|
@@ -1,693 +0,0 @@
|
|
|
-#if defined(BUMP)|| !defined(NORMAL)
|
|
|
-#extension GL_OES_standard_derivatives : enable
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef LODBASEDMICROSFURACE
|
|
|
-#extension GL_EXT_shader_texture_lod : enable
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef LOGARITHMICDEPTH
|
|
|
-#extension GL_EXT_frag_depth : enable
|
|
|
-#endif
|
|
|
-
|
|
|
-precision highp float;
|
|
|
-
|
|
|
-#include<__decl__legacyPbrFragment>
|
|
|
-
|
|
|
-uniform vec3 vEyePosition;
|
|
|
-uniform vec3 vAmbientColor;
|
|
|
-uniform vec4 vCameraInfos;
|
|
|
-
|
|
|
-// Input
|
|
|
-varying vec3 vPositionW;
|
|
|
-
|
|
|
-#ifdef NORMAL
|
|
|
-varying vec3 vNormalW;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef VERTEXCOLOR
|
|
|
-varying vec4 vColor;
|
|
|
-#endif
|
|
|
-
|
|
|
-// Helper functions
|
|
|
-#include<helperFunctions>
|
|
|
-
|
|
|
-// Lights
|
|
|
-#include<__decl__lightFragment>[0..maxSimultaneousLights]
|
|
|
-
|
|
|
-// Samplers
|
|
|
-#ifdef ALBEDO
|
|
|
-varying vec2 vAlbedoUV;
|
|
|
-uniform sampler2D albedoSampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef AMBIENT
|
|
|
-varying vec2 vAmbientUV;
|
|
|
-uniform sampler2D ambientSampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OPACITY
|
|
|
-varying vec2 vOpacityUV;
|
|
|
-uniform sampler2D opacitySampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef EMISSIVE
|
|
|
-varying vec2 vEmissiveUV;
|
|
|
-uniform sampler2D emissiveSampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef LIGHTMAP
|
|
|
-varying vec2 vLightmapUV;
|
|
|
-uniform sampler2D lightmapSampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#if defined(REFLECTIVITY) || defined(METALLICWORKFLOW)
|
|
|
-varying vec2 vReflectivityUV;
|
|
|
-uniform sampler2D reflectivitySampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef MICROSURFACEMAP
|
|
|
-varying vec2 vMicroSurfaceSamplerUV;
|
|
|
-uniform sampler2D microSurfaceSampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-// Fresnel
|
|
|
-#include<fresnelFunction>
|
|
|
-
|
|
|
-// Refraction
|
|
|
-#ifdef REFRACTION
|
|
|
-
|
|
|
-
|
|
|
-#ifdef REFRACTIONMAP_3D
|
|
|
-uniform samplerCube refractionCubeSampler;
|
|
|
-#else
|
|
|
-uniform sampler2D refraction2DSampler;
|
|
|
-#endif
|
|
|
-#endif
|
|
|
-
|
|
|
-// Reflection
|
|
|
-#ifdef REFLECTION
|
|
|
-
|
|
|
-#ifdef REFLECTIONMAP_3D
|
|
|
-uniform samplerCube reflectionCubeSampler;
|
|
|
-#else
|
|
|
-uniform sampler2D reflection2DSampler;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef REFLECTIONMAP_SKYBOX
|
|
|
-varying vec3 vPositionUVW;
|
|
|
-#else
|
|
|
-#if defined(REFLECTIONMAP_EQUIRECTANGULAR_FIXED) || defined(REFLECTIONMAP_MIRROREDEQUIRECTANGULAR_FIXED)
|
|
|
-varying vec3 vDirectionW;
|
|
|
-#endif
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#include<reflectionFunction>
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CAMERACOLORGRADING
|
|
|
- #include<legacyColorGradingDefinition>
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CAMERACOLORCURVES
|
|
|
- #include<legacyColorCurvesDefinition>
|
|
|
-#endif
|
|
|
-
|
|
|
-// PBR
|
|
|
-#include<shadowsFragmentFunctions>
|
|
|
-#include<legacyPbrFunctions>
|
|
|
-
|
|
|
-#ifdef CAMERACOLORGRADING
|
|
|
- #include<legacyColorGrading>
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CAMERACOLORCURVES
|
|
|
- #include<legacyColorCurves>
|
|
|
-#endif
|
|
|
-
|
|
|
-#include<legacyPbrLightFunctions>
|
|
|
-
|
|
|
-#include<bumpFragmentFunctions>
|
|
|
-#include<clipPlaneFragmentDeclaration>
|
|
|
-#include<logDepthDeclaration>
|
|
|
-
|
|
|
-// Fog
|
|
|
-#include<fogFragmentDeclaration>
|
|
|
-
|
|
|
-void main(void) {
|
|
|
-#include<clipPlaneFragment>
|
|
|
-
|
|
|
- vec3 viewDirectionW = normalize(vEyePosition - vPositionW);
|
|
|
-
|
|
|
- // Bump
|
|
|
-#ifdef NORMAL
|
|
|
- vec3 normalW = normalize(vNormalW);
|
|
|
-#else
|
|
|
- vec3 normalW = normalize(cross(dFdx(vPositionW), dFdy(vPositionW)));
|
|
|
-#endif
|
|
|
-
|
|
|
-#include<bumpFragment>
|
|
|
-
|
|
|
-#ifdef TWOSIDEDLIGHTING
|
|
|
- normalW = gl_FrontFacing ? normalW : -normalW;
|
|
|
-#endif
|
|
|
-
|
|
|
- // Albedo
|
|
|
- vec4 surfaceAlbedo = vec4(1., 1., 1., 1.);
|
|
|
- vec3 surfaceAlbedoContribution = vAlbedoColor.rgb;
|
|
|
-
|
|
|
- // Alpha
|
|
|
- float alpha = vAlbedoColor.a;
|
|
|
-
|
|
|
-#ifdef ALBEDO
|
|
|
- surfaceAlbedo = texture2D(albedoSampler, vAlbedoUV + uvOffset);
|
|
|
- surfaceAlbedo = vec4(toLinearSpace(surfaceAlbedo.rgb), surfaceAlbedo.a);
|
|
|
-
|
|
|
- #ifndef LINKREFRACTIONTOTRANSPARENCY
|
|
|
- #ifdef ALPHATEST
|
|
|
- if (surfaceAlbedo.a < 0.4)
|
|
|
- discard;
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef ALPHAFROMALBEDO
|
|
|
- alpha *= surfaceAlbedo.a;
|
|
|
- #endif
|
|
|
-
|
|
|
- surfaceAlbedo.rgb *= vAlbedoInfos.y;
|
|
|
-#else
|
|
|
- // No Albedo texture.
|
|
|
- surfaceAlbedo.rgb = surfaceAlbedoContribution;
|
|
|
- surfaceAlbedoContribution = vec3(1., 1., 1.);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef VERTEXCOLOR
|
|
|
- surfaceAlbedo.rgb *= vColor.rgb;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OVERLOADEDVALUES
|
|
|
- surfaceAlbedo.rgb = mix(surfaceAlbedo.rgb, vOverloadedAlbedo, vOverloadedIntensity.y);
|
|
|
-#endif
|
|
|
-
|
|
|
- // Ambient color
|
|
|
- vec3 ambientOcclusionColor = vec3(1., 1., 1.);
|
|
|
-
|
|
|
-#ifdef AMBIENT
|
|
|
- vec3 ambientOcclusionColorMap = texture2D(ambientSampler, vAmbientUV + uvOffset).rgb * vAmbientInfos.y;
|
|
|
- #ifdef AMBIENTINGRAYSCALE
|
|
|
- ambientOcclusionColorMap = vec3(ambientOcclusionColorMap.r, ambientOcclusionColorMap.r, ambientOcclusionColorMap.r);
|
|
|
- #endif
|
|
|
- ambientOcclusionColor = mix(ambientOcclusionColor, ambientOcclusionColorMap, vAmbientInfos.z);
|
|
|
-
|
|
|
- #ifdef OVERLOADEDVALUES
|
|
|
- ambientOcclusionColor.rgb = mix(ambientOcclusionColor.rgb, vOverloadedAmbient, vOverloadedIntensity.x);
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
- // Reflectivity map
|
|
|
- float microSurface = vReflectivityColor.a;
|
|
|
- vec3 surfaceReflectivityColor = vReflectivityColor.rgb;
|
|
|
-
|
|
|
-#ifdef REFLECTIVITY
|
|
|
- vec4 surfaceReflectivityColorMap = texture2D(reflectivitySampler, vReflectivityUV + uvOffset);
|
|
|
- surfaceReflectivityColor = surfaceReflectivityColorMap.rgb;
|
|
|
- surfaceReflectivityColor = toLinearSpace(surfaceReflectivityColor);
|
|
|
- surfaceReflectivityColor *= vReflectivityInfos.y;
|
|
|
-
|
|
|
- #ifdef OVERLOADEDVALUES
|
|
|
- surfaceReflectivityColor = mix(surfaceReflectivityColor, vOverloadedReflectivity, vOverloadedIntensity.z);
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef MICROSURFACEFROMREFLECTIVITYMAP
|
|
|
- microSurface = surfaceReflectivityColorMap.a * vReflectivityInfos.z;
|
|
|
- #else
|
|
|
- #ifdef MICROSURFACEAUTOMATIC
|
|
|
- microSurface = computeDefaultMicroSurface(microSurface, surfaceReflectivityColor);
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-#else
|
|
|
- #ifdef OVERLOADEDVALUES
|
|
|
- surfaceReflectivityColor = mix(surfaceReflectivityColor, vOverloadedReflectivity, vOverloadedIntensity.z);
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef METALLICWORKFLOW
|
|
|
- vec2 metallicRoughness = surfaceReflectivityColor.rg;
|
|
|
-
|
|
|
- #ifdef METALLICMAP
|
|
|
- vec4 surfaceMetallicColorMap = texture2D(reflectivitySampler, vReflectivityUV + uvOffset);
|
|
|
-
|
|
|
- #ifdef AOSTOREINMETALMAPRED
|
|
|
- vec3 aoStoreInMetalMap = vec3(surfaceMetallicColorMap.r, surfaceMetallicColorMap.r, surfaceMetallicColorMap.r);
|
|
|
- ambientOcclusionColor = mix(ambientOcclusionColor, aoStoreInMetalMap, vReflectivityInfos.z);
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef METALLNESSSTOREINMETALMAPBLUE
|
|
|
- metallicRoughness.r *= surfaceMetallicColorMap.b;
|
|
|
- #else
|
|
|
- metallicRoughness.r *= surfaceMetallicColorMap.r;
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef ROUGHNESSSTOREINMETALMAPALPHA
|
|
|
- metallicRoughness.g *= surfaceMetallicColorMap.a;
|
|
|
- #else
|
|
|
- #ifdef ROUGHNESSSTOREINMETALMAPGREEN
|
|
|
- metallicRoughness.g *= surfaceMetallicColorMap.g;
|
|
|
- #endif
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef MICROSURFACEMAP
|
|
|
- vec4 microSurfaceTexel = texture2D(microSurfaceSampler, vMicroSurfaceSamplerUV + uvOffset) * vMicroSurfaceSamplerInfos.y;
|
|
|
- metallicRoughness.g *= microSurfaceTexel.r;
|
|
|
- #endif
|
|
|
-
|
|
|
- // Compute microsurface form roughness.
|
|
|
- microSurface = 1.0 - metallicRoughness.g;
|
|
|
-
|
|
|
- // Diffuse is used as the base of the reflectivity.
|
|
|
- vec3 baseColor = surfaceAlbedo.rgb;
|
|
|
-
|
|
|
- // Default specular reflectance at normal incidence.
|
|
|
- // 4% corresponds to index of refraction (IOR) of 1.50, approximately equal to glass.
|
|
|
- const vec3 DefaultSpecularReflectanceDielectric = vec3(0.04, 0.04, 0.04);
|
|
|
-
|
|
|
- // Compute the converted diffuse.
|
|
|
- surfaceAlbedo.rgb = mix(baseColor.rgb * (1.0 - DefaultSpecularReflectanceDielectric.r), vec3(0., 0., 0.), metallicRoughness.r);
|
|
|
-
|
|
|
- // Compute the converted reflectivity.
|
|
|
- surfaceReflectivityColor = mix(DefaultSpecularReflectanceDielectric, baseColor, metallicRoughness.r);
|
|
|
-
|
|
|
- #ifdef OVERLOADEDVALUES
|
|
|
- surfaceReflectivityColor = mix(surfaceReflectivityColor, vOverloadedReflectivity, vOverloadedIntensity.z);
|
|
|
- #endif
|
|
|
-#else
|
|
|
- #ifdef MICROSURFACEMAP
|
|
|
- vec4 microSurfaceTexel = texture2D(microSurfaceSampler, vMicroSurfaceSamplerUV + uvOffset) * vMicroSurfaceSamplerInfos.y;
|
|
|
- microSurface = microSurfaceTexel.r;
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OVERLOADEDVALUES
|
|
|
- microSurface = mix(microSurface, vOverloadedMicroSurface.x, vOverloadedMicroSurface.y);
|
|
|
-#endif
|
|
|
-
|
|
|
- // Compute N dot V.
|
|
|
- float NdotV = max(0.00000000001, dot(normalW, viewDirectionW));
|
|
|
-
|
|
|
- // Adapt microSurface.
|
|
|
- microSurface = clamp(microSurface, 0., 1.) * 0.98;
|
|
|
-
|
|
|
- // Compute roughness.
|
|
|
- float roughness = clamp(1. - microSurface, 0.000001, 1.0);
|
|
|
-
|
|
|
- // Lighting
|
|
|
- vec3 lightDiffuseContribution = vec3(0., 0., 0.);
|
|
|
-
|
|
|
-#ifdef OVERLOADEDSHADOWVALUES
|
|
|
- vec3 shadowedOnlyLightDiffuseContribution = vec3(1., 1., 1.);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef SPECULARTERM
|
|
|
- vec3 lightSpecularContribution = vec3(0., 0., 0.);
|
|
|
-#endif
|
|
|
-
|
|
|
- float notShadowLevel = 1.; // 1 - shadowLevel
|
|
|
-
|
|
|
- #ifdef LIGHTMAP
|
|
|
- vec3 lightmapColor = texture2D(lightmapSampler, vLightmapUV + uvOffset).rgb * vLightmapInfos.y;
|
|
|
- #endif
|
|
|
-
|
|
|
- float NdotL = -1.;
|
|
|
- lightingInfo info;
|
|
|
-
|
|
|
- // Compute reflectance.
|
|
|
- float reflectance = max(max(surfaceReflectivityColor.r, surfaceReflectivityColor.g), surfaceReflectivityColor.b);
|
|
|
-
|
|
|
- // For typical incident reflectance range (between 4% to 100%) set the grazing reflectance to 100% for typical fresnel effect.
|
|
|
- // For very low reflectance range on highly diffuse objects (below 4%), incrementally reduce grazing reflecance to 0%.
|
|
|
- float reflectance90 = clamp(reflectance * 25.0, 0.0, 1.0);
|
|
|
- vec3 specularEnvironmentR0 = surfaceReflectivityColor.rgb;
|
|
|
- vec3 specularEnvironmentR90 = vec3(1.0, 1.0, 1.0) * reflectance90;
|
|
|
-
|
|
|
-#include<legacyPbrLightFunctionsCall>[0..maxSimultaneousLights]
|
|
|
-
|
|
|
-#ifdef SPECULARTERM
|
|
|
- lightSpecularContribution *= vLightingIntensity.w;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OPACITY
|
|
|
- vec4 opacityMap = texture2D(opacitySampler, vOpacityUV + uvOffset);
|
|
|
-
|
|
|
- #ifdef OPACITYRGB
|
|
|
- opacityMap.rgb = opacityMap.rgb * vec3(0.3, 0.59, 0.11);
|
|
|
- alpha *= (opacityMap.x + opacityMap.y + opacityMap.z)* vOpacityInfos.y;
|
|
|
- #else
|
|
|
- alpha *= opacityMap.a * vOpacityInfos.y;
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef VERTEXALPHA
|
|
|
- alpha *= vColor.a;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OPACITYFRESNEL
|
|
|
- float opacityFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, opacityParts.z, opacityParts.w);
|
|
|
-
|
|
|
- alpha += opacityParts.x * (1.0 - opacityFresnelTerm) + opacityFresnelTerm * opacityParts.y;
|
|
|
-#endif
|
|
|
-
|
|
|
- // Refraction
|
|
|
- vec3 surfaceRefractionColor = vec3(0., 0., 0.);
|
|
|
-
|
|
|
- // Go mat -> blurry reflexion according to microSurface
|
|
|
-#ifdef LODBASEDMICROSFURACE
|
|
|
- float alphaG = convertRoughnessToAverageSlope(roughness);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef REFRACTION
|
|
|
- vec3 refractionVector = refract(-viewDirectionW, normalW, vRefractionInfos.y);
|
|
|
-
|
|
|
- #ifdef LODBASEDMICROSFURACE
|
|
|
- #ifdef USEPMREMREFRACTION
|
|
|
- float lodRefraction = getMipMapIndexFromAverageSlopeWithPMREM(vMicrosurfaceTextureLods.y, alphaG);
|
|
|
- #else
|
|
|
- float lodRefraction = getMipMapIndexFromAverageSlope(vMicrosurfaceTextureLods.y, alphaG);
|
|
|
- #endif
|
|
|
- #else
|
|
|
- float biasRefraction = (vMicrosurfaceTextureLods.y + 2.) * (1.0 - microSurface);
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef REFRACTIONMAP_3D
|
|
|
- refractionVector.y = refractionVector.y * vRefractionInfos.w;
|
|
|
-
|
|
|
- if (dot(refractionVector, viewDirectionW) < 1.0)
|
|
|
- {
|
|
|
- #ifdef LODBASEDMICROSFURACE
|
|
|
- #ifdef USEPMREMREFRACTION
|
|
|
- // Empiric Threshold
|
|
|
- if ((vMicrosurfaceTextureLods.y - lodRefraction) > 4.0)
|
|
|
- {
|
|
|
- // Bend to not reach edges.
|
|
|
- float scaleRefraction = 1. - exp2(lodRefraction) / exp2(vMicrosurfaceTextureLods.y); // CubemapSize is the size of the base mipmap
|
|
|
- float maxRefraction = max(max(abs(refractionVector.x), abs(refractionVector.y)), abs(refractionVector.z));
|
|
|
- if (abs(refractionVector.x) != maxRefraction) refractionVector.x *= scaleRefraction;
|
|
|
- if (abs(refractionVector.y) != maxRefraction) refractionVector.y *= scaleRefraction;
|
|
|
- if (abs(refractionVector.z) != maxRefraction) refractionVector.z *= scaleRefraction;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- surfaceRefractionColor = textureCubeLodEXT(refractionCubeSampler, refractionVector, lodRefraction).rgb * vRefractionInfos.x;
|
|
|
- #else
|
|
|
- surfaceRefractionColor = textureCube(refractionCubeSampler, refractionVector, biasRefraction).rgb * vRefractionInfos.x;
|
|
|
- #endif
|
|
|
- }
|
|
|
-
|
|
|
- #ifndef REFRACTIONMAPINLINEARSPACE
|
|
|
- surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb);
|
|
|
- #endif
|
|
|
- #else
|
|
|
- vec3 vRefractionUVW = vec3(refractionMatrix * (view * vec4(vPositionW + refractionVector * vRefractionInfos.z, 1.0)));
|
|
|
-
|
|
|
- vec2 refractionCoords = vRefractionUVW.xy / vRefractionUVW.z;
|
|
|
-
|
|
|
- refractionCoords.y = 1.0 - refractionCoords.y;
|
|
|
-
|
|
|
- #ifdef LODBASEDMICROSFURACE
|
|
|
- surfaceRefractionColor = texture2DLodEXT(refraction2DSampler, refractionCoords, lodRefraction).rgb * vRefractionInfos.x;
|
|
|
- #else
|
|
|
- surfaceRefractionColor = texture2D(refraction2DSampler, refractionCoords, biasRefraction).rgb * vRefractionInfos.x;
|
|
|
- #endif
|
|
|
-
|
|
|
- surfaceRefractionColor = toLinearSpace(surfaceRefractionColor.rgb);
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
- // Reflection
|
|
|
- vec3 environmentRadiance = vReflectionColor.rgb;
|
|
|
- vec3 environmentIrradiance = vReflectionColor.rgb;
|
|
|
-
|
|
|
-#ifdef REFLECTION
|
|
|
- vec3 vReflectionUVW = computeReflectionCoords(vec4(vPositionW, 1.0), normalW);
|
|
|
-
|
|
|
- #ifdef LODBASEDMICROSFURACE
|
|
|
- #ifdef USEPMREMREFLECTION
|
|
|
- float lodReflection = getMipMapIndexFromAverageSlopeWithPMREM(vMicrosurfaceTextureLods.x, alphaG);
|
|
|
- #else
|
|
|
- float lodReflection = getMipMapIndexFromAverageSlope(vMicrosurfaceTextureLods.x, alphaG);
|
|
|
- #endif
|
|
|
- #else
|
|
|
- float biasReflection = (vMicrosurfaceTextureLods.x + 2.) * (1.0 - microSurface);
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef REFLECTIONMAP_3D
|
|
|
-
|
|
|
- #ifdef LODBASEDMICROSFURACE
|
|
|
- #ifdef USEPMREMREFLECTION
|
|
|
- // Empiric Threshold
|
|
|
- if ((vMicrosurfaceTextureLods.y - lodReflection) > 4.0)
|
|
|
- {
|
|
|
- // Bend to not reach edges.
|
|
|
- float scaleReflection = 1. - exp2(lodReflection) / exp2(vMicrosurfaceTextureLods.x); // CubemapSize is the size of the base mipmap
|
|
|
- float maxReflection = max(max(abs(vReflectionUVW.x), abs(vReflectionUVW.y)), abs(vReflectionUVW.z));
|
|
|
- if (abs(vReflectionUVW.x) != maxReflection) vReflectionUVW.x *= scaleReflection;
|
|
|
- if (abs(vReflectionUVW.y) != maxReflection) vReflectionUVW.y *= scaleReflection;
|
|
|
- if (abs(vReflectionUVW.z) != maxReflection) vReflectionUVW.z *= scaleReflection;
|
|
|
- }
|
|
|
- #endif
|
|
|
-
|
|
|
- environmentRadiance = textureCubeLodEXT(reflectionCubeSampler, vReflectionUVW, lodReflection).rgb * vReflectionInfos.x;
|
|
|
- #else
|
|
|
- environmentRadiance = textureCube(reflectionCubeSampler, vReflectionUVW, biasReflection).rgb * vReflectionInfos.x;
|
|
|
- #endif
|
|
|
-
|
|
|
- #ifdef USESPHERICALFROMREFLECTIONMAP
|
|
|
- #ifndef REFLECTIONMAP_SKYBOX
|
|
|
- vec3 normalEnvironmentSpace = (reflectionMatrix * vec4(normalW, 1)).xyz;
|
|
|
- environmentIrradiance = EnvironmentIrradiance(normalEnvironmentSpace);
|
|
|
- #endif
|
|
|
- #else
|
|
|
- environmentRadiance = toLinearSpace(environmentRadiance.rgb);
|
|
|
-
|
|
|
- environmentIrradiance = textureCube(reflectionCubeSampler, normalW, 20.).rgb * vReflectionInfos.x;
|
|
|
- environmentIrradiance = toLinearSpace(environmentIrradiance.rgb);
|
|
|
- environmentIrradiance *= 0.2; // Hack in case of no hdr cube map use for environment.
|
|
|
- #endif
|
|
|
- #else
|
|
|
- vec2 coords = vReflectionUVW.xy;
|
|
|
-
|
|
|
- #ifdef REFLECTIONMAP_PROJECTION
|
|
|
- coords /= vReflectionUVW.z;
|
|
|
- #endif
|
|
|
-
|
|
|
- coords.y = 1.0 - coords.y;
|
|
|
- #ifdef LODBASEDMICROSFURACE
|
|
|
- environmentRadiance = texture2DLodEXT(reflection2DSampler, coords, lodReflection).rgb * vReflectionInfos.x;
|
|
|
- #else
|
|
|
- environmentRadiance = texture2D(reflection2DSampler, coords, biasReflection).rgb * vReflectionInfos.x;
|
|
|
- #endif
|
|
|
-
|
|
|
- environmentRadiance = toLinearSpace(environmentRadiance.rgb);
|
|
|
-
|
|
|
- environmentIrradiance = texture2D(reflection2DSampler, coords, 20.).rgb * vReflectionInfos.x;
|
|
|
- environmentIrradiance = toLinearSpace(environmentIrradiance.rgb);
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OVERLOADEDVALUES
|
|
|
- environmentIrradiance = mix(environmentIrradiance, vOverloadedReflection, vOverloadedMicroSurface.z);
|
|
|
- environmentRadiance = mix(environmentRadiance, vOverloadedReflection, vOverloadedMicroSurface.z);
|
|
|
-#endif
|
|
|
-
|
|
|
- environmentRadiance *= vLightingIntensity.z;
|
|
|
- environmentIrradiance *= vLightingIntensity.z;
|
|
|
-
|
|
|
- // Specular Environment Fresnel.
|
|
|
- vec3 specularEnvironmentReflectance = FresnelSchlickEnvironmentGGX(clamp(NdotV, 0., 1.), specularEnvironmentR0, specularEnvironmentR90, sqrt(microSurface));
|
|
|
-
|
|
|
- // Compute refractance
|
|
|
- vec3 refractance = vec3(0.0, 0.0, 0.0);
|
|
|
-
|
|
|
-#ifdef REFRACTION
|
|
|
- vec3 transmission = vec3(1.0, 1.0, 1.0);
|
|
|
- #ifdef LINKREFRACTIONTOTRANSPARENCY
|
|
|
- // Transmission based on alpha.
|
|
|
- transmission *= (1.0 - alpha);
|
|
|
-
|
|
|
- // Tint the material with albedo.
|
|
|
- // TODO. PBR Tinting.
|
|
|
- vec3 mixedAlbedo = surfaceAlbedoContribution.rgb * surfaceAlbedo.rgb;
|
|
|
- float maxChannel = max(max(mixedAlbedo.r, mixedAlbedo.g), mixedAlbedo.b);
|
|
|
- vec3 tint = clamp(maxChannel * mixedAlbedo, 0.0, 1.0);
|
|
|
-
|
|
|
- // Decrease Albedo Contribution
|
|
|
- surfaceAlbedoContribution *= alpha;
|
|
|
-
|
|
|
- // Decrease irradiance Contribution
|
|
|
- environmentIrradiance *= alpha;
|
|
|
-
|
|
|
- // Tint reflectance
|
|
|
- surfaceRefractionColor *= tint;
|
|
|
-
|
|
|
- // Put alpha back to 1;
|
|
|
- alpha = 1.0;
|
|
|
- #endif
|
|
|
-
|
|
|
- // Add Multiple internal bounces.
|
|
|
- vec3 bounceSpecularEnvironmentReflectance = (2.0 * specularEnvironmentReflectance) / (1.0 + specularEnvironmentReflectance);
|
|
|
- specularEnvironmentReflectance = mix(bounceSpecularEnvironmentReflectance, specularEnvironmentReflectance, alpha);
|
|
|
-
|
|
|
- // In theory T = 1 - R.
|
|
|
- transmission *= 1.0 - specularEnvironmentReflectance;
|
|
|
-
|
|
|
- // Should baked in diffuse.
|
|
|
- refractance = surfaceRefractionColor * transmission;
|
|
|
-#endif
|
|
|
-
|
|
|
- // Apply Energy Conservation taking in account the environment level only if the environment is present.
|
|
|
- surfaceAlbedo.rgb = (1. - reflectance) * surfaceAlbedo.rgb;
|
|
|
-
|
|
|
- refractance *= vLightingIntensity.z;
|
|
|
- environmentRadiance *= specularEnvironmentReflectance;
|
|
|
-
|
|
|
- // Emissive
|
|
|
- vec3 surfaceEmissiveColor = vEmissiveColor;
|
|
|
-#ifdef EMISSIVE
|
|
|
- vec3 emissiveColorTex = texture2D(emissiveSampler, vEmissiveUV + uvOffset).rgb;
|
|
|
- surfaceEmissiveColor = toLinearSpace(emissiveColorTex.rgb) * surfaceEmissiveColor * vEmissiveInfos.y;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef OVERLOADEDVALUES
|
|
|
- surfaceEmissiveColor = mix(surfaceEmissiveColor, vOverloadedEmissive, vOverloadedIntensity.w);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef EMISSIVEFRESNEL
|
|
|
- float emissiveFresnelTerm = computeFresnelTerm(viewDirectionW, normalW, emissiveRightColor.a, emissiveLeftColor.a);
|
|
|
-
|
|
|
- surfaceEmissiveColor *= emissiveLeftColor.rgb * (1.0 - emissiveFresnelTerm) + emissiveFresnelTerm * emissiveRightColor.rgb;
|
|
|
-#endif
|
|
|
-
|
|
|
- // Composition
|
|
|
-#ifdef EMISSIVEASILLUMINATION
|
|
|
- vec3 finalDiffuse = lightDiffuseContribution * surfaceAlbedoContribution;
|
|
|
-
|
|
|
- #ifdef OVERLOADEDSHADOWVALUES
|
|
|
- shadowedOnlyLightDiffuseContribution = shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution;
|
|
|
- #endif
|
|
|
-#else
|
|
|
- #ifdef LINKEMISSIVEWITHALBEDO
|
|
|
- vec3 finalDiffuse = (lightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution;
|
|
|
-
|
|
|
- #ifdef OVERLOADEDSHADOWVALUES
|
|
|
- shadowedOnlyLightDiffuseContribution = (shadowedOnlyLightDiffuseContribution + surfaceEmissiveColor) * surfaceAlbedoContribution;
|
|
|
- #endif
|
|
|
- #else
|
|
|
- vec3 finalDiffuse = lightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor;
|
|
|
-
|
|
|
- #ifdef OVERLOADEDSHADOWVALUES
|
|
|
- shadowedOnlyLightDiffuseContribution = shadowedOnlyLightDiffuseContribution * surfaceAlbedoContribution + surfaceEmissiveColor;
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
-finalDiffuse.rgb += vAmbientColor;
|
|
|
-finalDiffuse *= surfaceAlbedo.rgb;
|
|
|
-finalDiffuse = max(finalDiffuse, 0.0);
|
|
|
-
|
|
|
-#ifdef OVERLOADEDSHADOWVALUES
|
|
|
- shadowedOnlyLightDiffuseContribution += vAmbientColor;
|
|
|
- shadowedOnlyLightDiffuseContribution *= surfaceAlbedo.rgb;
|
|
|
- shadowedOnlyLightDiffuseContribution = max(shadowedOnlyLightDiffuseContribution, 0.0);
|
|
|
- finalDiffuse = mix(finalDiffuse, shadowedOnlyLightDiffuseContribution, (1.0 - vOverloadedShadowIntensity.y));
|
|
|
-#endif
|
|
|
-
|
|
|
-finalDiffuse = (finalDiffuse * vLightingIntensity.x + surfaceAlbedo.rgb * environmentIrradiance) * ambientOcclusionColor;
|
|
|
-
|
|
|
-#ifdef SPECULARTERM
|
|
|
- vec3 finalSpecular = lightSpecularContribution * surfaceReflectivityColor;
|
|
|
- #ifdef SPECULAROVERALPHA
|
|
|
- alpha = clamp(alpha + getLuminance(finalSpecular), 0., 1.);
|
|
|
- #endif
|
|
|
-#else
|
|
|
- vec3 finalSpecular = vec3(0.0);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef RADIANCEOVERALPHA
|
|
|
- alpha = clamp(alpha + getLuminance(environmentRadiance), 0., 1.);
|
|
|
-#endif
|
|
|
-
|
|
|
-// Composition
|
|
|
-// Reflection already includes the environment intensity.
|
|
|
-vec4 finalColor = vec4(finalDiffuse + finalSpecular * vLightingIntensity.x + environmentRadiance + refractance, alpha);
|
|
|
-
|
|
|
-#ifdef EMISSIVEASILLUMINATION
|
|
|
- finalColor.rgb += (surfaceEmissiveColor * vLightingIntensity.y);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef LIGHTMAP
|
|
|
- #ifndef LIGHTMAPEXCLUDED
|
|
|
- #ifdef USELIGHTMAPASSHADOWMAP
|
|
|
- finalColor.rgb *= lightmapColor;
|
|
|
- #else
|
|
|
- finalColor.rgb += lightmapColor;
|
|
|
- #endif
|
|
|
- #endif
|
|
|
-#endif
|
|
|
-
|
|
|
- finalColor = max(finalColor, 0.0);
|
|
|
-
|
|
|
-#ifdef CAMERATONEMAP
|
|
|
- finalColor.rgb = toneMaps(finalColor.rgb);
|
|
|
-#endif
|
|
|
-
|
|
|
- finalColor.rgb = toGammaSpace(finalColor.rgb);
|
|
|
-
|
|
|
-#include<logDepthFragment>
|
|
|
-#include<fogFragment>(color, finalColor)
|
|
|
-
|
|
|
-#ifdef CAMERACONTRAST
|
|
|
- finalColor = contrasts(finalColor);
|
|
|
-#endif
|
|
|
-
|
|
|
- finalColor.rgb = clamp(finalColor.rgb, 0., 1.);
|
|
|
-
|
|
|
-#ifdef CAMERACOLORGRADING
|
|
|
- finalColor = colorGrades(finalColor);
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef CAMERACOLORCURVES
|
|
|
- finalColor.rgb = applyColorCurves(finalColor.rgb);
|
|
|
-#endif
|
|
|
-
|
|
|
- // Normal Display.
|
|
|
- // gl_FragColor = vec4(normalW * 0.5 + 0.5, 1.0);
|
|
|
-
|
|
|
- // Ambient reflection color.
|
|
|
- // gl_FragColor = vec4(ambientReflectionColor, 1.0);
|
|
|
-
|
|
|
- // Reflection color.
|
|
|
- // gl_FragColor = vec4(reflectionColor, 1.0);
|
|
|
-
|
|
|
- // Base color.
|
|
|
- // gl_FragColor = vec4(surfaceAlbedo.rgb, 1.0);
|
|
|
-
|
|
|
- // Specular color.
|
|
|
- // gl_FragColor = vec4(surfaceReflectivityColor.rgb, 1.0);
|
|
|
-
|
|
|
- // MicroSurface color.
|
|
|
- // gl_FragColor = vec4(microSurface, microSurface, microSurface, 1.0);
|
|
|
-
|
|
|
- // Specular Map
|
|
|
- // gl_FragColor = vec4(reflectivityMapColor.rgb, 1.0);
|
|
|
-
|
|
|
- // Refractance
|
|
|
- // gl_FragColor = vec4(refractance.rgb, 1.0);
|
|
|
-
|
|
|
- //// Emissive Color
|
|
|
- //vec2 test = vEmissiveUV * 0.5 + 0.5;
|
|
|
- //gl_FragColor = vec4(test.x, test.y, 1.0, 1.0);
|
|
|
-
|
|
|
- gl_FragColor = finalColor;
|
|
|
-}
|