123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- import open3d as o3d
- import numpy as np
- import math
- import math
- from functools import reduce
- import sys
- import copy
- # pcd = o3d.io.read_point_cloud("data/stockpile.ply")
- # pcd = o3d.io.read_point_cloud("data/2box-SG-t-MnQ0zoEQIBX.ply")
- # pcd = o3d.io.read_point_cloud("data/4box-1-SG-t-AsSRO3iA0XT.ply")
- # pcd = o3d.io.read_point_cloud("data/4box-2-SG-t-cp3kSewxMKi.ply")
- pcd = o3d.io.read_point_cloud("data/4box-3-SG-t-kuuv0moEP0C.ply")
- print(pcd)
- assert (pcd.has_normals())
- # o3d.visualization.draw_geometries([pcd])
- axes = o3d.geometry.TriangleMesh.create_coordinate_frame()
- # 找出地面所在平面
- plane_model, inliers = pcd.segment_plane(distance_threshold=0.01,
- ransac_n=5,
- num_iterations=10000)
- # 把地面上的点和其他点分开
- [a, b, c, d] = plane_model
- plane_pcd = pcd.select_by_index(inliers)
- plane_pcd.paint_uniform_color([1.0, 0, 0])
- stockpile_pcd = pcd.select_by_index(inliers, invert=True)
- # stockpile_pcd = pcd
- stockpile_pcd.paint_uniform_color([0, 0, 1.0])
- # o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes], point_show_normal=True)
- o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd])
- # o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
- # 移动到原点
- plane_pcd = plane_pcd.translate((0,0,d/c))
- stockpile_pcd = stockpile_pcd.translate((0,0,d/c))
- # 旋转至与坐标轴对齐
- cos_theta = c / math.sqrt(a**2 + b**2 + c**2)
- sin_theta = math.sqrt((a**2+b**2)/(a**2 + b**2 + c**2))
- u_1 = b / math.sqrt(a**2 + b**2 )
- u_2 = -a / math.sqrt(a**2 + b**2)
- rotation_matrix = np.array([[cos_theta + u_1**2 * (1-cos_theta), u_1*u_2*(1-cos_theta), u_2*sin_theta],
- [u_1*u_2*(1-cos_theta), cos_theta + u_2**2*(1- cos_theta), -u_1*sin_theta],
- [-u_2*sin_theta, u_1*sin_theta, cos_theta]])
- plane_pcd.rotate(rotation_matrix)
- stockpile_pcd.rotate(rotation_matrix)
- o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
- # 用statistical outlier算法去除噪点
- cl, ind = stockpile_pcd.remove_statistical_outlier(nb_neighbors=100,
- std_ratio=1)
- stockpile_pcd = stockpile_pcd.select_by_index(ind)
- o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
- # 依据法向量去除噪点
- kd_tree_3d = o3d.geometry.KDTreeFlann(stockpile_pcd)
- noise_list_by_normal = []
- for idx in range (0, len(stockpile_pcd.points)):
- [k, neighbor_idx_list, _] = kd_tree_3d.search_radius_vector_3d(stockpile_pcd.points[idx], 0.1)
- if len(neighbor_idx_list) == 0:
- continue
- normal_sum = np.zeros((3))
- count = 0
- for neib_idx in neighbor_idx_list:
- normal_sum += np.asarray(stockpile_pcd.normals[neib_idx])
- count += 1
- normal_mean = normal_sum / count
- normal_angle = normal_mean[0] * stockpile_pcd.normals[idx][0] + normal_mean[1] * stockpile_pcd.normals[idx][1] + normal_mean[2] * stockpile_pcd.normals[idx][2]
- if normal_angle < 0:
- print(normal_angle)
- noise_list_by_normal.append(idx)
- noise_by_normal_pcd = stockpile_pcd.select_by_index(noise_list_by_normal)
- noise_by_normal_pcd.paint_uniform_color([0, 1.0, 0])
- stockpile_pcd = stockpile_pcd.select_by_index(noise_list_by_normal, invert=True)
- o3d.visualization.draw_geometries([plane_pcd, noise_by_normal_pcd, axes])
- o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
- # 降采样
- # downpcd = stockpile_pcd.voxel_down_sample(voxel_size=0.1)
- downpcd = stockpile_pcd
- print('有效点云:', np.asarray(downpcd.points))
- # 对stockpile建立二维网格
- bbox = downpcd.get_axis_aligned_bounding_box()
- print('bbox: ', bbox)
- bin_num_1d = 250
- bin_size_x = (bbox.max_bound[0] - bbox.min_bound[0]) / bin_num_1d
- bin_size_y = (bbox.max_bound[1] - bbox.min_bound[1]) / bin_num_1d
- grid2d = np.zeros((bin_num_1d, bin_num_1d, 2))
- print('bin_size: ', bin_size_x, bin_size_y)
- points = np.asarray(downpcd.points)
- bin_idx_x = -1
- bin_idx_y = -1
- for point in points:
- bin_idx_x = math.floor((point[0] - bbox.min_bound[0]) / (bbox.max_bound[0] - bbox.min_bound[0]) * bin_num_1d)
- if bin_idx_x <= -1: # 浮点数溢出
- bin_idx_x = 0
- if bin_idx_x >= bin_num_1d:
- bin_idx_x = bin_num_1d - 1
- bin_idx_y = math.floor((point[1] - bbox.min_bound[1]) / (bbox.max_bound[1] - bbox.min_bound[1]) * bin_num_1d)
- if bin_idx_y <= -1: # 浮点数溢出
- bin_idx_y = 0
- if bin_idx_y >= bin_num_1d:
- bin_idx_y = bin_num_1d - 1
- # print('bin before ', bin_idx_x, bin_idx_y, grid2d[bin_idx_x, bin_idx_y, 0], grid2d[bin_idx_x, bin_idx_y, 1])
- # print('point', point)
- grid2d[bin_idx_x, bin_idx_y, 0] += (point[2]) # 注意!认为地面高度为0!
- grid2d[bin_idx_x, bin_idx_y, 1] += 1
- # print('bin after ', bin_idx_x, bin_idx_y, grid2d[bin_idx_x, bin_idx_y, 0], grid2d[bin_idx_x, bin_idx_y, 1])
- # 对地面建立二维网格,空的格子就是被物体盖住的。
- grid_ground = np.zeros((bin_num_1d, bin_num_1d))
- for ground_point in np.asarray(plane_pcd.points):
- if ground_point[0] >= bbox.min_bound[0] and ground_point[0] <= bbox.max_bound[0] and ground_point[1] >= bbox.min_bound[1] and ground_point[1] <= bbox.max_bound[1]:
- bin_idx_x = math.floor((ground_point[0] - bbox.min_bound[0]) / (bbox.max_bound[0] - bbox.min_bound[0]) * bin_num_1d)
- if bin_idx_x <= -1: # 浮点数溢出
- bin_idx_x = 0
- if bin_idx_x >= bin_num_1d:
- bin_idx_x = bin_num_1d - 1
- bin_idx_y = math.floor((ground_point[1] - bbox.min_bound[1]) / (bbox.max_bound[1] - bbox.min_bound[1]) * bin_num_1d)
- if bin_idx_y <= -1: # 浮点数溢出
- bin_idx_y = 0
- if bin_idx_y >= bin_num_1d:
- bin_idx_y = bin_num_1d - 1
- grid_ground[bin_idx_x, bin_idx_y] += 1
- for i in range(0, len(stockpile_pcd.points)):
- point = stockpile_pcd.points[i]
- bin_idx_x = math.floor((point[0] - bbox.min_bound[0]) / (bbox.max_bound[0] - bbox.min_bound[0]) * bin_num_1d)
- if bin_idx_x <= -1: # 浮点数溢出
- bin_idx_x = 0
- if bin_idx_x >= bin_num_1d:
- bin_idx_x = bin_num_1d - 1
- bin_idx_y = math.floor((point[1] - bbox.min_bound[1]) / (bbox.max_bound[1] - bbox.min_bound[1]) * bin_num_1d)
- if bin_idx_y <= -1: # 浮点数溢出
- bin_idx_y = 0
- if bin_idx_y >= bin_num_1d:
- bin_idx_y = bin_num_1d - 1
- # 对stockpile建立二维kdtree以便查询邻居,对stockpile二维网格中没有点的网格做插值
- downpcd_2d = copy.deepcopy(downpcd)
- for point in downpcd_2d.points:
- point[2] = 0
- # print('build kdtree...')
- kd_tree_2d = o3d.geometry.KDTreeFlann(downpcd_2d)
- # print('build over')
- # 二维网格体积累积
- sum = 0
- interCount = 0
- for i in range(0, bin_num_1d):
- for j in range(0, bin_num_1d):
- # print('~~~~~~~~~~~~~')
- if grid_ground[i, j] == 1:
- continue
- if grid2d[i, j, 1] == 0:
- # print('做插值……')
- interCount += 1
- [k, neighbor_idx_list, _] = kd_tree_2d.search_knn_vector_3d([bin_size_x * (i + 0.5) + bbox.min_bound[0], bin_size_y * (j + 0.5) + bbox.min_bound[1], 0], 50)
-
- # 针对物体有垂直的侧面的情况,拿k近邻中z值最小的
- neighbor_pcd = downpcd.select_by_index(neighbor_idx_list)
- neighbor_pcd_pos = np.asarray(neighbor_pcd.points)
- z_min = 100
- for pos in neighbor_pcd_pos:
- if pos[2] < z_min:
- z_min = pos[2]
- grid2d[i, j, 0] = z_min
- grid2d[i, j, 1] = 1
- if(grid2d[i, j, 1]):
- sum += (grid2d[i, j, 0] / grid2d[i, j, 1] * bin_size_x * bin_size_y)
- # print('本网格idx', i, j)
- # print('本网格sum',grid2d[i, j, 0])
- # print('本网格点数',grid2d[i, j, 1])
-
- # print('sum: ', sum)
- # print('~~~~~~~~~~~~~')
- print('体积:', sum)
- # print('插值次数:', interCount)
- exit(0)
|