|
@@ -0,0 +1,984 @@
|
|
|
+import { IndicesArray, FloatArray } from "../types";
|
|
|
+import { Color4, Color3 } from "../Maths/math";
|
|
|
+import { Vector2, Vector3, Vector4, TmpVectors, Matrix } from "../Maths/math.vector";
|
|
|
+import { Logger } from "../Misc/logger";
|
|
|
+import { VertexBuffer } from "../Meshes/buffer";
|
|
|
+import { VertexData } from "../Meshes/mesh.vertexData";
|
|
|
+import { Mesh } from "../Meshes/mesh";
|
|
|
+import { EngineStore } from "../Engines/engineStore";
|
|
|
+import { Scene, IDisposable } from "../scene";
|
|
|
+import { CloudPoint, PointsGroup } from "./cloudPoint";
|
|
|
+import { BoundingInfo } from "../Culling/boundingInfo";
|
|
|
+import { Ray } from "../Culling/ray";
|
|
|
+import { PickingInfo } from "../Collisions/pickingInfo";
|
|
|
+import { StandardMaterial } from "../Materials/standardMaterial";
|
|
|
+import { Texture } from "./../Materials/Textures/texture";
|
|
|
+import { Scalar } from "../Maths/math.scalar";
|
|
|
+
|
|
|
+/** Defines the 3 color options */
|
|
|
+export class PointColor {
|
|
|
+ /** color value */
|
|
|
+ public static COLOR: number = 0;
|
|
|
+ /** uv value */
|
|
|
+ public static UV: number = 1;
|
|
|
+ /** random value */
|
|
|
+ public static RANDOM: number = 2;
|
|
|
+ /** color value */
|
|
|
+ public static STATED: number = 3;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * The PointCloudSystem (PCS) is a single updatable mesh. The points corresponding to the vertices of this big mesh.
|
|
|
+ * As it is just a mesh, the PointCloudSystem has all the same properties as any other BJS mesh : not more, not less. It can be scaled, rotated, translated, enlighted, textured, moved, etc.
|
|
|
+
|
|
|
+ * The PointCloudSytem is also a particle system, with each point being a particle. It provides some methods to manage the particles.
|
|
|
+ * However it is behavior agnostic. This means it has no emitter, no particle physics, no particle recycler. You have to implement your own behavior.
|
|
|
+ *
|
|
|
+ * Full documentation here : TO BE ENTERED
|
|
|
+ */
|
|
|
+export class PointsCloudSystem implements IDisposable {
|
|
|
+ /**
|
|
|
+ * The PCS array of cloud point objects. Just access each particle as with any classic array.
|
|
|
+ * Example : var p = SPS.particles[i];
|
|
|
+ */
|
|
|
+ public particles: CloudPoint[] = new Array<CloudPoint>();
|
|
|
+ /**
|
|
|
+ * The PCS total number of particles. Read only. Use PCS.counter instead if you need to set your own value.
|
|
|
+ */
|
|
|
+ public nbParticles: number = 0;
|
|
|
+ /**
|
|
|
+ * This a counter for your own usage. It's not set by any SPS functions.
|
|
|
+ */
|
|
|
+ public counter: number = 0;
|
|
|
+ /**
|
|
|
+ * The PCS name. This name is also given to the underlying mesh.
|
|
|
+ */
|
|
|
+ public name: string;
|
|
|
+ /**
|
|
|
+ * The PCS mesh. It's a standard BJS Mesh, so all the methods from the Mesh class are avalaible.
|
|
|
+ */
|
|
|
+ public mesh: Mesh;
|
|
|
+ /**
|
|
|
+ * This empty object is intended to store some PCS specific or temporary values in order to lower the Garbage Collector activity.
|
|
|
+ * Please read :
|
|
|
+ */
|
|
|
+ public vars: any = {};
|
|
|
+ /**
|
|
|
+ * @hidden
|
|
|
+ */
|
|
|
+ public _size: number; //size of each point particle
|
|
|
+
|
|
|
+ private _scene: Scene;
|
|
|
+ private _positions: number[] = new Array<number>();
|
|
|
+ private _indices: number[] = new Array<number>();
|
|
|
+ private _normals: number[] = new Array<number>();
|
|
|
+ private _colors: number[] = new Array<number>();
|
|
|
+ private _uvs: number[] = new Array<number>();
|
|
|
+ private _indices32: IndicesArray; // used as depth sorted array if depth sort enabled, else used as typed indices
|
|
|
+ private _positions32: Float32Array; // updated positions for the VBO
|
|
|
+ private _colors32: Float32Array;
|
|
|
+ private _uvs32: Float32Array;
|
|
|
+ private _updatable: boolean = true;
|
|
|
+ private _isVisibilityBoxLocked = false;
|
|
|
+ private _alwaysVisible: boolean = false;
|
|
|
+ private _groups: number[] = new Array<number>(); //start indices for each group of particles
|
|
|
+ private _groupCounter: number = 0;
|
|
|
+ private _computeParticleColor: boolean = true;
|
|
|
+ private _computeParticleTexture: boolean = true;
|
|
|
+ private _computeParticleRotation: boolean = true;
|
|
|
+ private _computeBoundingBox: boolean = false;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Creates a PCS (Points Cloud System) object
|
|
|
+ * @param name (String) is the PCS name, this will be the underlying mesh name
|
|
|
+ * @param pointSize (number) is the size for each point
|
|
|
+ * @param scene (Scene) is the scene in which the PCS is added
|
|
|
+ * @param options defines the options of the sps e.g.
|
|
|
+ * * updatable (optional boolean, default true) : if the PCS must be updatable or immutable
|
|
|
+ * * particleIntersection (optional boolean, default false) : if the particle intersections must be computed
|
|
|
+ */
|
|
|
+ constructor(name: string, pointSize: number, scene: Scene, options?: { updatable?: boolean}) {
|
|
|
+ this.name = name;
|
|
|
+ this._size = pointSize;
|
|
|
+ this._scene = scene || EngineStore.LastCreatedScene;
|
|
|
+ if (options && options.updatable !== undefined) {
|
|
|
+ this._updatable = options.updatable;
|
|
|
+ } else {
|
|
|
+ this._updatable = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Builds the PCS underlying mesh. Returns a standard Mesh.
|
|
|
+ * If no points were added to the PCS, the returned mesh is just a single point.
|
|
|
+ * @returns the created mesh
|
|
|
+ */
|
|
|
+ public buildMesh(): Mesh {
|
|
|
+ if (this.nbParticles === 0) {
|
|
|
+ this.addPoints(1);
|
|
|
+ }
|
|
|
+
|
|
|
+ this._positions32 = new Float32Array(this._positions);
|
|
|
+ this._uvs32 = new Float32Array(this._uvs);
|
|
|
+ this._colors32 = new Float32Array(this._colors);
|
|
|
+
|
|
|
+ var vertexData = new VertexData();
|
|
|
+ vertexData.set(this._positions32, VertexBuffer.PositionKind);
|
|
|
+
|
|
|
+ if (this._uvs32.length > 0) {
|
|
|
+ vertexData.set(this._uvs32, VertexBuffer.UVKind);
|
|
|
+ }
|
|
|
+ if (this._colors32.length > 0) {
|
|
|
+ vertexData.set(this._colors32, VertexBuffer.ColorKind);
|
|
|
+ }
|
|
|
+ var mesh = new Mesh(this.name, this._scene);
|
|
|
+ vertexData.applyToMesh(mesh, this._updatable);
|
|
|
+ this.mesh = mesh;
|
|
|
+
|
|
|
+ // free memory
|
|
|
+ (<any>this._positions) = null;
|
|
|
+ (<any>this._uvs) = null;
|
|
|
+ (<any>this._colors) = null;
|
|
|
+
|
|
|
+ if (!this._updatable) {
|
|
|
+ this.particles.length = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ var mat = new StandardMaterial("point cloud material", this._scene);
|
|
|
+ mat.emissiveColor = new Color3(1, 1, 1);
|
|
|
+ mat.disableLighting = true;
|
|
|
+ mat.pointsCloud = true;
|
|
|
+ mat.pointSize = this._size;
|
|
|
+ mesh.material = mat;
|
|
|
+
|
|
|
+ return mesh;
|
|
|
+ }
|
|
|
+
|
|
|
+ // adds a new particle object in the particles array
|
|
|
+ private _addParticle(idx: number, group: PointsGroup, groupId: number, idxInGroup: number): CloudPoint {
|
|
|
+ var cp = new CloudPoint(idx, group, groupId, idxInGroup, this);
|
|
|
+ this.particles.push(cp);
|
|
|
+ return cp;
|
|
|
+ }
|
|
|
+
|
|
|
+ private _randomUnitVector(particle: CloudPoint): void {
|
|
|
+ particle.position = new Vector3(Math.random(), Math.random(), Math.random());
|
|
|
+ particle.color = new Color4(1, 1, 1, 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ private _getColorIndicesForCoord(pointsGroup: PointsGroup, x: number, y: number, width: number): Color4 {
|
|
|
+ var imageData = <Uint8Array>pointsGroup._groupImageData;
|
|
|
+ var color = y * (width * 4) + x * 4;
|
|
|
+ var colorIndices = [color, color + 1, color + 2, color + 3];
|
|
|
+ var redIndex = colorIndices[0];
|
|
|
+ var greenIndex = colorIndices[1];
|
|
|
+ var blueIndex = colorIndices[2];
|
|
|
+ var alphaIndex = colorIndices[3];
|
|
|
+
|
|
|
+ var redForCoord = imageData[redIndex];
|
|
|
+ var greenForCoord = imageData[greenIndex];
|
|
|
+ var blueForCoord = imageData[blueIndex];
|
|
|
+ var alphaForCoord = imageData[alphaIndex];
|
|
|
+ return new Color4(redForCoord / 255, greenForCoord / 255, blueForCoord / 255, alphaForCoord);
|
|
|
+ }
|
|
|
+
|
|
|
+ private _setPointsColorOrUV(mesh: Mesh, pointsGroup: PointsGroup, isVolume: boolean, colorFromTexture?: boolean, color?: Color4) {
|
|
|
+ if (isVolume) {
|
|
|
+ mesh.updateFacetData();
|
|
|
+ }
|
|
|
+
|
|
|
+ var boundInfo = mesh.getBoundingInfo();
|
|
|
+ var diameter = 2 * boundInfo.boundingSphere.radius;
|
|
|
+
|
|
|
+ var meshPos = <FloatArray>mesh.getVerticesData(VertexBuffer.PositionKind);
|
|
|
+ var meshInd = <IndicesArray>mesh.getIndices();
|
|
|
+ var meshUV = <FloatArray>mesh.getVerticesData(VertexBuffer.UVKind);
|
|
|
+ var meshCol = <FloatArray>mesh.getVerticesData(VertexBuffer.ColorKind);
|
|
|
+
|
|
|
+ var idxPoints: number = 0;
|
|
|
+
|
|
|
+ var index: number = 0;
|
|
|
+ var id0: number = 0;
|
|
|
+ var id1: number = 0;
|
|
|
+ var id2: number = 0;
|
|
|
+ var v0X: number = 0;
|
|
|
+ var v0Y: number = 0;
|
|
|
+ var v0Z: number = 0;
|
|
|
+ var v1X: number = 0;
|
|
|
+ var v1Y: number = 0;
|
|
|
+ var v1Z: number = 0;
|
|
|
+ var v2X: number = 0;
|
|
|
+ var v2Y: number = 0;
|
|
|
+ var v2Z: number = 0;
|
|
|
+ var vertex0 = Vector3.Zero();
|
|
|
+ var vertex1 = Vector3.Zero();
|
|
|
+ var vertex2 = Vector3.Zero();
|
|
|
+ var vec0 = Vector3.Zero();
|
|
|
+ var vec1 = Vector3.Zero();
|
|
|
+
|
|
|
+ var uv0X: number = 0;
|
|
|
+ var uv0Y: number = 0;
|
|
|
+ var uv1X: number = 0;
|
|
|
+ var uv1Y: number = 0;
|
|
|
+ var uv2X: number = 0;
|
|
|
+ var uv2Y: number = 0;
|
|
|
+ var uv0 = Vector2.Zero();
|
|
|
+ var uv1 = Vector2.Zero();
|
|
|
+ var uv2 = Vector2.Zero();
|
|
|
+ var uvec0 = Vector2.Zero();
|
|
|
+ var uvec1 = Vector2.Zero();
|
|
|
+
|
|
|
+ var col0X: number = 0;
|
|
|
+ var col0Y: number = 0;
|
|
|
+ var col0Z: number = 0;
|
|
|
+ var col0A: number = 0;
|
|
|
+ var col1X: number = 0;
|
|
|
+ var col1Y: number = 0;
|
|
|
+ var col1Z: number = 0;
|
|
|
+ var col1A: number = 0;
|
|
|
+ var col2X: number = 0;
|
|
|
+ var col2Y: number = 0;
|
|
|
+ var col2Z: number = 0;
|
|
|
+ var col2A: number = 0;
|
|
|
+ var col0 = Vector4.Zero();
|
|
|
+ var col1 = Vector4.Zero();
|
|
|
+ var col2 = Vector4.Zero();
|
|
|
+ var colvec0 = Vector4.Zero();
|
|
|
+ var colvec1 = Vector4.Zero();
|
|
|
+
|
|
|
+ var lamda: number = 0;
|
|
|
+ var mu: number = 0;
|
|
|
+
|
|
|
+ var facetPoint: Vector3;
|
|
|
+ var uvPoint: Vector2;
|
|
|
+ var colPoint: Vector4;
|
|
|
+
|
|
|
+ var norm = Vector3.Zero();
|
|
|
+ var tang = Vector3.Zero();
|
|
|
+ var biNorm = Vector3.Zero();
|
|
|
+ var angle = 0;
|
|
|
+ var facetPlaneVec = Vector3.Zero();
|
|
|
+
|
|
|
+ var gap = 0;
|
|
|
+ var distance = 0;
|
|
|
+ var ray = new Ray(Vector3.Zero(), new Vector3(1, 0, 0));
|
|
|
+ var pickInfo: PickingInfo;
|
|
|
+ var direction = Vector3.Zero();
|
|
|
+
|
|
|
+ for (var index = 0; index < meshInd.length / 3; index++) {
|
|
|
+ id0 = meshInd[3 * index];
|
|
|
+ id1 = meshInd[3 * index + 1];
|
|
|
+ id2 = meshInd[3 * index + 2];
|
|
|
+ v0X = meshPos[3 * id0];
|
|
|
+ v0Y = meshPos[3 * id0 + 1];
|
|
|
+ v0Z = meshPos[3 * id0 + 2];
|
|
|
+ v1X = meshPos[3 * id1];
|
|
|
+ v1Y = meshPos[3 * id1 + 1];
|
|
|
+ v1Z = meshPos[3 * id1 + 2];
|
|
|
+ v2X = meshPos[3 * id2];
|
|
|
+ v2Y = meshPos[3 * id2 + 1];
|
|
|
+ v2Z = meshPos[3 * id2 + 2];
|
|
|
+ vertex0.set(v0X, v0Y, v0Z);
|
|
|
+ vertex1.set(v1X, v1Y, v1Z);
|
|
|
+ vertex2.set(v2X, v2Y, v2Z);
|
|
|
+ vertex1.subtractToRef(vertex0, vec0);
|
|
|
+ vertex2.subtractToRef(vertex1, vec1);
|
|
|
+
|
|
|
+ if (meshUV) {
|
|
|
+ uv0X = meshUV[2 * id0];
|
|
|
+ uv0Y = meshUV[2 * id0 + 1];
|
|
|
+ uv1X = meshUV[2 * id1];
|
|
|
+ uv1Y = meshUV[2 * id1 + 1];
|
|
|
+ uv2X = meshUV[2 * id2];
|
|
|
+ uv2Y = meshUV[2 * id2 + 1];
|
|
|
+ uv0.set(uv0X, uv0Y);
|
|
|
+ uv1.set(uv1X, uv1Y);
|
|
|
+ uv2.set(uv2X, uv2Y);
|
|
|
+ uv1.subtractToRef(uv0, uvec0);
|
|
|
+ uv2.subtractToRef(uv1, uvec1);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (meshCol) {
|
|
|
+ col0X = meshCol[4 * id0];
|
|
|
+ col0Y = meshCol[4 * id0 + 1];
|
|
|
+ col0Z = meshCol[4 * id0 + 2];
|
|
|
+ col1X = meshCol[4 * id1];
|
|
|
+ col1Y = meshCol[4 * id1 + 1];
|
|
|
+ col1Z = meshCol[4 * id1 + 2];
|
|
|
+ col2X = meshCol[4 * id2];
|
|
|
+ col2Y = meshCol[4 * id2 + 1];
|
|
|
+ col2Z = meshCol[4 * id2 + 2];
|
|
|
+ col0.set(col0X, col0Y, col0Z, col0A);
|
|
|
+ col1.set(col1X, col1Y, col1Z, col1A);
|
|
|
+ col2.set(col2X, col2Y, col2Z, col2A);
|
|
|
+ col1.subtractToRef(col0, colvec0);
|
|
|
+ col2.subtractToRef(col1, colvec1);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ //sets all point colors to white
|
|
|
+ col0.set(1, 1, 1, 1);
|
|
|
+ colvec0.set(0, 0, 0, 0);
|
|
|
+ colvec1.set(0, 0, 0, 0);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (colorFromTexture !== undefined) {
|
|
|
+ if (!colorFromTexture && color !== undefined) {
|
|
|
+ col0.set(color.r, color.g, color.b, 1);
|
|
|
+ colvec0.set(0, 0, 0, 0);
|
|
|
+ colvec1.set(0, 0, 0, 0);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ var width: number;
|
|
|
+ var pointColors: Color4;
|
|
|
+ var particle: CloudPoint;
|
|
|
+
|
|
|
+ for (var i = 0; i < pointsGroup._groupDensity[index]; i++) {
|
|
|
+ idxPoints = this.nbParticles;
|
|
|
+ this._addParticle(idxPoints, pointsGroup, this._groupCounter, index + i);
|
|
|
+ particle = this.particles[idxPoints];
|
|
|
+ //form a point inside the facet v0, v1, v2;
|
|
|
+ lamda = Scalar.RandomRange(0, 1);
|
|
|
+ mu = Scalar.RandomRange(0, 1);
|
|
|
+ facetPoint = vertex0.add(vec0.scale(lamda)).add(vec1.scale(lamda * mu));
|
|
|
+ if (isVolume) {
|
|
|
+ norm = mesh.getFacetNormal(index).normalize().scale(-1);
|
|
|
+ tang = vec0.clone().normalize();
|
|
|
+ biNorm = Vector3.Cross(norm, tang);
|
|
|
+ angle = Scalar.RandomRange(0, 2 * Math.PI);
|
|
|
+ facetPlaneVec = tang.scale(Math.cos(angle)).add(biNorm.scale(Math.sin(angle)));
|
|
|
+ angle = Scalar.RandomRange(0.1, Math.PI / 2);
|
|
|
+ direction = facetPlaneVec.scale(Math.cos(angle)).add(norm.scale(Math.sin(angle)));
|
|
|
+
|
|
|
+ ray.origin = facetPoint.add(direction.scale(0.00001));
|
|
|
+ ray.direction = direction;
|
|
|
+ ray.length = diameter;
|
|
|
+ pickInfo = ray.intersectsMesh(mesh);
|
|
|
+ if (pickInfo.hit) {
|
|
|
+ distance = pickInfo.pickedPoint!.subtract(facetPoint).length();
|
|
|
+ gap = Scalar.RandomRange(0, 1) * distance;
|
|
|
+ facetPoint.addInPlace(direction.scale(gap));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ particle.position = facetPoint.clone();
|
|
|
+ this._positions.push(particle.position.x, particle.position.y, particle.position.z);
|
|
|
+ if (meshUV !== undefined) {
|
|
|
+ uvPoint = uv0.add(uvec0.scale(lamda)).add(uvec1.scale(lamda * mu));
|
|
|
+ if (colorFromTexture && pointsGroup._groupImageData !== null) {
|
|
|
+ width = pointsGroup._groupImgWidth;
|
|
|
+ pointColors = this._getColorIndicesForCoord(pointsGroup, Math.floor(uvPoint.x * width), Math.round((1 - uvPoint.y) * width), width);
|
|
|
+ particle.color = pointColors;
|
|
|
+ this._colors.push(pointColors.r, pointColors.g, pointColors.b, pointColors.a);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (colorFromTexture === undefined) {
|
|
|
+ colPoint = col0.set(Math.random(), Math.random(), Math.random(), 1);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ colPoint = col0.add(colvec0.scale(lamda)).add(colvec1.scale(lamda * mu));
|
|
|
+ }
|
|
|
+ particle.uv = uvPoint.clone();
|
|
|
+ this._uvs.push(particle.uv.x, particle.uv.y);
|
|
|
+ particle.color = new Color4(colPoint.x, colPoint.y, colPoint.z, colPoint.w);
|
|
|
+ this._colors.push(colPoint.x, colPoint.y, colPoint.z, colPoint.w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ if (colorFromTexture === undefined) {
|
|
|
+ colPoint = col0.set(Math.random(), Math.random(), Math.random(), 1);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ colPoint = col0.add(colvec0.scale(lamda)).add(colvec1.scale(lamda * mu));
|
|
|
+ }
|
|
|
+ particle.color = new Color4(colPoint.x, colPoint.y, colPoint.z, colPoint.w);
|
|
|
+ this._colors.push(colPoint.x, colPoint.y, colPoint.z, colPoint.w);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // stores mesh texture in dynamic texture for color pixel retrieval
|
|
|
+ // when pointColor type is color for surface points
|
|
|
+ private _colorFromTexture(mesh: Mesh, pointsGroup: PointsGroup, isVolume: boolean): void {
|
|
|
+ if (mesh.material === null) {
|
|
|
+ Logger.Warn(mesh.name + "has no material.");
|
|
|
+ pointsGroup._groupImageData = null;
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, isVolume, false);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ var mat = <StandardMaterial>mesh.material;
|
|
|
+ if (mat.diffuseTexture === null && mat.emissiveTexture === null) {
|
|
|
+ Logger.Warn(mesh.name + "has no useable texture.");
|
|
|
+ pointsGroup._groupImageData = null;
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, isVolume, false);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (mat.diffuseTexture!._texture === null && mat.emissiveTexture!._texture === null) {
|
|
|
+ Logger.Warn(mesh.name + "has no useable texture.");
|
|
|
+ pointsGroup._groupImageData = null;
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, isVolume, false);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (mat.diffuseTexture !== null) {
|
|
|
+ (<Texture>mat.diffuseTexture).onLoadObservable.add(() => {
|
|
|
+ pointsGroup._groupImageData = mat.diffuseTexture!.readPixels();
|
|
|
+ pointsGroup._groupImgWidth = mat.diffuseTexture!._texture!.width;
|
|
|
+ pointsGroup._groupImgHeight = mat.diffuseTexture!._texture!.height;
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, isVolume, true);
|
|
|
+ });
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ (<Texture>mat.emissiveTexture).onLoadObservable.add(() => {
|
|
|
+ pointsGroup._groupImageData = mat.emissiveTexture!.readPixels();
|
|
|
+ pointsGroup._groupImgWidth = mat.emissiveTexture!._texture!.width;
|
|
|
+ pointsGroup._groupImgHeight = mat.emissiveTexture!._texture!.height;
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, isVolume, true);
|
|
|
+ });
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // calculates the point density per facet of a mesh for surface points
|
|
|
+ private _calculateDensity(nbPoints: number, positions: FloatArray, indices: FloatArray): number[] {
|
|
|
+ var density: number[] = new Array<number>();
|
|
|
+ var index: number;
|
|
|
+ var id0: number;
|
|
|
+ var id1: number;
|
|
|
+ var id2: number;
|
|
|
+ var v0X: number;
|
|
|
+ var v0Y: number;
|
|
|
+ var v0Z: number;
|
|
|
+ var v1X: number;
|
|
|
+ var v1Y: number;
|
|
|
+ var v1Z: number;
|
|
|
+ var v2X: number;
|
|
|
+ var v2Y: number;
|
|
|
+ var v2Z: number;
|
|
|
+ var vertex0 = Vector3.Zero();
|
|
|
+ var vertex1 = Vector3.Zero();
|
|
|
+ var vertex2 = Vector3.Zero();
|
|
|
+ var vec0 = Vector3.Zero();
|
|
|
+ var vec1 = Vector3.Zero();
|
|
|
+ var vec2 = Vector3.Zero();
|
|
|
+
|
|
|
+ var a: number; //length of side of triangle
|
|
|
+ var b: number; //length of side of triangle
|
|
|
+ var c: number; //length of side of triangle
|
|
|
+ var p: number; //perimeter of triangle
|
|
|
+ var area: number;
|
|
|
+ var areas: number[] = new Array<number>();
|
|
|
+ var surfaceArea: number = 0;
|
|
|
+
|
|
|
+ var nbFacets = indices.length / 3;
|
|
|
+
|
|
|
+ //surface area
|
|
|
+ for (var index = 0; index < nbFacets; index++) {
|
|
|
+ id0 = indices[3 * index];
|
|
|
+ id1 = indices[3 * index + 1];
|
|
|
+ id2 = indices[3 * index + 2];
|
|
|
+ v0X = positions[3 * id0];
|
|
|
+ v0Y = positions[3 * id0 + 1];
|
|
|
+ v0Z = positions[3 * id0 + 2];
|
|
|
+ v1X = positions[3 * id1];
|
|
|
+ v1Y = positions[3 * id1 + 1];
|
|
|
+ v1Z = positions[3 * id1 + 2];
|
|
|
+ v2X = positions[3 * id2];
|
|
|
+ v2Y = positions[3 * id2 + 1];
|
|
|
+ v2Z = positions[3 * id2 + 2];
|
|
|
+ vertex0.set(v0X, v0Y, v0Z);
|
|
|
+ vertex1.set(v1X, v1Y, v1Z);
|
|
|
+ vertex2.set(v2X, v2Y, v2Z);
|
|
|
+ vertex1.subtractToRef(vertex0, vec0);
|
|
|
+ vertex2.subtractToRef(vertex1, vec1);
|
|
|
+ vertex2.subtractToRef(vertex0, vec2);
|
|
|
+ a = vec0.length();
|
|
|
+ b = vec1.length();
|
|
|
+ c = vec2.length();
|
|
|
+ p = (a + b + c) / 2;
|
|
|
+ area = Math.sqrt(p * (p - a) * (p - b) * (p - c));
|
|
|
+ surfaceArea += area;
|
|
|
+ areas[index] = area;
|
|
|
+ }
|
|
|
+ var pointCount: number = 0;
|
|
|
+ for (var index = 0; index < nbFacets; index++) {
|
|
|
+ density[index] = Math.floor(nbPoints * areas[index] / surfaceArea);
|
|
|
+ pointCount += density[index];
|
|
|
+ }
|
|
|
+
|
|
|
+ var diff: number = nbPoints - pointCount;
|
|
|
+ var pointsPerFacet: number = Math.floor(diff / nbFacets);
|
|
|
+ var extraPoints: number = diff % nbFacets;
|
|
|
+
|
|
|
+ if (pointsPerFacet > 0) {
|
|
|
+ density = density.map((x) => x + pointsPerFacet);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (var index = 0; index < extraPoints; index++) {
|
|
|
+ density[index] += 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ return density;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Adds points to the PCS in random positions within a unit sphere
|
|
|
+ * @param nb (positive integer) the number of particles to be created from this model
|
|
|
+ * @param pointFunction is an optional javascript function to be called for each particle on PCS creation
|
|
|
+ * @returns the number of groups in the system
|
|
|
+ */
|
|
|
+ public addPoints(nb: number, pointFunction: any = this._randomUnitVector): number {
|
|
|
+ var pointsGroup = new PointsGroup(this._groupCounter, pointFunction);
|
|
|
+ var cp: CloudPoint;
|
|
|
+
|
|
|
+ // particles
|
|
|
+ var idx = this.nbParticles;
|
|
|
+ for (var i = 0; i < nb; i++) {
|
|
|
+ cp = this._addParticle(idx, pointsGroup, this._groupCounter, i);
|
|
|
+ if (pointsGroup && pointsGroup._positionFunction) {
|
|
|
+ pointsGroup._positionFunction(cp, idx, i);
|
|
|
+ }
|
|
|
+ this._positions.push(cp.position.x, cp.position.y, cp.position.z);
|
|
|
+ if (cp.color) {
|
|
|
+ this._colors.push(cp.color.r, cp.color.g, cp.color.b, cp.color.a);
|
|
|
+ }
|
|
|
+ idx++;
|
|
|
+ }
|
|
|
+ this.nbParticles += nb;
|
|
|
+ this._groupCounter++;
|
|
|
+ return this._groupCounter;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Adds points to the PCS from the surface of the model shape
|
|
|
+ * @param mesh is any Mesh object that will be used as a surface model for the points
|
|
|
+ * @param nb (positive integer) the number of particles to be created from this model
|
|
|
+ * @param colorWith determines whether a point is colored using color (default), uv, random, stated or none (invisible),
|
|
|
+ * @param color (color3) to be used when colorWith is stated
|
|
|
+ * @returns the number of groups in the system
|
|
|
+ */
|
|
|
+ public addSurfacePoints(mesh: Mesh, nb: number, colorWith?: number, color?: Color4): number {
|
|
|
+ var colored = colorWith ? colorWith : PointColor.COLOR;
|
|
|
+ if (isNaN(colored) || colored < 0 || colored > 3) {
|
|
|
+ colored = PointColor.COLOR ;
|
|
|
+ }
|
|
|
+
|
|
|
+ var meshPos = <FloatArray>mesh.getVerticesData(VertexBuffer.PositionKind);
|
|
|
+ var meshInd = <IndicesArray>mesh.getIndices();
|
|
|
+
|
|
|
+ this._groups.push(this._groupCounter);
|
|
|
+ var pointsGroup = new PointsGroup(this._groupCounter, null);
|
|
|
+
|
|
|
+ pointsGroup._groupDensity = this._calculateDensity(nb, meshPos, meshInd);
|
|
|
+ switch (colored) {
|
|
|
+ case PointColor.COLOR:
|
|
|
+ this._colorFromTexture(mesh, pointsGroup, false);
|
|
|
+ break;
|
|
|
+ case PointColor.UV:
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, false, false);
|
|
|
+ break;
|
|
|
+ case PointColor.RANDOM:
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, false);
|
|
|
+ break;
|
|
|
+ case PointColor.STATED:
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, false, false, color);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ this.nbParticles += nb;
|
|
|
+ this._groupCounter++;
|
|
|
+ return this._groupCounter - 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Adds points to the PCS inside the model shape
|
|
|
+ * @param mesh is any Mesh object that will be used as a surface model for the points
|
|
|
+ * @param nb (positive integer) the number of particles to be created from this model
|
|
|
+ * @param colorWith determines whether a point is colored using color (default), uv, random, stated or none (invisible),
|
|
|
+ * @param color (color3) to be used when colorWith is stated
|
|
|
+ * @returns the number of groups in the system
|
|
|
+ */
|
|
|
+ public addVolumePoints(mesh: Mesh, nb: number, colorWith?: number, color?: Color4): number {
|
|
|
+ var colored = colorWith ? colorWith : PointColor.COLOR;
|
|
|
+ if (isNaN(colored) || colored < 0 || colored > 3) {
|
|
|
+ colored = PointColor.COLOR ;
|
|
|
+ }
|
|
|
+
|
|
|
+ var meshPos = <FloatArray>mesh.getVerticesData(VertexBuffer.PositionKind);
|
|
|
+ var meshInd = <IndicesArray>mesh.getIndices();
|
|
|
+
|
|
|
+ this._groups.push(this._groupCounter);
|
|
|
+ var pointsGroup = new PointsGroup(this._groupCounter, null);
|
|
|
+
|
|
|
+ pointsGroup._groupDensity = this._calculateDensity(nb, meshPos, meshInd);
|
|
|
+ switch (colored) {
|
|
|
+ case PointColor.COLOR:
|
|
|
+ this._colorFromTexture(mesh, pointsGroup, true);
|
|
|
+ break;
|
|
|
+ case PointColor.UV:
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, true, false);
|
|
|
+ break;
|
|
|
+ case PointColor.RANDOM:
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, true);
|
|
|
+ break;
|
|
|
+ case PointColor.STATED:
|
|
|
+ this._setPointsColorOrUV(mesh, pointsGroup, true, false, color);
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ this.nbParticles += nb;
|
|
|
+ this._groupCounter++;
|
|
|
+ return this._groupCounter - 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Sets all the particles : this method actually really updates the mesh according to the particle positions, rotations, colors, textures, etc.
|
|
|
+ * This method calls `updateParticle()` for each particle of the SPS.
|
|
|
+ * For an animated SPS, it is usually called within the render loop.
|
|
|
+ * @param start The particle index in the particle array where to start to compute the particle property values _(default 0)_
|
|
|
+ * @param end The particle index in the particle array where to stop to compute the particle property values _(default nbParticle - 1)_
|
|
|
+ * @param update If the mesh must be finally updated on this call after all the particle computations _(default true)_
|
|
|
+ * @returns the PCS.
|
|
|
+ */
|
|
|
+ public setParticles(start: number = 0, end: number = this.nbParticles - 1, update: boolean = true): PointsCloudSystem {
|
|
|
+ if (!this._updatable) {
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ // custom beforeUpdate
|
|
|
+ this.beforeUpdateParticles(start, end, update);
|
|
|
+
|
|
|
+ const rotMatrix = TmpVectors.Matrix[0];
|
|
|
+ const mesh = this.mesh;
|
|
|
+ const colors32 = this._colors32;
|
|
|
+ const positions32 = this._positions32;
|
|
|
+ const uvs32 = this._uvs32;
|
|
|
+
|
|
|
+ const tempVectors = TmpVectors.Vector3;
|
|
|
+ const camAxisX = tempVectors[5].copyFromFloats(1.0, 0.0, 0.0);
|
|
|
+ const camAxisY = tempVectors[6].copyFromFloats(0.0, 1.0, 0.0);
|
|
|
+ const camAxisZ = tempVectors[7].copyFromFloats(0.0, 0.0, 1.0);
|
|
|
+ const minimum = tempVectors[8].setAll(Number.MAX_VALUE);
|
|
|
+ const maximum = tempVectors[9].setAll(-Number.MAX_VALUE);
|
|
|
+
|
|
|
+ Matrix.IdentityToRef(rotMatrix);
|
|
|
+ var idx = 0; // current index of the particle
|
|
|
+
|
|
|
+ if (this.mesh.isFacetDataEnabled) {
|
|
|
+ this._computeBoundingBox = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ end = (end >= this.nbParticles) ? this.nbParticles - 1 : end;
|
|
|
+ if (this._computeBoundingBox) {
|
|
|
+ if (start != 0 || end != this.nbParticles - 1) { // only some particles are updated, then use the current existing BBox basis. Note : it can only increase.
|
|
|
+ const boundingInfo = this.mesh._boundingInfo;
|
|
|
+ if (boundingInfo) {
|
|
|
+ minimum.copyFrom(boundingInfo.minimum);
|
|
|
+ maximum.copyFrom(boundingInfo.maximum);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ var idx = 0; // particle index
|
|
|
+ var pindex = 0; //index in positions array
|
|
|
+ var cindex = 0; //index in color array
|
|
|
+ var uindex = 0; //index in uv array
|
|
|
+
|
|
|
+ // particle loop
|
|
|
+ for (var p = start; p <= end; p++) {
|
|
|
+ const particle = this.particles[p];
|
|
|
+ idx = particle.idx;
|
|
|
+ pindex = 3 * idx;
|
|
|
+ cindex = 4 * idx;
|
|
|
+ uindex = 2 * idx;
|
|
|
+
|
|
|
+ // call to custom user function to update the particle properties
|
|
|
+ this.updateParticle(particle);
|
|
|
+
|
|
|
+ const particleRotationMatrix = particle._rotationMatrix;
|
|
|
+ const particlePosition = particle.position;
|
|
|
+ const particleGlobalPosition = particle._globalPosition;
|
|
|
+
|
|
|
+ if (this._computeParticleRotation) {
|
|
|
+ particle.getRotationMatrix(rotMatrix);
|
|
|
+ }
|
|
|
+
|
|
|
+ const particleHasParent = (particle.parentId !== null);
|
|
|
+ if (particleHasParent) {
|
|
|
+ const parent = this.particles[particle.parentId!];
|
|
|
+ const parentRotationMatrix = parent._rotationMatrix;
|
|
|
+ const parentGlobalPosition = parent._globalPosition;
|
|
|
+
|
|
|
+ const rotatedY = particlePosition.x * parentRotationMatrix[1] + particlePosition.y * parentRotationMatrix[4] + particlePosition.z * parentRotationMatrix[7];
|
|
|
+ const rotatedX = particlePosition.x * parentRotationMatrix[0] + particlePosition.y * parentRotationMatrix[3] + particlePosition.z * parentRotationMatrix[6];
|
|
|
+ const rotatedZ = particlePosition.x * parentRotationMatrix[2] + particlePosition.y * parentRotationMatrix[5] + particlePosition.z * parentRotationMatrix[8];
|
|
|
+
|
|
|
+ particleGlobalPosition.x = parentGlobalPosition.x + rotatedX;
|
|
|
+ particleGlobalPosition.y = parentGlobalPosition.y + rotatedY;
|
|
|
+ particleGlobalPosition.z = parentGlobalPosition.z + rotatedZ;
|
|
|
+
|
|
|
+ if (this._computeParticleRotation) {
|
|
|
+ const rotMatrixValues = rotMatrix.m;
|
|
|
+ particleRotationMatrix[0] = rotMatrixValues[0] * parentRotationMatrix[0] + rotMatrixValues[1] * parentRotationMatrix[3] + rotMatrixValues[2] * parentRotationMatrix[6];
|
|
|
+ particleRotationMatrix[1] = rotMatrixValues[0] * parentRotationMatrix[1] + rotMatrixValues[1] * parentRotationMatrix[4] + rotMatrixValues[2] * parentRotationMatrix[7];
|
|
|
+ particleRotationMatrix[2] = rotMatrixValues[0] * parentRotationMatrix[2] + rotMatrixValues[1] * parentRotationMatrix[5] + rotMatrixValues[2] * parentRotationMatrix[8];
|
|
|
+ particleRotationMatrix[3] = rotMatrixValues[4] * parentRotationMatrix[0] + rotMatrixValues[5] * parentRotationMatrix[3] + rotMatrixValues[6] * parentRotationMatrix[6];
|
|
|
+ particleRotationMatrix[4] = rotMatrixValues[4] * parentRotationMatrix[1] + rotMatrixValues[5] * parentRotationMatrix[4] + rotMatrixValues[6] * parentRotationMatrix[7];
|
|
|
+ particleRotationMatrix[5] = rotMatrixValues[4] * parentRotationMatrix[2] + rotMatrixValues[5] * parentRotationMatrix[5] + rotMatrixValues[6] * parentRotationMatrix[8];
|
|
|
+ particleRotationMatrix[6] = rotMatrixValues[8] * parentRotationMatrix[0] + rotMatrixValues[9] * parentRotationMatrix[3] + rotMatrixValues[10] * parentRotationMatrix[6];
|
|
|
+ particleRotationMatrix[7] = rotMatrixValues[8] * parentRotationMatrix[1] + rotMatrixValues[9] * parentRotationMatrix[4] + rotMatrixValues[10] * parentRotationMatrix[7];
|
|
|
+ particleRotationMatrix[8] = rotMatrixValues[8] * parentRotationMatrix[2] + rotMatrixValues[9] * parentRotationMatrix[5] + rotMatrixValues[10] * parentRotationMatrix[8];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ particleGlobalPosition.x = particlePosition.x;
|
|
|
+ particleGlobalPosition.y = particlePosition.y;
|
|
|
+ particleGlobalPosition.z = particlePosition.z;
|
|
|
+
|
|
|
+ if (this._computeParticleRotation) {
|
|
|
+ const rotMatrixValues = rotMatrix.m;
|
|
|
+ particleRotationMatrix[0] = rotMatrixValues[0];
|
|
|
+ particleRotationMatrix[1] = rotMatrixValues[1];
|
|
|
+ particleRotationMatrix[2] = rotMatrixValues[2];
|
|
|
+ particleRotationMatrix[3] = rotMatrixValues[4];
|
|
|
+ particleRotationMatrix[4] = rotMatrixValues[5];
|
|
|
+ particleRotationMatrix[5] = rotMatrixValues[6];
|
|
|
+ particleRotationMatrix[6] = rotMatrixValues[8];
|
|
|
+ particleRotationMatrix[7] = rotMatrixValues[9];
|
|
|
+ particleRotationMatrix[8] = rotMatrixValues[10];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ const pivotBackTranslation = tempVectors[11];
|
|
|
+ if (particle.translateFromPivot) {
|
|
|
+ pivotBackTranslation.setAll(0.0);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ pivotBackTranslation.copyFrom(particle.pivot);
|
|
|
+ }
|
|
|
+
|
|
|
+ // positions
|
|
|
+ const tmpVertex = tempVectors[0];
|
|
|
+ tmpVertex.copyFrom(particle.position);
|
|
|
+ const vertexX = tmpVertex.x - particle.pivot.x;
|
|
|
+ const vertexY = tmpVertex.y - particle.pivot.y;
|
|
|
+ const vertexZ = tmpVertex.z - particle.pivot.z;
|
|
|
+
|
|
|
+ let rotatedX = vertexX * particleRotationMatrix[0] + vertexY * particleRotationMatrix[3] + vertexZ * particleRotationMatrix[6];
|
|
|
+ let rotatedY = vertexX * particleRotationMatrix[1] + vertexY * particleRotationMatrix[4] + vertexZ * particleRotationMatrix[7];
|
|
|
+ let rotatedZ = vertexX * particleRotationMatrix[2] + vertexY * particleRotationMatrix[5] + vertexZ * particleRotationMatrix[8];
|
|
|
+
|
|
|
+ rotatedX += pivotBackTranslation.x;
|
|
|
+ rotatedY += pivotBackTranslation.y;
|
|
|
+ rotatedZ += pivotBackTranslation.z;
|
|
|
+
|
|
|
+ const px = positions32[pindex] = particleGlobalPosition.x + camAxisX.x * rotatedX + camAxisY.x * rotatedY + camAxisZ.x * rotatedZ;
|
|
|
+ const py = positions32[pindex + 1] = particleGlobalPosition.y + camAxisX.y * rotatedX + camAxisY.y * rotatedY + camAxisZ.y * rotatedZ;
|
|
|
+ const pz = positions32[pindex + 2] = particleGlobalPosition.z + camAxisX.z * rotatedX + camAxisY.z * rotatedY + camAxisZ.z * rotatedZ;
|
|
|
+
|
|
|
+ if (this._computeBoundingBox) {
|
|
|
+ minimum.minimizeInPlaceFromFloats(px, py, pz);
|
|
|
+ maximum.maximizeInPlaceFromFloats(px, py, pz);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (this._computeParticleColor && particle.color) {
|
|
|
+ const color = particle.color;
|
|
|
+ const colors32 = this._colors32;
|
|
|
+ colors32[cindex] = color.r;
|
|
|
+ colors32[cindex + 1] = color.g;
|
|
|
+ colors32[cindex + 2] = color.b;
|
|
|
+ colors32[cindex + 3] = color.a;
|
|
|
+ }
|
|
|
+ if (this._computeParticleTexture && particle.uv) {
|
|
|
+ const uv = particle.uv;
|
|
|
+ const uvs32 = this._uvs32;
|
|
|
+ uvs32[uindex] = uv.x;
|
|
|
+ uvs32[uindex + 1] = uv.y;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // if the VBO must be updated
|
|
|
+ if (update) {
|
|
|
+ if (this._computeParticleColor) {
|
|
|
+ mesh.updateVerticesData(VertexBuffer.ColorKind, colors32, false, false);
|
|
|
+ }
|
|
|
+ if (this._computeParticleTexture) {
|
|
|
+ mesh.updateVerticesData(VertexBuffer.UVKind, uvs32, false, false);
|
|
|
+ }
|
|
|
+ mesh.updateVerticesData(VertexBuffer.PositionKind, positions32, false, false);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (this._computeBoundingBox) {
|
|
|
+ if (mesh._boundingInfo) {
|
|
|
+ mesh._boundingInfo.reConstruct(minimum, maximum, mesh._worldMatrix);
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ mesh._boundingInfo = new BoundingInfo(minimum, maximum, mesh._worldMatrix);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ this.afterUpdateParticles(start, end, update);
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Disposes the PCS.
|
|
|
+ */
|
|
|
+ public dispose(): void {
|
|
|
+ this.mesh.dispose();
|
|
|
+ this.vars = null;
|
|
|
+ // drop references to internal big arrays for the GC
|
|
|
+ (<any>this._positions) = null;
|
|
|
+ (<any>this._indices) = null;
|
|
|
+ (<any>this._normals) = null;
|
|
|
+ (<any>this._uvs) = null;
|
|
|
+ (<any>this._colors) = null;
|
|
|
+ (<any>this._indices32) = null;
|
|
|
+ (<any>this._positions32) = null;
|
|
|
+ (<any>this._uvs32) = null;
|
|
|
+ (<any>this._colors32) = null;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Visibilty helper : Recomputes the visible size according to the mesh bounding box
|
|
|
+ * doc :
|
|
|
+ * @returns the PCS.
|
|
|
+ */
|
|
|
+ public refreshVisibleSize(): PointsCloudSystem {
|
|
|
+ if (!this._isVisibilityBoxLocked) {
|
|
|
+ this.mesh.refreshBoundingInfo();
|
|
|
+ }
|
|
|
+ return this;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Visibility helper : Sets the size of a visibility box, this sets the underlying mesh bounding box.
|
|
|
+ * @param size the size (float) of the visibility box
|
|
|
+ * note : this doesn't lock the PCS mesh bounding box.
|
|
|
+ * doc :
|
|
|
+ */
|
|
|
+ public setVisibilityBox(size: number): void {
|
|
|
+ var vis = size / 2;
|
|
|
+ this.mesh._boundingInfo = new BoundingInfo(new Vector3(-vis, -vis, -vis), new Vector3(vis, vis, vis));
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Gets whether the PCS is always visible or not
|
|
|
+ * doc :
|
|
|
+ */
|
|
|
+ public get isAlwaysVisible(): boolean {
|
|
|
+ return this._alwaysVisible;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Sets the PCS as always visible or not
|
|
|
+ * doc :
|
|
|
+ */
|
|
|
+ public set isAlwaysVisible(val: boolean) {
|
|
|
+ this._alwaysVisible = val;
|
|
|
+ this.mesh.alwaysSelectAsActiveMesh = val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Tells to `setParticles()` to compute the particle rotations or not
|
|
|
+ * Default value : false. The PCS is faster when it's set to false
|
|
|
+ * Note : particle rotations are only applied to parent particles
|
|
|
+ * Note : the particle rotations aren't stored values, so setting `computeParticleRotation` to false will prevents the particle to rotate
|
|
|
+ */
|
|
|
+ public set computeParticleRotation(val: boolean) {
|
|
|
+ this._computeParticleRotation = val;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Tells to `setParticles()` to compute the particle colors or not.
|
|
|
+ * Default value : true. The PCS is faster when it's set to false.
|
|
|
+ * Note : the particle colors are stored values, so setting `computeParticleColor` to false will keep yet the last colors set.
|
|
|
+ */
|
|
|
+ public set computeParticleColor(val: boolean) {
|
|
|
+ this._computeParticleColor = val;
|
|
|
+ }
|
|
|
+
|
|
|
+ public set computeParticleTexture(val: boolean) {
|
|
|
+ this._computeParticleTexture = val;
|
|
|
+ }
|
|
|
+ /**
|
|
|
+ * Gets if `setParticles()` computes the particle colors or not.
|
|
|
+ * Default value : false. The PCS is faster when it's set to false.
|
|
|
+ * Note : the particle colors are stored values, so setting `computeParticleColor` to false will keep yet the last colors set.
|
|
|
+ */
|
|
|
+ public get computeParticleColor(): boolean {
|
|
|
+ return this._computeParticleColor;
|
|
|
+ }
|
|
|
+ /**
|
|
|
+ * Gets if `setParticles()` computes the particle textures or not.
|
|
|
+ * Default value : false. The PCS is faster when it's set to false.
|
|
|
+ * Note : the particle textures are stored values, so setting `computeParticleTexture` to false will keep yet the last colors set.
|
|
|
+ */
|
|
|
+ public get computeParticleTexture(): boolean {
|
|
|
+ return this._computeParticleTexture;
|
|
|
+ }
|
|
|
+ /**
|
|
|
+ * Tells to `setParticles()` to compute or not the mesh bounding box when computing the particle positions.
|
|
|
+ */
|
|
|
+ public set computeBoundingBox(val: boolean) {
|
|
|
+ this._computeBoundingBox = val;
|
|
|
+ }
|
|
|
+ /**
|
|
|
+ * Gets if `setParticles()` computes or not the mesh bounding box when computing the particle positions.
|
|
|
+ */
|
|
|
+ public get computeBoundingBox(): boolean {
|
|
|
+ return this._computeBoundingBox;
|
|
|
+ }
|
|
|
+
|
|
|
+ // =======================================================================
|
|
|
+ // Particle behavior logic
|
|
|
+ // these following methods may be overwritten by users to fit their needs
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This function does nothing. It may be overwritten to set all the particle first values.
|
|
|
+ * The PCS doesn't call this function, you may have to call it by your own.
|
|
|
+ * doc :
|
|
|
+ */
|
|
|
+ public initParticles(): void {
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This function does nothing. It may be overwritten to recycle a particle
|
|
|
+ * The PCS doesn't call this function, you can to call it
|
|
|
+ * doc :
|
|
|
+ * @param particle The particle to recycle
|
|
|
+ * @returns the recycled particle
|
|
|
+ */
|
|
|
+ public recycleParticle(particle: CloudPoint): CloudPoint {
|
|
|
+ return particle;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * Updates a particle : this function should be overwritten by the user.
|
|
|
+ * It is called on each particle by `setParticles()`. This is the place to code each particle behavior.
|
|
|
+ * doc :
|
|
|
+ * @example : just set a particle position or velocity and recycle conditions
|
|
|
+ * @param particle The particle to update
|
|
|
+ * @returns the updated particle
|
|
|
+ */
|
|
|
+ public updateParticle(particle: CloudPoint): CloudPoint {
|
|
|
+ return particle;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * This will be called before any other treatment by `setParticles()` and will be passed three parameters.
|
|
|
+ * This does nothing and may be overwritten by the user.
|
|
|
+ * @param start the particle index in the particle array where to start to iterate, same than the value passed to setParticle()
|
|
|
+ * @param stop the particle index in the particle array where to stop to iterate, same than the value passed to setParticle()
|
|
|
+ * @param update the boolean update value actually passed to setParticles()
|
|
|
+ */
|
|
|
+ public beforeUpdateParticles(start?: number, stop?: number, update?: boolean): void {
|
|
|
+ }
|
|
|
+ /**
|
|
|
+ * This will be called by `setParticles()` after all the other treatments and just before the actual mesh update.
|
|
|
+ * This will be passed three parameters.
|
|
|
+ * This does nothing and may be overwritten by the user.
|
|
|
+ * @param start the particle index in the particle array where to start to iterate, same than the value passed to setParticle()
|
|
|
+ * @param stop the particle index in the particle array where to stop to iterate, same than the value passed to setParticle()
|
|
|
+ * @param update the boolean update value actually passed to setParticles()
|
|
|
+ */
|
|
|
+ public afterUpdateParticles(start?: number, stop?: number, update?: boolean): void {
|
|
|
+ }
|
|
|
+}
|