import open3d as o3d import numpy as np import math import math from functools import reduce import sys import copy import random ratio_factor = 0.9 neighbor_point_min_num = 8 # pcd = o3d.io.read_point_cloud("data/stockpile.ply") pcd = o3d.io.read_point_cloud("data/2box-SG-t-MnQ0zoEQIBX.ply") # pcd = o3d.io.read_point_cloud("data/4box-1-SG-t-AsSRO3iA0XT.ply") # pcd = o3d.io.read_point_cloud("data/4box-2-SG-t-cp3kSewxMKi.ply") # pcd = o3d.io.read_point_cloud("data/4box-3-SG-t-kuuv0moEP0C.ply") print(pcd) assert (pcd.has_normals()) o3d.visualization.draw_geometries([pcd]) axes = o3d.geometry.TriangleMesh.create_coordinate_frame() # 找出地面所在平面 plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=10000) # 把地面上的点和其他点分开 [a, b, c, d] = plane_model plane_pcd = pcd.select_by_index(inliers) plane_pcd.paint_uniform_color([1.0, 0, 0]) stockpile_pcd = pcd.select_by_index(inliers, invert=True) # stockpile_pcd = pcd stockpile_pcd.paint_uniform_color([0, 0, 1.0]) o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes]) # 移动到原点 plane_pcd = plane_pcd.translate((0,0,d/c)) stockpile_pcd = stockpile_pcd.translate((0,0,d/c)) # 旋转至与坐标轴对齐 cos_theta = c / math.sqrt(a**2 + b**2 + c**2) sin_theta = math.sqrt((a**2+b**2)/(a**2 + b**2 + c**2)) u_1 = b / math.sqrt(a**2 + b**2 ) u_2 = -a / math.sqrt(a**2 + b**2) rotation_matrix = np.array([[cos_theta + u_1**2 * (1-cos_theta), u_1*u_2*(1-cos_theta), u_2*sin_theta], [u_1*u_2*(1-cos_theta), cos_theta + u_2**2*(1- cos_theta), -u_1*sin_theta], [-u_2*sin_theta, u_1*sin_theta, cos_theta]]) plane_pcd.rotate(rotation_matrix) stockpile_pcd.rotate(rotation_matrix) o3d.visualization.draw_geometries([plane_pcd, stockpile_pcd, axes]) # 用statistical outlier算法去除噪点 cl, ind = stockpile_pcd.remove_statistical_outlier(nb_neighbors=100, std_ratio=1) stockpile_pcd = stockpile_pcd.select_by_index(ind) # 降采样 # downpcd = stockpile_pcd.voxel_down_sample(voxel_size=0.1) downpcd = stockpile_pcd print('有效点云:', np.asarray(downpcd.points)) # 建立三维网格 bbox = downpcd.get_axis_aligned_bounding_box() my_bbox = { 'min_bound': (bbox.min_bound[0], bbox.min_bound[1], bbox.min_bound[2]), 'max_bound': ((bbox.max_bound[0], bbox.max_bound[1], bbox.max_bound[2] + 0.5)), } print('my_bbox: ', my_bbox) bin_num_1d = 30 bin_size_x = (my_bbox['max_bound'][0] - my_bbox['min_bound'][0]) / bin_num_1d bin_size_y = (my_bbox['max_bound'][1] - my_bbox['min_bound'][1]) / bin_num_1d bin_size_z = (my_bbox['max_bound'][2] - my_bbox['min_bound'][2]) / bin_num_1d grid = np.zeros((bin_num_1d, bin_num_1d, bin_num_1d)) print('bin_size: ', bin_size_x, bin_size_y, bin_size_z) points = np.asarray(downpcd.points) for point in points: bin_idx_x = math.floor((point[0] - my_bbox['min_bound'][0]) / (my_bbox['max_bound'][0] - my_bbox['min_bound'][0]) * bin_num_1d) if bin_idx_x <= -1: # 浮点数溢出 bin_idx_x = 0 if bin_idx_x >= bin_num_1d: bin_idx_x = bin_num_1d - 1 bin_idx_y = math.floor((point[1] - my_bbox['min_bound'][1]) / (my_bbox['max_bound'][1] - my_bbox['min_bound'][1]) * bin_num_1d) if bin_idx_y <= -1: # 浮点数溢出 bin_idx_y = 0 if bin_idx_y >= bin_num_1d: bin_idx_y = bin_num_1d - 1 bin_idx_z = math.floor((point[2] - my_bbox['min_bound'][2]) / (my_bbox['max_bound'][2] - my_bbox['min_bound'][2]) * bin_num_1d) if bin_idx_z <= -1: # 浮点数溢出 bin_idx_z = 0 if bin_idx_z >= bin_num_1d: bin_idx_z = bin_num_1d - 1 # print('point', point) # print(grid[bin_idx_x, bin_idx_y, bin_idx_z]) grid[bin_idx_x, bin_idx_y, bin_idx_z] += 1 min_point_num_threshold = 1 assert(grid[0, 0, bin_num_1d - 1] < min_point_num_threshold) grid_voxel = np.zeros((bin_num_1d, bin_num_1d, bin_num_1d)) # 0: 初始状态;-1:已加入待处理列表; 1:已处理,无点;2:已处理,有点; cellToProcessList = [(0, 0, bin_num_1d - 1)] grid_voxel[0, 0, bin_num_1d - 1] = -1 count1 = 0 count2 = 0 def processCell(): global min_point_num_threshold global grid global grid_voxel global cellToProcessList global count1 global count2 i = cellToProcessList[0][0] j = cellToProcessList[0][1] k = cellToProcessList[0][2] assert(grid_voxel[i, j, k] == -1) if grid[i, j, k] < min_point_num_threshold: grid_voxel[i, j, k] = 1 count1 += 1 if i - 1 >= 0 and grid_voxel[i - 1, j, k] == 0: cellToProcessList.append((i - 1, j, k)) grid_voxel[i - 1, j, k] = -1 if i + 1 <= bin_num_1d - 1 and grid_voxel[i + 1, j, k] == 0: cellToProcessList.append((i + 1, j, k)) grid_voxel[i + 1, j, k] = -1 if j - 1 >= 0 and grid_voxel[i, j - 1, k] == 0: cellToProcessList.append((i, j - 1, k)) grid_voxel[i, j - 1, k] = -1 if j + 1 <= bin_num_1d - 1 and grid_voxel[i, j + 1, k] == 0: cellToProcessList.append((i, j + 1, k)) grid_voxel[i, j + 1, k] = -1 if k - 1 >= 0 and grid_voxel[i, j, k - 1] == 0: cellToProcessList.append((i, j, k - 1)) grid_voxel[i, j, k - 1] = -1 if k + 1 <= bin_num_1d - 1 and grid_voxel[i, j, k + 1] == 0: cellToProcessList.append((i, j, k + 1)) grid_voxel[i, j, k + 1] = -1 else: grid_voxel[i, j, k] = 2 count2 += 1 cellToProcessList.pop(0) while len(cellToProcessList) > 0: processCell() print('空虚格子数:', count1) print('边界格子数:', count2) print('内部格子数:', bin_num_1d * bin_num_1d * bin_num_1d - count1 - 0.5 * count2) print('物体占比:', (bin_num_1d * bin_num_1d * bin_num_1d - count1 - 0.5 * count2) / (bin_num_1d * bin_num_1d * bin_num_1d)) print('体积:', (bin_num_1d * bin_num_1d * bin_num_1d - count1 - 0.5 * count2) * bin_size_x * bin_size_y * bin_size_z) print('外部体积:', (count1 + 0.5 * count2) * bin_size_x * bin_size_y * bin_size_z) print('0, 0, 最高:', grid_voxel[0, 0, bin_num_1d - 1]) print('0, 0, 最低:', grid_voxel[0, 0, 0])