
|
+export class TrajectoryClassifier {
|
|
|
+ private _maximumAllowableMatchCost: number = 4;
|
|
|
+ private _vector3Alphabet: Vector3Alphabet;
|
|
|
+ private _levenshteinAlphabet: Levenshtein.Alphabet<number>;
|
|
|
+ private _nameToDescribedTrajectory: Map<string, TrajectoryClass>;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Serialize to JSON.
|
|
|
+ * @returns JSON serialization
|
|
|
+ */
|
|
|
+ public serialize(): string {
|
|
|
+ let jsonObject: any = {};
|
|
|
+ jsonObject.maximumAllowableMatchCost = this._maximumAllowableMatchCost;
|
|
|
+ jsonObject.vector3Alphabet = this._vector3Alphabet.serialize();
|
|
|
+ jsonObject.levenshteinAlphabet = this._levenshteinAlphabet.serialize();
|
|
|
+ jsonObject.nameToDescribedTrajectory = [];
|
|
|
+ this._nameToDescribedTrajectory.forEach((described, name) => {
|
|
|
+ jsonObject.nameToDescribedTrajectory.push(name);
|
|
|
+ jsonObject.nameToDescribedTrajectory.push(described.serialize());
|
|
|
+ });
|
|
|
+ return JSON.stringify(jsonObject);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Deserialize from JSON.
|
|
|
+ * @param json JSON serialization
|
|
|
+ * @returns deserialized TrajectorySet
|
|
|
+ */
|
|
|
+ public static Deserialize(json: string): TrajectoryClassifier {
|
|
|
+ let jsonObject = JSON.parse(json);
|
|
|
+ let classifier = new TrajectoryClassifier();
|
|
|
+ classifier._maximumAllowableMatchCost = jsonObject.maximumAllowableMatchCost;
|
|
|
+ classifier._vector3Alphabet = Vector3Alphabet.Deserialize(jsonObject.vector3Alphabet);
|
|
|
+ classifier._levenshteinAlphabet = Levenshtein.Alphabet.Deserialize<number>(jsonObject.levenshteinAlphabet);
|
|
|
+ for (let idx = 0; idx < jsonObject.nameToDescribedTrajectory.length; idx += 2) {
|
|
|
+ classifier._nameToDescribedTrajectory.set(
|
|
|
+ jsonObject.nameToDescribedTrajectory[idx],
|
|
|
+ TrajectoryClass.Deserialize(jsonObject.nameToDescribedTrajectory[idx + 1], classifier._levenshteinAlphabet));
|
|
|
+ }
|
|
|
+ return classifier;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Initialize a new empty TrajectorySet with auto-generated Alphabets.
|
|
|
+ * VERY naive, need to be generating these things from known
|
|
|
+ * sets. Better version later, probably eliminating this one.
|
|
|
+ * @returns auto-generated TrajectorySet
|
|
|
+ */
|
|
|
+ public static Generate(): TrajectoryClassifier {
|
|
|
+ let vecs = Vector3Alphabet.Generate(64, 256, 0.1, 0.001, [Vector3.Forward()]);
|
|
|
+
|
|
|
+ let alphabet = new Levenshtein.Alphabet<number>(
|
|
|
+ Array.from(Array(vecs.chars.length), (_, idx) => idx),
|
|
|
+ (idx) => idx === 0 ? 0 : 1,
|
|
|
+ (idx) => idx === 0 ? 0 : 1,
|
|
|
+ (a, b) => Math.min(1 - Vector3.Dot(vecs.chars[a], vecs.chars[b]), 1));
|
|
|
+
|
|
|
+ let trajectorySet = new TrajectoryClassifier();
|
|
|
+ trajectorySet._vector3Alphabet = vecs;
|
|
|
+ trajectorySet._levenshteinAlphabet = alphabet;
|
|
|
+ return trajectorySet;
|
|
|
+ }
|
|
|
+
|
|
|
+ private constructor() {
|
|
|
+ this._nameToDescribedTrajectory = new Map<string, TrajectoryClass>();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Add a new Trajectory to the set with a given name.
|
|
|
+ * @param trajectory new Trajectory to be added
|
|
|
+ * @param classification name to which to add the Trajectory
|
|
|
+ */
|
|
|
+ public addTrajectoryToClassification(trajectory: Trajectory, classification: string): void {
|
|
|
+ if (!this._nameToDescribedTrajectory.has(classification)) {
|
|
|
+ this._nameToDescribedTrajectory.set(classification, new TrajectoryClass());
|
|
|
+ }
|
|
|
+
|
|
|
+ this._nameToDescribedTrajectory.get(classification)!.add(
|
|
|
+ TrajectoryDescriptor.CreateFromTrajectory(
|
|
|
+ trajectory,
|
|
|
+ this._vector3Alphabet,
|
|
|
+ this._levenshteinAlphabet));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Remove a known named trajectory and all Trajectories associated with it.
|
|
|
+ * @param classification name to remove
|
|
|
+ * @returns whether anything was removed
|
|
|
+ */
|
|
|
+ public deleteClassification(classification: string): boolean {
|
|
|
+ return this._nameToDescribedTrajectory.delete(classification);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Attempt to recognize a Trajectory from among all the classifications
|
|
|
+ * already known to the classifier.
|
|
|
+ * @param trajectory Trajectory to be recognized
|
|
|
+ * @returns classification of Trajectory if recognized, null otherwise
|
|
|
+ */
|
|
|
+ public classifyTrajectory(trajectory: Trajectory): Nullable<string> {
|
|
|
+ let descriptor = TrajectoryDescriptor.CreateFromTrajectory(
|
|
|
+ trajectory,
|
|
|
+ this._vector3Alphabet,
|
|
|
+ this._levenshteinAlphabet);
|
|
|
+
|
|
|
+ let allowableMatches: string[] = [];
|
|
|
+ this._nameToDescribedTrajectory.forEach((trajectoryClass, classification) => {
|
|
|
+ if (trajectoryClass.getMatchCost(descriptor) < this._maximumAllowableMatchCost) {
|
|
|
+ allowableMatches.push(classification);
|
|
|
+ }
|
|
|
+ });
|
|
|
+
|
|
|
+ if (allowableMatches.length === 0) {
|
|
|
+
|
|
|
+ return null;
|
|
|
+ }
|
|
|
+
|
|
|
+ let bestIdx = 0;
|
|
|
+ let bestMatch = this._nameToDescribedTrajectory.get(allowableMatches[bestIdx])!.getMatchMinimumDistance(descriptor);
|
|
|
+ let match: number;
|
|
|
+ for (let idx = 0; idx < allowableMatches.length; ++idx) {
|
|
|
+ match = this._nameToDescribedTrajectory.get(allowableMatches[idx])!.getMatchMinimumDistance(descriptor);
|
|
|
+ if (match < bestMatch) {
|
|
|
+ bestMatch = match;
|
|
|
+ bestIdx = idx;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return allowableMatches[bestIdx];
|
|
|
+ }
|
|
|
+}
|