mission_stock_pile_voxel_true_data.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. import open3d as o3d
  2. import numpy as np
  3. import math
  4. import math
  5. from functools import reduce
  6. import sys
  7. import copy
  8. # pcd = o3d.io.read_point_cloud("data/stockpile.ply")
  9. # pcd = o3d.io.read_point_cloud("data/2box-SG-t-MnQ0zoEQIBX.ply")
  10. # pcd = o3d.io.read_point_cloud("data/4box-1-SG-t-AsSRO3iA0XT.ply")
  11. # pcd = o3d.io.read_point_cloud("data/4box-2-SG-t-cp3kSewxMKi.ply")
  12. pcd = o3d.io.read_point_cloud("data/4box-3-SG-t-kuuv0moEP0C.ply")
  13. print(pcd)
  14. assert (pcd.has_normals())
  15. o3d.visualization.draw_geometries([pcd])
  16. axes = o3d.geometry.TriangleMesh.create_coordinate_frame()
  17. # 找出地面所在平面
  18. plane_model, inliers = pcd.segment_plane(distance_threshold=0.01,
  19. ransac_n=3,
  20. num_iterations=10000)
  21. # 把地面上的点和其他点分开
  22. [a, b, c, d] = plane_model
  23. plane_pcd = pcd.select_by_index(inliers)
  24. plane_pcd.paint_uniform_color([1.0, 0, 0])
  25. stockpile_pcd = pcd.select_by_index(inliers, invert=True)
  26. # stockpile_pcd = pcd
  27. stockpile_pcd.paint_uniform_color([0, 0, 1.0])
  28. o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
  29. # 移动到原点
  30. plane_pcd = plane_pcd.translate((0,0,d/c))
  31. stockpile_pcd = stockpile_pcd.translate((0,0,d/c))
  32. # 旋转至与坐标轴对齐
  33. cos_theta = c / math.sqrt(a**2 + b**2 + c**2)
  34. sin_theta = math.sqrt((a**2+b**2)/(a**2 + b**2 + c**2))
  35. u_1 = b / math.sqrt(a**2 + b**2 )
  36. u_2 = -a / math.sqrt(a**2 + b**2)
  37. rotation_matrix = np.array([[cos_theta + u_1**2 * (1-cos_theta), u_1*u_2*(1-cos_theta), u_2*sin_theta],
  38. [u_1*u_2*(1-cos_theta), cos_theta + u_2**2*(1- cos_theta), -u_1*sin_theta],
  39. [-u_2*sin_theta, u_1*sin_theta, cos_theta]])
  40. plane_pcd.rotate(rotation_matrix)
  41. stockpile_pcd.rotate(rotation_matrix)
  42. o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
  43. # 用statistical outlier算法去除噪点
  44. cl, ind = stockpile_pcd.remove_statistical_outlier(nb_neighbors=100,
  45. std_ratio=1)
  46. stockpile_pcd = stockpile_pcd.select_by_index(ind)
  47. # 降采样
  48. # downpcd = stockpile_pcd.voxel_down_sample(voxel_size=0.1)
  49. downpcd = stockpile_pcd
  50. print('有效点云:', np.asarray(downpcd.points))
  51. # 建立二维网格
  52. bbox = downpcd.get_axis_aligned_bounding_box()
  53. print('bbox: ', bbox)
  54. bin_num_1d = 250
  55. bin_size_x = (bbox.max_bound[0] - bbox.min_bound[0]) / bin_num_1d
  56. bin_size_y = (bbox.max_bound[1] - bbox.min_bound[1]) / bin_num_1d
  57. grid2d = np.zeros((bin_num_1d, bin_num_1d, 2))
  58. print('bin_size: ', bin_size_x, bin_size_y)
  59. points = np.asarray(downpcd.points)
  60. bin_idx_x = -1
  61. bin_idx_y = -1
  62. for point in points:
  63. bin_idx_x = math.floor((point[0] - bbox.min_bound[0]) / (bbox.max_bound[0] - bbox.min_bound[0]) * bin_num_1d)
  64. if bin_idx_x <= -1: # 浮点数溢出
  65. bin_idx_x = 0
  66. if bin_idx_x >= bin_num_1d:
  67. bin_idx_x = bin_num_1d - 1
  68. bin_idx_y = math.floor((point[1] - bbox.min_bound[1]) / (bbox.max_bound[1] - bbox.min_bound[1]) * bin_num_1d)
  69. if bin_idx_y <= -1: # 浮点数溢出
  70. bin_idx_y = 0
  71. if bin_idx_y >= bin_num_1d:
  72. bin_idx_y = bin_num_1d - 1
  73. # print('bin before ', bin_idx_x, bin_idx_y, grid2d[bin_idx_x, bin_idx_y, 0], grid2d[bin_idx_x, bin_idx_y, 1])
  74. # print('point', point)
  75. grid2d[bin_idx_x, bin_idx_y, 0] += (point[2]) # 注意!认为地面高度为0!
  76. grid2d[bin_idx_x, bin_idx_y, 1] += 1
  77. # print('bin after ', bin_idx_x, bin_idx_y, grid2d[bin_idx_x, bin_idx_y, 0], grid2d[bin_idx_x, bin_idx_y, 1])
  78. # 建立二维kdtree以便查询邻居,对二维网格中没有点的网格做插值
  79. downpcd_2d = copy.deepcopy(downpcd)
  80. for point in downpcd_2d.points:
  81. point[2] = 0
  82. # print('build kdtree...')
  83. kd_tree_2d = o3d.geometry.KDTreeFlann(downpcd_2d)
  84. # print('build over')
  85. # 二维网格体积累积
  86. sum = 0
  87. interCount = 0
  88. for i in range(0, bin_num_1d):
  89. for j in range(0, bin_num_1d):
  90. # print('~~~~~~~~~~~~~')
  91. if grid2d[i, j, 1] == 0:
  92. # print('做插值……')
  93. interCount += 1
  94. [k, neighbor_idx_list, _] = kd_tree_2d.search_knn_vector_3d([bin_size_x * (i + 0.5) + bbox.min_bound[0], bin_size_y * (j + 0.5) + bbox.min_bound[1], 0], 50)
  95. # 针对物体有垂直的侧面的情况,拿k近邻中z值最小的
  96. neighbor_pcd = downpcd.select_by_index(neighbor_idx_list)
  97. neighbor_pcd_pos = np.asarray(neighbor_pcd.points)
  98. z_min = 100
  99. for pos in neighbor_pcd_pos:
  100. if pos[2] < z_min:
  101. z_min = pos[2]
  102. grid2d[i, j, 0] = z_min
  103. grid2d[i, j, 1] = 1
  104. if(grid2d[i, j, 1]):
  105. sum += (grid2d[i, j, 0] / grid2d[i, j, 1] * bin_size_x * bin_size_y)
  106. # print('本网格idx', i, j)
  107. # print('本网格sum',grid2d[i, j, 0])
  108. # print('本网格点数',grid2d[i, j, 1])
  109. # print('sum: ', sum)
  110. # print('~~~~~~~~~~~~~')
  111. print('体积:', sum)
  112. # print('插值次数:', interCount)
  113. exit(0)