mission_stock_pile_voxel_true_data.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. import open3d as o3d
  2. import numpy as np
  3. import math
  4. import math
  5. from functools import reduce
  6. import sys
  7. import copy
  8. # pcd = o3d.io.read_point_cloud("data/2box-SG-t-MnQ0zoEQIBX.ply")
  9. # pcd = o3d.io.read_point_cloud("data/4box-1-SG-t-AsSRO3iA0XT.ply")
  10. # pcd = o3d.io.read_point_cloud("data/4box-2-SG-t-cp3kSewxMKi.ply")
  11. pcd = o3d.io.read_point_cloud("data/4box-3-SG-t-kuuv0moEP0C.ply")
  12. print(pcd)
  13. assert (pcd.has_normals())
  14. axes = o3d.geometry.TriangleMesh.create_coordinate_frame()
  15. # 找出地面所在平面
  16. plane_model, inliers = pcd.segment_plane(distance_threshold=0.01,
  17. ransac_n=3,
  18. num_iterations=10000)
  19. # 把地面上的点和其他点分开
  20. [a, b, c, d] = plane_model
  21. plane_pcd = pcd.select_by_index(inliers)
  22. plane_pcd.paint_uniform_color([1.0, 0, 0])
  23. stockpile_pcd = pcd.select_by_index(inliers, invert=True)
  24. # stockpile_pcd = pcd
  25. stockpile_pcd.paint_uniform_color([0, 0, 1.0])
  26. o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
  27. # 移动到原点
  28. plane_pcd = plane_pcd.translate((0,0,d/c))
  29. stockpile_pcd = stockpile_pcd.translate((0,0,d/c))
  30. # 旋转至与坐标轴对齐
  31. cos_theta = c / math.sqrt(a**2 + b**2 + c**2)
  32. sin_theta = math.sqrt((a**2+b**2)/(a**2 + b**2 + c**2))
  33. u_1 = b / math.sqrt(a**2 + b**2 )
  34. u_2 = -a / math.sqrt(a**2 + b**2)
  35. rotation_matrix = np.array([[cos_theta + u_1**2 * (1-cos_theta), u_1*u_2*(1-cos_theta), u_2*sin_theta],
  36. [u_1*u_2*(1-cos_theta), cos_theta + u_2**2*(1- cos_theta), -u_1*sin_theta],
  37. [-u_2*sin_theta, u_1*sin_theta, cos_theta]])
  38. plane_pcd.rotate(rotation_matrix)
  39. stockpile_pcd.rotate(rotation_matrix)
  40. o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes])
  41. # 去除噪点
  42. cl, ind = stockpile_pcd.remove_statistical_outlier(nb_neighbors=80,
  43. std_ratio=0.1)
  44. stockpile_pcd = stockpile_pcd.select_by_index(ind)
  45. print('有效点:', stockpile_pcd)
  46. o3d.visualization.draw_geometries([stockpile_pcd])
  47. # 降采样
  48. # downpcd = stockpile_pcd.voxel_down_sample(voxel_size=0.1)
  49. downpcd = stockpile_pcd
  50. print('有效点云:', np.asarray(downpcd.points))
  51. mean = 0
  52. meanCount = 0
  53. for point in np.asarray(downpcd.points):
  54. mean += point[2]
  55. meanCount += 1
  56. mean = mean / meanCount
  57. print('z均值:', mean)
  58. # 建立二维网格
  59. bbox = downpcd.get_axis_aligned_bounding_box()
  60. print('bbox: ', bbox)
  61. bin_num_1d = 200
  62. bin_size_x = (bbox.max_bound[0] - bbox.min_bound[0]) / bin_num_1d
  63. bin_size_y = (bbox.max_bound[1] - bbox.min_bound[1]) / bin_num_1d
  64. grid2d = np.zeros((bin_num_1d, bin_num_1d, 2))
  65. print('bin_size: ', bin_size_x, bin_size_y)
  66. points = np.asarray(downpcd.points)
  67. bin_idx_x = -1
  68. bin_idx_y = -1
  69. for point in points:
  70. bin_idx_x = math.floor((point[0] - bbox.min_bound[0]) / (bbox.max_bound[0] - bbox.min_bound[0]) * bin_num_1d)
  71. if bin_idx_x <= -1: # 浮点数溢出
  72. bin_idx_x = 0
  73. if bin_idx_x >= bin_num_1d:
  74. bin_idx_x = bin_num_1d - 1
  75. bin_idx_y = math.floor((point[1] - bbox.min_bound[1]) / (bbox.max_bound[1] - bbox.min_bound[1]) * bin_num_1d)
  76. if bin_idx_y <= -1: # 浮点数溢出
  77. bin_idx_y = 0
  78. if bin_idx_y >= bin_num_1d:
  79. bin_idx_y = bin_num_1d - 1
  80. # print('bin before ', bin_idx_x, bin_idx_y, grid2d[bin_idx_x, bin_idx_y, 0], grid2d[bin_idx_x, bin_idx_y, 1])
  81. # print('point', point)
  82. grid2d[bin_idx_x, bin_idx_y, 0] += (point[2]) # 注意!认为地面高度为0!
  83. grid2d[bin_idx_x, bin_idx_y, 1] += 1
  84. # print('bin after ', bin_idx_x, bin_idx_y, grid2d[bin_idx_x, bin_idx_y, 0], grid2d[bin_idx_x, bin_idx_y, 1])
  85. # 建立二维kdtree以便查询邻居,对二维网格中没有点的网格做插值
  86. downpcd_2d = copy.deepcopy(downpcd)
  87. for point in downpcd_2d.points:
  88. point[2] = 0
  89. # print('build kdtree...')
  90. kd_tree_2d = o3d.geometry.KDTreeFlann(downpcd_2d)
  91. # print('build over')
  92. # 二维网格体积累积
  93. sum = 0
  94. interCount = 0
  95. interSum = 0
  96. for i in range(0, bin_num_1d):
  97. for j in range(0, bin_num_1d):
  98. # print('~~~~~~~~~~~~~')
  99. if grid2d[i, j, 1] == 0:
  100. # print('做插值……')
  101. interCount += 1
  102. [k, neighbor_idx_list, _] = kd_tree_2d.search_knn_vector_3d([bin_size_x * (i + 0.5) + bbox.min_bound[0], bin_size_y * (j + 0.5) + bbox.min_bound[1], 0], 100)
  103. # 针对物体有垂直的侧面的情况,拿k近邻中z值最小的
  104. neighbor_pcd = downpcd.select_by_index(neighbor_idx_list)
  105. neighbor_pcd_pos = np.asarray(neighbor_pcd.points)
  106. z_min = 100
  107. for pos in neighbor_pcd_pos:
  108. if pos[2] < z_min:
  109. z_min = pos[2]
  110. grid2d[i, j, 0] = z_min
  111. grid2d[i, j, 1] = 1
  112. interSum += z_min
  113. if(grid2d[i, j, 1]):
  114. sum += (grid2d[i, j, 0] / grid2d[i, j, 1] * bin_size_x * bin_size_y)
  115. # print('本网格idx', i, j)
  116. # print('本网格sum',grid2d[i, j, 0])
  117. # print('本网格点数',grid2d[i, j, 1])
  118. # print('sum: ', sum)
  119. # print('~~~~~~~~~~~~~')
  120. print('插值均值:', interSum / interCount)
  121. print('体积:', sum)
  122. print('插值次数:', interCount)
  123. exit(0)