MathUtil.js 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906
  1. import Constant from "../Constant";
  2. import bezierUtil from "./bezierUtil.js";
  3. export default class MathUtil {
  4. constructor() {}
  5. getFixed(num, decimal) {
  6. if (!decimal) {
  7. decimal = 5;
  8. }
  9. // return Math.floor(num * 10000) / 10000;
  10. return parseFloat(num.toFixed(decimal));
  11. }
  12. // 求两个点的距离
  13. getDistance(p1, p2) {
  14. const x1 = p1.x;
  15. const y1 = p1.y;
  16. const x2 = p2.x;
  17. const y2 = p2.y;
  18. const num = Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2));
  19. return this.getFixed(num);
  20. }
  21. createLine1(point1, point2) {
  22. if (point1.x == point2.x && point1.y == point2.y) {
  23. return null;
  24. } else if (this.getFixed(Math.abs(point1.x - point2.x)) == 0) {
  25. return { x: point1.x };
  26. } else if (this.getFixed(Math.abs(point1.y - point2.y)) == 0) {
  27. return { y: point1.y };
  28. }
  29. const parametera = (point1.y - point2.y) / (point1.x - point2.x);
  30. const parameterb =
  31. (point1.x * point2.y - point2.x * point1.y) / (point1.x - point2.x);
  32. if (this.getFixed(parametera) == 0) {
  33. return { y: this.getFixed(parameterb) };
  34. }
  35. const parameter = {
  36. a: this.getFixed(parametera),
  37. b: this.getFixed(parameterb),
  38. };
  39. return parameter;
  40. }
  41. createLine2(point, angle) {
  42. if (angle == 90 || angle == 270) {
  43. return { x: point.x };
  44. }
  45. let a = Math.tan((angle / 180) * Math.PI);
  46. let b = point.y - a * point.x;
  47. if (a != 0) {
  48. return { a: a, b: b };
  49. } else {
  50. return { y: point.y };
  51. }
  52. }
  53. // 与lineA平行并且point在线上
  54. createLine3(lineA, point) {
  55. const parameter = {};
  56. if (typeof lineA.a === "undefined") {
  57. if (typeof lineA.x !== "undefined") {
  58. parameter.x = point.x;
  59. } else if (typeof lineA.y !== "undefined") {
  60. parameter.y = point.y;
  61. }
  62. } else {
  63. parameter.a = lineA.a;
  64. parameter.b = point.y - point.x * lineA.a;
  65. }
  66. return parameter;
  67. }
  68. create2AngleLine(point, angle, driftAngle) {
  69. let line1 = this.createLine2(point, angle - driftAngle / 2);
  70. let line2 = this.createLine2(point, angle + driftAngle / 2);
  71. return { line1: line1, line2: line2 };
  72. }
  73. distanceForPoints(point1, point2) {
  74. return Math.sqrt(
  75. Math.pow(point1.x - point2.x, 2) + Math.pow(point1.y - point2.y, 2)
  76. );
  77. }
  78. //与line平行且两条线直接的距离是distance的两条线
  79. getParallelLineForDistance(line, distance) {
  80. let line1 = {};
  81. let line2 = {};
  82. if (!line.hasOwnProperty("a")) {
  83. if (line.hasOwnProperty("x")) {
  84. let x = line.x;
  85. line1.x = x + distance;
  86. line2.x = x - distance;
  87. } else if (line.hasOwnProperty("y")) {
  88. let y = line.y;
  89. line1.y = y + distance;
  90. line2.y = y - distance;
  91. }
  92. } else {
  93. line1.a = line.a;
  94. line1.b = line.b;
  95. line2.a = line.a;
  96. line2.b = line.b;
  97. let angle = Math.atan(line.a);
  98. let db = Math.abs(distance / Math.cos(angle));
  99. let b = line.b;
  100. line1.b = b + db;
  101. line2.b = b - db;
  102. }
  103. return { line1: line1, line2: line2 };
  104. }
  105. //start-end这条线段上,距离start是distance的点
  106. getJoinForStartToEnd1(start, end, distance) {}
  107. //start-end这条线段上,离start的距离是start-end长度的ratio
  108. getJoinForStartToEnd2(start, end, ratio) {}
  109. //获取扇形的两个端点
  110. getEndpoint(point, angle, sectorAngle) {
  111. const distance = 15;
  112. //line1是减,line2是加
  113. let lines1 = this.create2AngleLine(point, angle, sectorAngle);
  114. let line = this.createLine2(point, angle);
  115. line = this.getLineForPoint(line, point);
  116. let lines2 = this.getParallelLineForDistance(line, distance);
  117. let point1 = this.getIntersectionPoint(lines1.line1, lines2.line1);
  118. let point2 = this.getIntersectionPoint(lines1.line1, lines2.line2);
  119. let point3 = this.getIntersectionPoint(lines1.line2, lines2.line1);
  120. let point4 = this.getIntersectionPoint(lines1.line2, lines2.line2);
  121. let angle1 = this.Angle(point, point1, { x: point.x + 1, y: point.y });
  122. let angle2 = this.Angle(point, point2, { x: point.x + 1, y: point.y });
  123. let angle3 = this.Angle(point, point3, { x: point.x + 1, y: point.y });
  124. let angle4 = this.Angle(point, point4, { x: point.x + 1, y: point.y });
  125. if (angle > 180) {
  126. angle = 360 - angle;
  127. }
  128. if (
  129. Math.abs((angle1 + angle3) / 2 - angle) <
  130. Math.abs((angle2 + angle4) / 2 - angle)
  131. ) {
  132. return { p1: point1, p2: point3 };
  133. } else {
  134. return { p1: point2, p2: point4 };
  135. }
  136. }
  137. // true表示逆时针,false表示顺时针
  138. isClockwise(vertices) {
  139. let area = 0;
  140. for (let i = 0; i < vertices.length; i++) {
  141. const j = (i + 1) % vertices.length;
  142. area += vertices[i].x * vertices[j].y;
  143. area -= vertices[j].x * vertices[i].y;
  144. }
  145. const sub = area / 2;
  146. if (sub > 0) {
  147. // 逆时针
  148. return true;
  149. } else {
  150. // 顺时针
  151. return false;
  152. }
  153. }
  154. reverse(points) {
  155. const _points = [];
  156. for (let i = points.length - 1; i > -1; --i) {
  157. _points.push(points[i]);
  158. }
  159. return _points;
  160. }
  161. //两条线的交点
  162. getIntersectionPoint(parameter1, parameter2) {
  163. if (this.isParallel(parameter1, parameter2)) {
  164. return null;
  165. }
  166. if (
  167. typeof parameter1.a == "undefined" &&
  168. typeof parameter2.a != "undefined"
  169. ) {
  170. if (parameter1.x) {
  171. return {
  172. x: parameter1.x,
  173. y: parameter2.a * parameter1.x + parameter2.b,
  174. };
  175. } else if (parameter1.y) {
  176. return {
  177. x: (parameter1.y - parameter2.b) / parameter2.a,
  178. y: parameter1.y,
  179. };
  180. }
  181. } else if (
  182. typeof parameter2.a == "undefined" &&
  183. typeof parameter1.a != "undefined"
  184. ) {
  185. if (parameter2.x) {
  186. return {
  187. x: parameter2.x,
  188. y: parameter1.a * parameter2.x + parameter1.b,
  189. };
  190. } else if (parameter2.y) {
  191. return {
  192. x: (parameter2.y - parameter1.b) / parameter1.a,
  193. y: parameter2.y,
  194. };
  195. }
  196. } else if (
  197. typeof parameter2.a == "undefined" &&
  198. typeof parameter1.a == "undefined"
  199. ) {
  200. if (parameter1.hasOwnProperty("x") && parameter2.hasOwnProperty("y")) {
  201. return { x: parameter1.x, y: parameter2.y };
  202. } else if (
  203. parameter1.hasOwnProperty("y") &&
  204. parameter2.hasOwnProperty("x")
  205. ) {
  206. return { x: parameter2.x, y: parameter1.y };
  207. } else {
  208. return null;
  209. }
  210. }
  211. if (parameter1.a == parameter2.a) {
  212. return null;
  213. }
  214. let joinpointx =
  215. (parameter2.b - parameter1.b) / (parameter1.a - parameter2.a);
  216. let joinpointy =
  217. (parameter1.a * parameter2.b - parameter2.a * parameter1.b) /
  218. (parameter1.a - parameter2.a);
  219. let point = { x: joinpointx, y: joinpointy };
  220. return point;
  221. }
  222. // 直线的交点
  223. getIntersectionPoint2(a, b, c, d) {
  224. /** 1 解线性方程组, 求线段交点. **/
  225. // 如果分母为0 则平行或共线, 不相交
  226. const denominator = (b.y - a.y) * (d.x - c.x) - (a.x - b.x) * (c.y - d.y);
  227. if (denominator == 0) {
  228. return null;
  229. }
  230. // 线段所在直线的交点坐标 (x , y)
  231. const x =
  232. ((b.x - a.x) * (d.x - c.x) * (c.y - a.y) +
  233. (b.y - a.y) * (d.x - c.x) * a.x -
  234. (d.y - c.y) * (b.x - a.x) * c.x) /
  235. denominator;
  236. const y =
  237. -(
  238. (b.y - a.y) * (d.y - c.y) * (c.x - a.x) +
  239. (b.x - a.x) * (d.y - c.y) * a.y -
  240. (d.x - c.x) * (b.y - a.y) * c.y
  241. ) / denominator;
  242. return { x: x, y: y };
  243. }
  244. //两条线段交点
  245. getIntersectionPoint3(a, b, c, d) {
  246. const join = this.getIntersectionPoint2(a, b, c, d);
  247. if (join) {
  248. const x = join.x;
  249. const y = join.y; // 交点在线段1上 且交点也在线段2上
  250. /** 2 判断交点是否在两条线段上 **/
  251. if (
  252. (x - a.x) * (x - b.x) <= 0.001 &&
  253. (y - a.y) * (y - b.y) <= 0.001 &&
  254. (x - c.x) * (x - d.x) <= 0.001 &&
  255. (y - c.y) * (y - d.y) <= 0.001
  256. ) {
  257. // 返回交点p
  258. return {
  259. x: x,
  260. y: y,
  261. };
  262. }
  263. return null;
  264. }
  265. return null;
  266. }
  267. // 线段和直线是否相交
  268. getIntersectionPoint4(point1, point2, line) {
  269. const line1 = this.createLine1(point1, point2);
  270. const join = this.getIntersectionPoint(line1, line);
  271. if (join == null) {
  272. return null;
  273. }
  274. if (this.PointInSegment(join, point1, point2)) {
  275. return join; // 相交
  276. } else {
  277. return null;
  278. }
  279. }
  280. //返回true表示平行
  281. isParallel(line1, line2) {
  282. if (typeof line1.a == "undefined" && typeof line2.a == "undefined") {
  283. if (line1.hasOwnProperty("x") && line2.hasOwnProperty("x")) {
  284. return true;
  285. } else if (line1.hasOwnProperty("y") && line2.hasOwnProperty("y")) {
  286. return true;
  287. } else {
  288. return false;
  289. }
  290. } else if (typeof line1.a == "undefined" || typeof line2.a == "undefined") {
  291. return false;
  292. } else if (this.getFixed(line1.a) == this.getFixed(line2.a)) {
  293. return true;
  294. } else {
  295. return false;
  296. }
  297. }
  298. //两条相交的线段的夹角,永远小于180度
  299. Angle(o, s, e) {
  300. let cosfi = 0,
  301. fi = 0,
  302. norm = 0;
  303. let dsx = s.x - o.x;
  304. let dsy = s.y - o.y;
  305. let dex = e.x - o.x;
  306. let dey = e.y - o.y;
  307. cosfi = dsx * dex + dsy * dey;
  308. norm = (dsx * dsx + dsy * dsy) * (dex * dex + dey * dey);
  309. cosfi /= Math.sqrt(norm);
  310. if (cosfi >= 1.0) return 0;
  311. //if (cosfi <= -1.0) return Math.PI;
  312. if (cosfi <= -1.0) return 180;
  313. fi = Math.acos(cosfi);
  314. if ((180 * fi) / Math.PI < 180) {
  315. //return 180 * fi / Math.PI;
  316. return (fi * 180) / Math.PI;
  317. } else {
  318. //return 360 - 180 * fi / Math.PI;
  319. return ((2 * Math.PI - fi) * 180) / Math.PI;
  320. }
  321. }
  322. Angle1(o, s, e) {
  323. let cosfi = 0,
  324. fi = 0,
  325. norm = 0;
  326. let dsx = s.x - o.x;
  327. let dsy = s.y - o.y;
  328. let dex = e.x - o.x;
  329. let dey = e.y - o.y;
  330. cosfi = dsx * dex + dsy * dey;
  331. norm = (dsx * dsx + dsy * dsy) * (dex * dex + dey * dey);
  332. cosfi /= Math.sqrt(norm);
  333. if (cosfi >= 1.0) return 0;
  334. //if (cosfi <= -1.0) return Math.PI;
  335. if (cosfi <= -1.0) return 180;
  336. fi = Math.acos(cosfi);
  337. return (fi * 180) / Math.PI;
  338. }
  339. getArrow(start, end, ange = 30, L = 20) {
  340. let a = Math.atan2(end.y - start.y, end.x - start.x);
  341. let xC = end.x - L * Math.cos(a + (ange * Math.PI) / 180); // θ=30
  342. let yC = end.y - L * Math.sin(a + (ange * Math.PI) / 180);
  343. let xD = end.x - L * Math.cos(a - (ange * Math.PI) / 180);
  344. let yD = end.y - L * Math.sin(a - (ange * Math.PI) / 180);
  345. return [{ x: xC, y: yC }, end, { x: xD, y: yD }];
  346. }
  347. //经过point且与line垂直的线
  348. getLineForPoint(line, point) {
  349. let parameter = {};
  350. if (line.a == 0 || typeof line.a == "undefined") {
  351. if (line.hasOwnProperty("x")) {
  352. parameter.y = point.y;
  353. } else if (line.hasOwnProperty("y")) {
  354. parameter.x = point.x;
  355. }
  356. } else {
  357. parameter.a = -1 / line.a;
  358. parameter.b = point.y - point.x * parameter.a;
  359. }
  360. return parameter;
  361. }
  362. // 经过point且与line垂直的直线,该直线与line的交点
  363. getJoinLinePoint(point, line) {
  364. const verticalLine = this.getVerticalLine(line, point);
  365. const join = this.getIntersectionPoint(line, verticalLine);
  366. return join;
  367. }
  368. // 点到直线的距离
  369. getDisForPoinLine(point, line) {
  370. const join = this.getJoinLinePoint(point, line);
  371. return this.getDistance(point, join);
  372. }
  373. // 垂直线
  374. getVerticalLine(line, point) {
  375. if (typeof line.a === "undefined") {
  376. if (line.hasOwnProperty("x")) {
  377. return { y: point.y };
  378. } else if (line.hasOwnProperty("y")) {
  379. return { x: point.x };
  380. } else {
  381. return null;
  382. }
  383. } else if (line.a == 0) {
  384. return { x: point.x };
  385. } else {
  386. const tl = {};
  387. tl.a = -1 / line.a;
  388. const result = this.createLine3(tl, point);
  389. return result;
  390. }
  391. }
  392. //point在直线上,只是不确定是否在线段上
  393. //方法:point到startPoint和endPoint的距离之和与startPoint和endPoint之间的距离对比
  394. isContainForSegment(point, startPoint, endPoint, minDis) {
  395. if (!minDis) {
  396. minDis = Constant.minLen;
  397. }
  398. let dis1 =
  399. this.getDistance(startPoint, point) + this.getDistance(endPoint, point);
  400. let dis2 = this.getDistance(startPoint, endPoint);
  401. if (Math.abs(dis1 - dis2) < minDis) {
  402. return true;
  403. } else {
  404. return false;
  405. }
  406. }
  407. /*
  408. //minDis
  409. isPointInPoly(point, points, minDis) {
  410. if (!minDis) {
  411. minDis = Constant.minRealDis
  412. }
  413. const x = point.x
  414. const y = point.y
  415. let inside = false
  416. // 是否在顶点附近
  417. for (let i = 0; i < points.length; ++i) {
  418. let distance = this.getDistance(point, points[i])
  419. if (distance < minDis) {
  420. return true
  421. }
  422. }
  423. // 是否在边沿
  424. for (let i = 0, j = points.length - 1; i < points.length; j = i++) {
  425. let pt1 = points[i]
  426. let pt2 = points[j]
  427. const flag = this.isContainForSegment(point, pt1, pt2, minDis)
  428. if (flag) {
  429. return true
  430. }
  431. }
  432. for (let i = 0, j = points.length - 1; i < points.length; j = i++) {
  433. let pt1 = points[i]
  434. let pt2 = points[j]
  435. const xi = pt1.x
  436. const yi = pt1.y
  437. const xj = pt2.x
  438. const yj = pt2.y
  439. const intersect = yi > y != yj > y && x < ((xj - xi) * (y - yi)) / (yj - yi) + xi
  440. if (intersect) inside = !inside
  441. }
  442. return inside
  443. }
  444. */
  445. isPointInPoly(point, points) {
  446. const x = point.x;
  447. const y = point.y;
  448. let inside = false;
  449. for (let i = 0, j = points.length - 1; i < points.length; j = i++) {
  450. let pt1 = points[i];
  451. let pt2 = points[j];
  452. const xi = pt1.x;
  453. const yi = pt1.y;
  454. const xj = pt2.x;
  455. const yj = pt2.y;
  456. const intersect =
  457. yi > y != yj > y && x < ((xj - xi) * (y - yi)) / (yj - yi) + xi;
  458. if (intersect) inside = !inside;
  459. }
  460. return inside;
  461. }
  462. //a表示横轴,b表示竖轴
  463. isPointInElliptic(point, center, a, b) {
  464. let r =
  465. Math.pow((point.x - center.x) / a, 2) +
  466. Math.pow((point.y - center.y) / b, 2);
  467. if (r <= 1) {
  468. return true;
  469. } else {
  470. return false;
  471. }
  472. }
  473. // 点到线段的距离
  474. // 在minDistance范围内,会吸附到point1/point2上
  475. // 返回值:type是1表示吸附在point1,是2表示吸附在point2,是0表示在线段point1-point2上;
  476. getDisForPoinSegment(point, point1, point2, minDistance) {
  477. const line = this.createLine1(point1, point2);
  478. const join = this.getJoinLinePoint(point, line);
  479. const dis = this.getDistance(point1, point2);
  480. const dis1 = this.getDistance(join, point1);
  481. const dis2 = this.getDistance(join, point2);
  482. if (
  483. this.getDistance(join, point1) > dis ||
  484. this.getDistance(join, point2) > dis
  485. ) {
  486. // 在线段外
  487. if (dis1 < dis2 && dis1 < minDistance) {
  488. return { type: 1, join: point1 };
  489. } else if (dis2 < dis1 && dis2 < minDistance) {
  490. return { type: 2, join: point2 };
  491. } else {
  492. return null;
  493. }
  494. } else {
  495. if (dis1 < minDistance) {
  496. return { type: 1, join: point1 };
  497. } else if (dis2 < minDistance) {
  498. return { type: 2, join: point2 };
  499. } else if (this.getDistance(point, join) < minDistance) {
  500. return { type: 0, join: join };
  501. }
  502. }
  503. }
  504. PointInSegment(Q, pi, pj, minDis) {
  505. if (
  506. this.getDistance(Q, pi) < Constant.minAdsorbPix ||
  507. this.getDistance(Q, pj) < Constant.minAdsorbPix
  508. ) {
  509. return true;
  510. }
  511. if (!minDis) {
  512. minDis = 0.1;
  513. }
  514. minDis = minDis / 2;
  515. const offset1 = (Q.x - pi.x) * (pj.y - pi.y) - (pj.x - pi.x) * (Q.y - pi.y);
  516. const offset2 = Math.min(pi.x, pj.x) - Q.x;
  517. const offset3 = Q.x - Math.max(pi.x, pj.x);
  518. const offset4 = Math.min(pi.y, pj.y) - Q.y;
  519. const offset5 = Q.y - Math.max(pi.y, pj.y);
  520. if (
  521. Math.abs(offset1) < minDis &&
  522. (offset2 <= 0 || Math.abs(offset2) < minDis) &&
  523. (offset3 <= 0 || Math.abs(offset3) < minDis) &&
  524. (offset4 <= 0 || Math.abs(offset4) < minDis) &&
  525. (offset5 <= 0 || Math.abs(offset5) < minDis)
  526. ) {
  527. return true;
  528. } else {
  529. return false;
  530. }
  531. }
  532. //点p是否在线段AB上
  533. isPointOnSegment(p, A, B) {
  534. // 计算向量 AP 和 BP
  535. const AP = {
  536. x: p.x - A.x,
  537. y: p.y - A.y,
  538. };
  539. const BP = {
  540. x: p.x - B.x,
  541. y: p.y - B.y,
  542. };
  543. // 计算向量 AB 的长度和方向
  544. const AB = {
  545. x: B.x - A.x,
  546. y: B.y - A.y,
  547. };
  548. const AB_length = this.getDistance(A, B);
  549. const AB_direction = {
  550. x: AB.x / AB_length,
  551. y: AB.y / AB_length,
  552. };
  553. // 检查 AP 和 BP 的方向是否与 AB 相同,并检查它们的长度是否小于等于 AB 的长度
  554. const dot_product_AP = AP.x * AB_direction.x + AP.y * AB_direction.y;
  555. const dot_product_BP = BP.x * AB_direction.x + BP.y * AB_direction.y;
  556. //return dot_product_AP >= 0 && dot_product_BP <= 0 && Math.abs(AP.x * BP.y - AP.y * BP.x) <= AB_length * Number.EPSILON;
  557. return (
  558. dot_product_AP >= 0 &&
  559. dot_product_BP <= 0 &&
  560. Math.abs(AP.x * BP.y - AP.y * BP.x) <= 0.01
  561. );
  562. }
  563. clonePoint(p1, p2) {
  564. p1.x = p2.x;
  565. p1.y = p2.y;
  566. }
  567. clonePoints(points1, points2) {
  568. for (let i = 0; i < points1.length; ++i) {
  569. this.clonePoint(points1[i], points2[i]);
  570. }
  571. }
  572. equalPoint(p1, p2) {
  573. if (p1.x == p2.x && p1.y == p2.y) {
  574. return true;
  575. } else {
  576. return false;
  577. }
  578. }
  579. equalPoints(points1, points2) {
  580. if (points1.length != points2.length) {
  581. return false;
  582. }
  583. for (let i = 0; i < points1.length; ++i) {
  584. let flag = this.equalPoint(points1[i], points2[i]);
  585. if (!flag) {
  586. return false;
  587. }
  588. }
  589. return true;
  590. }
  591. equalJSON(json1, json2) {
  592. for (let key in json1) {
  593. if (json2.hasOwnProperty(key) && json1[key] == json2[key]) {
  594. continue;
  595. } else {
  596. return false;
  597. }
  598. }
  599. for (let key in json2) {
  600. if (json1.hasOwnProperty(key) && json1[key] == json2[key]) {
  601. continue;
  602. } else {
  603. return false;
  604. }
  605. }
  606. return true;
  607. }
  608. crossTwoLines(point1, point2, point3, point4, dis) {
  609. if (typeof dis == "undefined") {
  610. dis = Constant.minAdsorbPix;
  611. }
  612. const join = this.getIntersectionPoint2(point1, point2, point3, point4);
  613. if (join != null) {
  614. if (
  615. this.getDistance(point1, join) > dis &&
  616. this.getDistance(point2, join) > dis &&
  617. this.getDistance(point3, join) > dis &&
  618. this.getDistance(point4, join) > dis
  619. ) {
  620. if (
  621. this.getDistance(point1, join) < this.getDistance(point1, point2) &&
  622. this.getDistance(point2, join) < this.getDistance(point1, point2) &&
  623. this.getDistance(point3, join) < this.getDistance(point3, point4) &&
  624. this.getDistance(point4, join) < this.getDistance(point3, point4)
  625. ) {
  626. return true;
  627. } else {
  628. return false;
  629. }
  630. }
  631. } else {
  632. if (
  633. this.PointInSegment(point1, point3, point4) ||
  634. this.PointInSegment(point2, point3, point4)
  635. ) {
  636. return true;
  637. }
  638. }
  639. return false;
  640. }
  641. getDisPointsLine(line, point, distance1, distance2) {
  642. const newpoint1 = {};
  643. const newpoint2 = {};
  644. const result = {};
  645. if (line.hasOwnProperty("x")) {
  646. newpoint1.x = line.x;
  647. newpoint1.y = point.y - distance1;
  648. newpoint2.x = line.x;
  649. newpoint2.y = point.y + distance2;
  650. } else if (line.hasOwnProperty("y")) {
  651. newpoint1.y = line.y;
  652. newpoint1.x = point.x - distance1;
  653. newpoint2.y = line.y;
  654. newpoint2.x = point.x + distance2;
  655. } else {
  656. const a = Math.atan(line.a);
  657. const t_line = { a: -1 / line.a };
  658. const line_ab2 = this.createLine3(t_line, point);
  659. const join = this.getIntersectionPoint(line, line_ab2);
  660. newpoint1.x = join.x - distance1 * Math.cos(a);
  661. newpoint1.y = join.y - distance1 * Math.sin(a);
  662. newpoint2.x = join.x + distance2 * Math.cos(a);
  663. newpoint2.y = join.y + distance2 * Math.sin(a);
  664. }
  665. result.newpoint1 = newpoint1;
  666. result.newpoint2 = newpoint2;
  667. return result;
  668. }
  669. getBoundingBox(points) {
  670. let minX = points[0].x;
  671. let maxX = points[0].x;
  672. let minY = points[0].y;
  673. let maxY = points[0].y;
  674. for (let i = 1; i < points.length; ++i) {
  675. const point = points[i];
  676. if (minX > point.x) {
  677. minX = point.x;
  678. }
  679. if (minY > point.y) {
  680. minY = point.y;
  681. }
  682. if (maxX < point.x) {
  683. maxX = point.x;
  684. }
  685. if (maxY < point.y) {
  686. maxY = point.y;
  687. }
  688. }
  689. const box = {};
  690. box.minX = minX;
  691. box.minY = minY;
  692. box.maxX = maxX;
  693. box.maxY = maxY;
  694. return box;
  695. }
  696. getBoundingBox2(points) {
  697. let minX = null;
  698. let maxX = null;
  699. let minY = null;
  700. let maxY = null;
  701. for (let key in points) {
  702. const point = points[key];
  703. if (minX == null || minX > point.x) {
  704. minX = point.x;
  705. }
  706. if (minY == null || minY > point.y) {
  707. minY = point.y;
  708. }
  709. if (maxX == null || maxX < point.x) {
  710. maxX = point.x;
  711. }
  712. if (maxY == null || maxY < point.y) {
  713. maxY = point.y;
  714. }
  715. }
  716. const box = {};
  717. box.minX = minX;
  718. box.minY = minY;
  719. box.maxX = maxX;
  720. box.maxY = maxY;
  721. return box;
  722. }
  723. ComputePolygonArea(points) {
  724. const point_num = points.length;
  725. if (point_num < 3) {
  726. return 0;
  727. }
  728. let s = points[0].y * (points[point_num - 1].x - points[1].x);
  729. for (let i = 1; i < point_num; ++i)
  730. s += points[i].y * (points[i - 1].x - points[(i + 1) % point_num].x);
  731. return Math.abs(s / 2.0);
  732. }
  733. // 获取多边形重心
  734. getPolygonCore(points) {
  735. function Area(p0, p1, p2) {
  736. let area = 0.0;
  737. area =
  738. p0.x * p1.y +
  739. p1.x * p2.y +
  740. p2.x * p0.y -
  741. p1.x * p0.y -
  742. p2.x * p1.y -
  743. p0.x * p2.y;
  744. return area / 2;
  745. }
  746. let sum_x = 0;
  747. let sum_y = 0;
  748. let sum_area = 0;
  749. let p1 = points[1];
  750. for (let i = 2; i < points.length; i++) {
  751. const p2 = points[i];
  752. const area = Area(points[0], p1, p2);
  753. sum_area += area;
  754. sum_x += (points[0].x + p1.x + p2.x) * area;
  755. sum_y += (points[0].y + p1.y + p2.y) * area;
  756. p1 = p2;
  757. }
  758. const xx = sum_x / sum_area / 3;
  759. const yy = sum_y / sum_area / 3;
  760. return {
  761. x: xx,
  762. y: yy,
  763. };
  764. }
  765. // points1是否在points2里
  766. isPolyInPoly(points1, points2, minDis) {
  767. for (let i = 0; i < points1.length; ++i) {
  768. let flag = false;
  769. for (let j = 0; j < points2.length; ++j) {
  770. if (this.equalPoint(points1[i], points2[j])) {
  771. flag = true;
  772. break;
  773. }
  774. }
  775. if (!flag) {
  776. if (!this.isPointInPoly(points1[i], points2, minDis)) {
  777. return false;
  778. }
  779. } else {
  780. const nextIndex = i == points1.length - 1 ? 0 : i + 1;
  781. const mid = {
  782. x: (points1[i].x + points1[nextIndex].x) / 2,
  783. y: (points1[i].y + points1[nextIndex].y) / 2,
  784. };
  785. if (!this.isPointInPoly(mid, points2, minDis)) {
  786. return false;
  787. }
  788. }
  789. }
  790. return true;
  791. }
  792. dotPoints(pt1, pt2, point1, point2) {
  793. let vt1 = {};
  794. let vt2 = {};
  795. vt1.start = {};
  796. vt1.end = {};
  797. vt1.start.x = 0;
  798. vt1.start.y = 0;
  799. vt1.end.x = pt2.x - pt1.x;
  800. vt1.end.y = pt2.y - pt1.y;
  801. vt2.start = {};
  802. vt2.end = {};
  803. vt2.start.x = 0;
  804. vt2.start.y = 0;
  805. vt2.end.x = point2.x - point1.x;
  806. vt2.end.y = point2.y - point1.y;
  807. let result = vt1.end.x * vt2.end.x + vt1.end.y * vt2.end.y;
  808. return result;
  809. }
  810. //start是起点,target是朝着目标移动,distance是移动的距离
  811. translate(start, target, point, distance) {
  812. let dx = target.x - start.x;
  813. let dy = target.y - start.y;
  814. let dis = Math.sqrt(Math.pow(dx, 2) + Math.pow(dy, 2));
  815. let result = {
  816. x: point.x + (dx * distance) / dis,
  817. y: point.y + (dy * distance) / dis,
  818. };
  819. return result;
  820. }
  821. //射线与线段相交
  822. // intersection(rayStart, rayEnd, segmentStart, segmentEnd) {
  823. // // 计算射线和线段的方向向量
  824. // const rayDirection = {
  825. // x:rayEnd.x - rayStart.x,
  826. // y:rayEnd.y - rayStart.y,
  827. // };
  828. // const segmentDirection = {
  829. // x:segmentEnd.x - segmentStart.x,
  830. // y:segmentEnd.y - segmentStart.y,
  831. // };
  832. // // 计算射线和线段的起点之间的向量
  833. // const startPointVector = {
  834. // x:rayStart.x - segmentStart.x,
  835. // y:rayStart.y - segmentStart.y,
  836. // };
  837. // // 计算射线和线段的叉积
  838. // const crossProduct = rayDirection.x * segmentDirection.y - rayDirection.y * segmentDirection.x;
  839. // // 如果叉积为0,则表示射线和线段平行
  840. // if (crossProduct === 0) {
  841. // return null;
  842. // }
  843. // // 计算线段起点到射线的交点的向量
  844. // const t = (startPointVector.x * segmentDirection.y - startPointVector.y * segmentDirection.x) / crossProduct;
  845. // // 如果t的值小于0,则交点在射线的起点之后
  846. // if (t < 0) {
  847. // return null;
  848. // }
  849. // // 计算交点的坐标
  850. // const intersectionX = rayStart.x + t * rayDirection.x;
  851. // const intersectionY = rayStart.y + t * rayDirection.y;
  852. // // 如果交点在线段的范围内,则返回交点坐标
  853. // if ((intersectionX >= Math.min(segmentStart.x, segmentEnd.x)) &&
  854. // (intersectionX <= Math.max(segmentStart.x, segmentEnd.x)) &&
  855. // (intersectionY >= Math.min(segmentStart.y, segmentEnd.y)) &&
  856. // (intersectionY <= Math.max(segmentStart.y, segmentEnd.y))) {
  857. // //return [intersectionX, intersectionY];
  858. // return {
  859. // x:intersectionX,
  860. // y:intersectionY,
  861. // };
  862. // }
  863. // // 否则返回null
  864. // return null;
  865. // }
  866. // raySegmentIntersection(rayOrigin, rayDirection, segmentStart, segmentEnd) {
  867. // // 计算射线和线段的交点
  868. // const x1 = rayOrigin.x
  869. // const y1 = rayOrigin.y
  870. // const x2 = segmentStart.x
  871. // const y2 = segmentStart.y
  872. // const dx1 = rayDirection.x
  873. // const dy1 = rayDirection.y
  874. // const dx2 = segmentEnd.x - x2
  875. // const dy2 = segmentEnd.y - y2
  876. // const crossProduct = dx1 * dy2 - dx2 * dy1
  877. // if (Math.abs(crossProduct) < 1e-8) {
  878. // // 射线和线段平行或共线
  879. // return null
  880. // }
  881. // const t1 = (dx2 * (y1 - y2) - dy2 * (x1 - x2)) / crossProduct
  882. // const t2 = (dx1 * (y1 - y2) - dy1 * (x1 - x2)) / crossProduct
  883. // if (t1 >= 0 && t2 >= 0 && t2 <= 1) {
  884. // // 有交点,计算交点坐标
  885. // const intersectionX = x1 + t1 * dx1
  886. // const intersectionY = y1 + t1 * dy1
  887. // return {
  888. // x: intersectionX,
  889. // y: intersectionY,
  890. // }
  891. // } else {
  892. // // 没有交点
  893. // return null
  894. // }
  895. // }
  896. raySegmentIntersection(rayOrigin, rayDirection, segmentStart, segmentEnd) {
  897. const end = {
  898. x: rayOrigin.x + rayDirection.x,
  899. y: rayOrigin.y - rayDirection.z,
  900. };
  901. const line = this.createLine1(rayOrigin, end);
  902. const join = this.getIntersectionPoint4(segmentStart, segmentEnd, line);
  903. if (join == null) {
  904. return null;
  905. } else {
  906. const dis = this.getDistance(end, join);
  907. const dis1 = this.getDistance(rayOrigin, join);
  908. const dis2 = this.getDistance(rayOrigin, end);
  909. if (dis - (dis1 + dis2) + 0.01 > 0) {
  910. return null;
  911. } else {
  912. return join;
  913. }
  914. }
  915. }
  916. RectangleVertex(startPoint, endPoint, width) {
  917. let line = this.createLine1(startPoint, endPoint);
  918. let lines = this.getParallelLineForDistance(line, width / 2);
  919. let leftEdgeStart, rightEdgeStart, rightEdgeEnd, leftEdgeEnd;
  920. let point = null;
  921. let points = [];
  922. //先计算start部分
  923. point = startPoint;
  924. points.push(endPoint);
  925. points.push(startPoint);
  926. let point1 = this.getJoinLinePoint(point, lines.line1);
  927. let point2 = this.getJoinLinePoint(point, lines.line2);
  928. points[2] = point1;
  929. if (this.isClockwise(points)) {
  930. rightEdgeStart = point1;
  931. leftEdgeStart = point2;
  932. } else {
  933. rightEdgeStart = point2;
  934. leftEdgeStart = point1;
  935. }
  936. //再计算end部分
  937. points = [];
  938. point = endPoint;
  939. points.push(startPoint);
  940. points.push(endPoint);
  941. point1 = this.getJoinLinePoint(point, lines.line1);
  942. point2 = this.getJoinLinePoint(point, lines.line2);
  943. points[2] = point1;
  944. if (this.isClockwise(points)) {
  945. rightEdgeEnd = point2;
  946. leftEdgeEnd = point1;
  947. } else {
  948. rightEdgeEnd = point1;
  949. leftEdgeEnd = point2;
  950. }
  951. return {
  952. leftEdgeStart: leftEdgeStart,
  953. rightEdgeStart: rightEdgeStart,
  954. rightEdgeEnd: rightEdgeEnd,
  955. leftEdgeEnd: leftEdgeEnd,
  956. };
  957. }
  958. //start到end的射线中取一点point,start-end和end-point的距离相同
  959. getPositionForExtendedLine(start, end) {
  960. const dx = end.x - start.x;
  961. const dy = end.y - start.y;
  962. const point = {
  963. x: end.x + dx,
  964. y: end.y + dy,
  965. };
  966. return point;
  967. }
  968. isOnRay(start, dir, position) {
  969. const v1 = { x: dir.x - start.x, y: dir.y - start.y };
  970. const v2 = { x: position.x - start.x, y: position.y - start.y };
  971. return v1.x * v2.y - v1.y * v2.x;
  972. }
  973. //向量是否同样的方向
  974. isSameDirForVector(point1, point2, p1, p2) {
  975. const v1 = {
  976. x: point2.x - point1.x,
  977. y: point2.y - point1.y,
  978. };
  979. const v2 = {
  980. x: p2.x - p1.x,
  981. y: p2.y - p1.y,
  982. };
  983. const value = this.dot(v1, v2);
  984. if (value > 0) {
  985. return true;
  986. }
  987. {
  988. return false;
  989. }
  990. }
  991. //生成五角星
  992. createFivePointedStar(position, r) {
  993. let deg = Math.PI / 180; //角度
  994. let points = [];
  995. points[0] = {
  996. x: position.x - r * Math.cos(54 * deg),
  997. y: position.y + r * Math.sin(54 * deg),
  998. };
  999. points[1] = {
  1000. x: position.x,
  1001. y: position.y - r,
  1002. };
  1003. points[2] = {
  1004. x: position.x + r * Math.cos(54 * deg),
  1005. y: position.y + r * Math.sin(54 * deg),
  1006. };
  1007. points[3] = {
  1008. x: position.x - r * Math.cos(18 * deg),
  1009. y: position.y - r * Math.sin(18 * deg),
  1010. };
  1011. points[4] = {
  1012. x: position.x + r * Math.cos(18 * deg),
  1013. y: position.y - r * Math.sin(18 * deg),
  1014. };
  1015. return points;
  1016. }
  1017. createSixPoint(position, r) {
  1018. let deg = Math.PI / 180; //角度
  1019. let points = [];
  1020. points[0] = {
  1021. x: position.x,
  1022. y: position.y + r,
  1023. };
  1024. points[1] = {
  1025. x: position.x + r * Math.sin(60 * deg),
  1026. y: position.y + r * Math.cos(60 * deg),
  1027. };
  1028. points[2] = {
  1029. x: position.x + r * Math.cos(30 * deg),
  1030. y: position.y - r * Math.sin(30 * deg),
  1031. };
  1032. points[3] = {
  1033. x: position.x,
  1034. y: position.y - r,
  1035. };
  1036. points[4] = {
  1037. x: position.x - r * Math.cos(30 * deg),
  1038. y: position.y - r * Math.sin(30 * deg),
  1039. };
  1040. points[5] = {
  1041. x: position.x - r * Math.sin(60 * deg),
  1042. y: position.y + r * Math.cos(60 * deg),
  1043. };
  1044. return points;
  1045. }
  1046. //求圆和直线之间的交点
  1047. /**
  1048. * 求圆和直线之间的交点
  1049. * 直线方程:y = kx + b
  1050. * 圆的方程:(x - m)² + (x - n)² = r²
  1051. * x1, y1 = 线坐标1, x2, y2 = 线坐标2, m, n = 圆坐标, r = 半径
  1052. */
  1053. getInsertPointBetweenCircleAndLine(x1, y1, x2, y2, m, n, radius) {
  1054. let insertPoints = [];
  1055. if (Math.abs(x1 - x2) < 0.5) {
  1056. insertPoints[0] = {
  1057. x: x1,
  1058. y: n - Math.sqrt(radius * radius - Math.pow(x1 - m, 2)),
  1059. };
  1060. insertPoints[1] = {
  1061. x: x1,
  1062. y: n + Math.sqrt(radius * radius - Math.pow(x1 - m, 2)),
  1063. };
  1064. return insertPoints;
  1065. }
  1066. // console.log(x1, y1, x2, y2, m, n, radius)
  1067. let kbArr = this.binaryEquationGetKB(x1, y1, x2, y2);
  1068. let k = kbArr[0];
  1069. let b = kbArr[1];
  1070. let aX = 1 + k * k;
  1071. let bX = 2 * k * (b - n) - 2 * m;
  1072. let cX = m * m + (b - n) * (b - n) - radius * radius;
  1073. let xArr = this.quadEquationGetX(aX, bX, cX);
  1074. xArr.forEach((x) => {
  1075. let y = k * x + b;
  1076. insertPoints.push({ x: x, y: y });
  1077. });
  1078. return insertPoints;
  1079. }
  1080. /**
  1081. * 求二元一次方程的系数
  1082. * y1 = k * x1 + b => k = (y1 - b) / x1
  1083. * y2 = k * x2 + b => y2 = ((y1 - b) / x1) * x2 + b
  1084. */
  1085. binaryEquationGetKB(x1, y1, x2, y2) {
  1086. let k = (y1 - y2) / (x1 - x2);
  1087. let b = (x1 * y2 - x2 * y1) / (x1 - x2);
  1088. return [k, b];
  1089. }
  1090. /**
  1091. * 一元二次方程求根
  1092. * ax² + bx + c = 0
  1093. */
  1094. quadEquationGetX(a, b, c) {
  1095. let xArr = [];
  1096. let result = Math.pow(b, 2) - 4 * a * c;
  1097. if (result > 0) {
  1098. xArr.push((-b + Math.sqrt(result)) / (2 * a));
  1099. xArr.push((-b - Math.sqrt(result)) / (2 * a));
  1100. }
  1101. //else if (result == 0) {
  1102. else {
  1103. xArr.push(-b / (2 * a));
  1104. }
  1105. return xArr;
  1106. }
  1107. angleTo(v1, v2) {
  1108. const denominator = Math.sqrt(this.lengthSq(v1) * this.lengthSq(v2));
  1109. if (denominator === 0) return 90;
  1110. const theta = this.dot(v1, v2) / denominator;
  1111. //return Math.acos(this.clamp(theta, -1, 1));
  1112. return (Math.acos(this.clamp(theta, -1, 1)) / Math.PI) * 180;
  1113. }
  1114. //点乘
  1115. dot(v1, v2) {
  1116. return v1.x * v2.x + v1.y * v2.y;
  1117. }
  1118. //叉乘
  1119. cross(v1, v2) {
  1120. return v1.x * v2.y - v1.y * v2.x;
  1121. }
  1122. // 两点相减
  1123. pointMinus(v1, v2) {
  1124. return {
  1125. x: v1.x - v2.x,
  1126. y: v1.y - v2.y,
  1127. };
  1128. }
  1129. // 两点相加
  1130. pointPlus(v1, v2) {
  1131. return {
  1132. x: v1.x + v2.x,
  1133. y: v1.y + v2.y,
  1134. };
  1135. }
  1136. // 中心点
  1137. lineCenter(v1, v2) {
  1138. const point = this.pointPlus(v1, v2);
  1139. return {
  1140. x: point.x / 2,
  1141. y: point.y / 2,
  1142. };
  1143. }
  1144. // 点放大
  1145. pointScale(v, a) {
  1146. return {
  1147. x: v.x * a,
  1148. y: v.y * a,
  1149. };
  1150. }
  1151. clamp(value, min, max) {
  1152. return Math.max(min, Math.min(max, value));
  1153. }
  1154. lengthSq(v) {
  1155. return v.x * v.x + v.y * v.y;
  1156. }
  1157. // 当前点 下一个点 下下个点
  1158. getCurvesControls(p1, pt, p2, scale = 0.3) {
  1159. const vec1T = this.pointMinus(p1, pt);
  1160. const vecT2 = this.pointMinus(p1, pt);
  1161. const len1 = Math.hypot(vec1T.x, vec1T.y);
  1162. const len2 = Math.hypot(vecT2.x, vecT2.y);
  1163. const v = len1 / len2;
  1164. let delta;
  1165. if (v > 1) {
  1166. delta = this.pointMinus(
  1167. p1,
  1168. this.pointPlus(pt, this.pointScale(this.pointMinus(p2, pt), 1 / v))
  1169. );
  1170. } else {
  1171. delta = this.pointMinus(
  1172. this.pointPlus(pt, this.pointScale(this.pointMinus(p1, pt), v)),
  1173. p2
  1174. );
  1175. }
  1176. delta = this.pointScale(delta, scale);
  1177. const control1 = {
  1178. x: this.pointPlus(pt, delta).x,
  1179. y: this.pointPlus(pt, delta).y,
  1180. };
  1181. const control2 = {
  1182. x: this.pointMinus(pt, delta).x,
  1183. y: this.pointMinus(pt, delta).y,
  1184. };
  1185. return { control1, control2 };
  1186. }
  1187. getCurvesByPoints(points, scale = 0.2) {
  1188. const curves = [];
  1189. let preControl1, preControl2;
  1190. for (let i = 0; i < points.length - 2; i++) {
  1191. const { control1, control2 } = this.getCurvesControls(
  1192. points[i],
  1193. points[i + 1],
  1194. points[i + 2],
  1195. scale
  1196. );
  1197. curves.push({
  1198. start: points[i],
  1199. end: points[i + 1],
  1200. controls: i === 0 ? [control1] : [preControl2, control1],
  1201. });
  1202. preControl1 = control1;
  1203. preControl2 = control2;
  1204. }
  1205. curves.push({
  1206. start: points[points.length - 2],
  1207. controls: [preControl2],
  1208. end: points[points.length - 1],
  1209. });
  1210. return curves;
  1211. }
  1212. /**
  1213. * 已知四个控制点,及曲线中的某一个点的 x/y,反推求 t
  1214. * @param {number} x1 起点 x/y
  1215. * @param {number} x2 控制点1 x/y
  1216. * @param {number} x3 控制点2 x/y
  1217. * @param {number} x4 终点 x/y
  1218. * @param {number} X 曲线中的某个点 x/y
  1219. * @returns {number[]} t[]
  1220. */
  1221. getThreeBezierT(x1, x2, x3, x4, X) {
  1222. const a = -x1 + 3 * x2 - 3 * x3 + x4;
  1223. const b = 3 * x1 - 6 * x2 + 3 * x3;
  1224. const c = -3 * x1 + 3 * x2;
  1225. const d = x1 - X;
  1226. // 盛金公式, 预先需满足, a !== 0
  1227. // 判别式
  1228. const A = Math.pow(b, 2) - 3 * a * c;
  1229. const B = b * c - 9 * a * d;
  1230. const C = Math.pow(c, 2) - 3 * b * d;
  1231. const delta = Math.pow(B, 2) - 4 * A * C;
  1232. let t1 = -100,
  1233. t2 = -100,
  1234. t3 = -100;
  1235. // 3个相同实数根
  1236. if (A === B && A === 0) {
  1237. t1 = -b / (3 * a);
  1238. t2 = -c / b;
  1239. t3 = (-3 * d) / c;
  1240. return [t1, t2, t3];
  1241. }
  1242. // 1个实数根和1对共轭复数根
  1243. if (delta > 0) {
  1244. const v = Math.pow(B, 2) - 4 * A * C;
  1245. const xsv = v < 0 ? -1 : 1;
  1246. const m1 = A * b + (3 * a * (-B + (v * xsv) ** (1 / 2) * xsv)) / 2;
  1247. const m2 = A * b + (3 * a * (-B - (v * xsv) ** (1 / 2) * xsv)) / 2;
  1248. const xs1 = m1 < 0 ? -1 : 1;
  1249. const xs2 = m2 < 0 ? -1 : 1;
  1250. t1 =
  1251. (-b - (m1 * xs1) ** (1 / 3) * xs1 - (m2 * xs2) ** (1 / 3) * xs2) /
  1252. (3 * a);
  1253. // 涉及虚数,可不考虑。i ** 2 = -1
  1254. }
  1255. // 3个实数根
  1256. if (delta === 0) {
  1257. const K = B / A;
  1258. t1 = -b / a + K;
  1259. t2 = t3 = -K / 2;
  1260. }
  1261. // 3个不相等实数根
  1262. if (delta < 0) {
  1263. const xsA = A < 0 ? -1 : 1;
  1264. const T = (2 * A * b - 3 * a * B) / (2 * (A * xsA) ** (3 / 2) * xsA);
  1265. const theta = Math.acos(T);
  1266. if (A > 0 && T < 1 && T > -1) {
  1267. t1 = (-b - 2 * A ** (1 / 2) * Math.cos(theta / 3)) / (3 * a);
  1268. t2 =
  1269. (-b +
  1270. A ** (1 / 2) *
  1271. (Math.cos(theta / 3) + 3 ** (1 / 2) * Math.sin(theta / 3))) /
  1272. (3 * a);
  1273. t3 =
  1274. (-b +
  1275. A ** (1 / 2) *
  1276. (Math.cos(theta / 3) - 3 ** (1 / 2) * Math.sin(theta / 3))) /
  1277. (3 * a);
  1278. }
  1279. }
  1280. return [t1, t2, t3];
  1281. }
  1282. /**
  1283. * @desc 获取三阶贝塞尔曲线的线上坐标
  1284. * B(t) = P0 * (1-t)^3 + 3 * P1 * t * (1-t)^2 + 3 * P2 * t^2 * (1-t) + P3 * t^3, t ∈ [0,1]
  1285. * @param {number} t 当前百分比
  1286. * @param {Array} p1 起点坐标
  1287. * @param {Array} p2 终点坐标
  1288. * @param {Array} cp1 控制点1
  1289. * @param {Array} cp2 控制点2
  1290. */
  1291. getThreeBezierPoint(t, p1, cp1, cp2, p2) {
  1292. const { x: x1, y: y1 } = p1;
  1293. const { x: x2, y: y2 } = p2;
  1294. const { x: cx1, y: cy1 } = cp1;
  1295. const { x: cx2, y: cy2 } = cp2;
  1296. const x =
  1297. x1 * (1 - t) * (1 - t) * (1 - t) +
  1298. 3 * cx1 * t * (1 - t) * (1 - t) +
  1299. 3 * cx2 * t * t * (1 - t) +
  1300. x2 * t * t * t;
  1301. const y =
  1302. y1 * (1 - t) * (1 - t) * (1 - t) +
  1303. 3 * cy1 * t * (1 - t) * (1 - t) +
  1304. 3 * cy2 * t * t * (1 - t) +
  1305. y2 * t * t * t;
  1306. return { x, y };
  1307. }
  1308. getHitInfoForThreeBezier(position, curve, rang = 3) {
  1309. // 定义三次贝塞尔曲线的控制点和目标点
  1310. var p0 = curve.start;
  1311. var p1 = curve.controls[0];
  1312. var p2 = curve.controls[1];
  1313. var p3 = curve.end;
  1314. var target = position;
  1315. // 参数化方式在曲线上取一系列的点
  1316. var pointsOnCurve = [];
  1317. for (var t = 0; t <= 1; t += 0.01) {
  1318. var x =
  1319. Math.pow(1 - t, 3) * p0.x +
  1320. 3 * Math.pow(1 - t, 2) * t * p1.x +
  1321. 3 * (1 - t) * Math.pow(t, 2) * p2.x +
  1322. Math.pow(t, 3) * p3.x;
  1323. var y =
  1324. Math.pow(1 - t, 3) * p0.y +
  1325. 3 * Math.pow(1 - t, 2) * t * p1.y +
  1326. 3 * (1 - t) * Math.pow(t, 2) * p2.y +
  1327. Math.pow(t, 3) * p3.y;
  1328. pointsOnCurve.push({ x: x, y: y });
  1329. }
  1330. // 计算每个点与目标点的距离
  1331. var shortestDistance = Number.MAX_VALUE;
  1332. var closestPoint;
  1333. for (var i = 0; i < pointsOnCurve.length; i++) {
  1334. var distance = Math.sqrt(
  1335. Math.pow(pointsOnCurve[i].x - target.x, 2) +
  1336. Math.pow(pointsOnCurve[i].y - target.y, 2)
  1337. );
  1338. if (distance < shortestDistance) {
  1339. shortestDistance = distance;
  1340. closestPoint = pointsOnCurve[i];
  1341. }
  1342. }
  1343. return {
  1344. position: closestPoint,
  1345. distance: shortestDistance,
  1346. };
  1347. console.log("最短距离:", shortestDistance);
  1348. console.log("最近点:", closestPoint);
  1349. const { x: offsetX, y: offsetY } = position;
  1350. let results = [];
  1351. // 用 x 求出对应的 t,用 t 求相应位置的 y,再比较得出的 y 与 offsetY 之间的差值
  1352. const tsx = this.getThreeBezierT(
  1353. curve.start.x,
  1354. curve.controls[0].x,
  1355. curve.controls[1].x,
  1356. curve.end.x,
  1357. offsetX
  1358. );
  1359. console.log(tsx);
  1360. for (let x = 0; x < 3; x++) {
  1361. if (tsx[x] <= 1 && tsx[x] >= 0) {
  1362. const point = this.getThreeBezierPoint(
  1363. tsx[x],
  1364. curve.start,
  1365. curve.controls[0],
  1366. curve.controls[1],
  1367. curve.end
  1368. );
  1369. // if (Math.abs(point.y - offsetY) < rang) {
  1370. results.push({
  1371. position: point,
  1372. distance: this.getDistance(point, position),
  1373. });
  1374. // }
  1375. }
  1376. }
  1377. // 如果上述没有结果,则用 y 求出对应的 t,再用 t 求出对应的 x,与 offsetX 进行匹配
  1378. const tsy = this.getThreeBezierT(
  1379. curve.start.y,
  1380. curve.controls[0].y,
  1381. curve.controls[1].y,
  1382. curve.end.y,
  1383. offsetY
  1384. );
  1385. for (let y = 0; y < 3; y++) {
  1386. if (tsy[y] <= 1 && tsy[y] >= 0) {
  1387. const point = this.getThreeBezierPoint(
  1388. tsy[y],
  1389. curve.start,
  1390. curve.controls[0],
  1391. curve.controls[1],
  1392. curve.end
  1393. );
  1394. // if (Math.abs(point.x - offsetX) < rang) {
  1395. results.push({
  1396. position: point,
  1397. distance: this.getDistance(point, position),
  1398. });
  1399. // }
  1400. }
  1401. }
  1402. console.log(results);
  1403. return results.sort((a, b) => a.distance - b.distance)[0];
  1404. }
  1405. // 二次曲线
  1406. getHitInfoForTwoBezier(position, curve) {
  1407. let bezierData = [];
  1408. bezierData.push(curve.start.x);
  1409. bezierData.push(curve.start.y);
  1410. bezierData.push(curve.controls[0].x);
  1411. bezierData.push(curve.controls[0].y);
  1412. bezierData.push(curve.end.x);
  1413. bezierData.push(curve.end.y);
  1414. const { isHit, getInfo } = bezierUtil.measureBezier(...bezierData);
  1415. const { point } = getInfo(position);
  1416. return {
  1417. position: {
  1418. x: point[0],
  1419. y: point[1],
  1420. },
  1421. distance: this.getDistance(position, {
  1422. x: point[0],
  1423. y: point[1],
  1424. }),
  1425. };
  1426. }
  1427. getHitInfoForCurves(pos, curves, roadWidth) {
  1428. let joinInfo;
  1429. for (const curve of curves) {
  1430. const tempJoinInfo =
  1431. curve.controls.length === 2
  1432. ? this.getHitInfoForThreeBezier(pos, curve, roadWidth / 2)
  1433. : this.getHitInfoForTwoBezier(pos, curve);
  1434. if (
  1435. !joinInfo ||
  1436. (tempJoinInfo && tempJoinInfo.distance < joinInfo.distance)
  1437. ) {
  1438. joinInfo = tempJoinInfo;
  1439. }
  1440. }
  1441. return joinInfo;
  1442. }
  1443. getHitInfoForCurve(pos, curve, roadWidth) {
  1444. let joinInfo;
  1445. const tempJoinInfo =
  1446. curve.controls.length === 2
  1447. ? this.getHitInfoForThreeBezier(pos, curve, roadWidth / 2)
  1448. : this.getHitInfoForTwoBezier(pos, curve);
  1449. if (
  1450. !joinInfo ||
  1451. (tempJoinInfo && tempJoinInfo.distance < joinInfo.distance)
  1452. ) {
  1453. joinInfo = tempJoinInfo;
  1454. }
  1455. return joinInfo;
  1456. }
  1457. getIndexForCurvesPoints(position, points) {
  1458. let minDis = null;
  1459. let minDisToPoint = null;
  1460. let minPointIndex = -1;
  1461. let index = -1;
  1462. for (let i = 0; i < points.length - 1; ++i) {
  1463. const line = this.createLine1(points[i], points[i + 1]);
  1464. const join = this.getJoinLinePoint(position, line);
  1465. const dis = this.getDistance(position, join);
  1466. if (this.isContainForSegment(join, points[i], points[i + 1])) {
  1467. if (minDis == null || minDis > dis) {
  1468. minDis = dis;
  1469. index = i + 1;
  1470. }
  1471. }
  1472. if (minDisToPoint == null) {
  1473. minDisToPoint = mathUtil.getDistance(position, points[i]);
  1474. minPointIndex = i;
  1475. } else if (minDisToPoint > mathUtil.getDistance(position, points[i])) {
  1476. minDisToPoint = mathUtil.getDistance(position, points[i]);
  1477. minPointIndex = i;
  1478. }
  1479. }
  1480. if (index == -1) {
  1481. if (
  1482. minDisToPoint >
  1483. mathUtil.getDistance(position, points[points.length - 1])
  1484. ) {
  1485. return points.length;
  1486. } else {
  1487. return minPointIndex;
  1488. }
  1489. } else {
  1490. return index;
  1491. }
  1492. }
  1493. getCurvesIndexForCurvesPoints(position, points) {
  1494. let minDis = null;
  1495. let minDisToPoint = null;
  1496. let minPointIndex = -1;
  1497. let index = -1;
  1498. for (let i = 0; i < points.length - 1; ++i) {
  1499. const line = this.createLine1(points[i], points[i + 1]);
  1500. const join = this.getJoinLinePoint(position, line);
  1501. const dis = this.getDistance(position, join);
  1502. if (this.isContainForSegment(join, points[i], points[i + 1])) {
  1503. if (minDis == null || minDis > dis) {
  1504. minDis = dis;
  1505. index = i;
  1506. }
  1507. }
  1508. if (minDisToPoint == null) {
  1509. minDisToPoint = mathUtil.getDistance(position, points[i]);
  1510. minPointIndex = i;
  1511. } else if (minDisToPoint > mathUtil.getDistance(position, points[i])) {
  1512. minDisToPoint = mathUtil.getDistance(position, points[i]);
  1513. minPointIndex = i;
  1514. }
  1515. }
  1516. if ((index = -1)) {
  1517. if (
  1518. minDisToPoint >
  1519. mathUtil.getDistance(position, points[points.length - 1])
  1520. ) {
  1521. return points.length - 2;
  1522. } else {
  1523. return minPointIndex;
  1524. }
  1525. } else {
  1526. return index;
  1527. }
  1528. }
  1529. // //获取一组点的偏移
  1530. // getOffset(points, leftWidth, rightWidth, dir) {
  1531. // //斜边长度d已知,角度angle已知
  1532. // //对边长度就是y的偏移量 就是 d * sin(angle) ==> d * Math.sin(angle * Math.PI / 180)
  1533. // //邻边长度就是x的偏移量 就是 d * cos(angle) ==> d * Math.cos(angle * Math.PI / 180)
  1534. // let result = {};
  1535. // if (dir == "left" || !dir) {
  1536. // let angle = 90;
  1537. // let d = leftWidth;
  1538. // result.leftEdgePoints = points.map((coords) => {
  1539. // let ox = d * Math.cos((angle * Math.PI) / 180);
  1540. // let oy = d * Math.sin((angle * Math.PI) / 180);
  1541. // return {
  1542. // x: coords.x + ox,
  1543. // y: coords.y + oy,
  1544. // };
  1545. // });
  1546. // }
  1547. // if (dir == "right" || !dir) {
  1548. // let angle = -90;
  1549. // let d = rightWidth;
  1550. // result.rightEdgePoints = points.map((coords) => {
  1551. // let ox = d * Math.cos((angle * Math.PI) / 180);
  1552. // let oy = d * Math.sin((angle * Math.PI) / 180);
  1553. // return {
  1554. // x: coords.x + ox,
  1555. // y: coords.y + oy,
  1556. // };
  1557. // });
  1558. // }
  1559. // return result;
  1560. // }
  1561. getOffset(points, leftWidth, rightWidth, dir) {
  1562. let leftEdgePoints = [];
  1563. let rightEdgePoints = [];
  1564. for (let i = 0; i < points.length - 1; ++i) {
  1565. if (dir == "left" || !dir) {
  1566. if (mathUtil.equalPoint(points[i], points[i + 1])) {
  1567. return null;
  1568. }
  1569. let leftEdgePoins1 = this.RectangleVertex(
  1570. points[i],
  1571. points[i + 1],
  1572. leftWidth * 2
  1573. );
  1574. let leftLine1 = mathUtil.createLine1(
  1575. leftEdgePoins1.leftEdgeStart,
  1576. leftEdgePoins1.leftEdgeEnd
  1577. );
  1578. if (i != points.length - 2) {
  1579. if (mathUtil.equalPoint(points[i + 2], points[i + 1])) {
  1580. return null;
  1581. }
  1582. let leftEdgePoins2 = this.RectangleVertex(
  1583. points[i + 1],
  1584. points[i + 2],
  1585. leftWidth * 2
  1586. );
  1587. let leftLine2 = mathUtil.createLine1(
  1588. leftEdgePoins2.leftEdgeStart,
  1589. leftEdgePoins2.leftEdgeEnd
  1590. );
  1591. let join = mathUtil.getIntersectionPoint(leftLine1, leftLine2);
  1592. if (join != null) {
  1593. leftEdgePoints[i + 1] = join;
  1594. } else {
  1595. leftEdgePoints[i + 1] = mathUtil.getJoinLinePoint(
  1596. points[i + 1],
  1597. leftLine1
  1598. );
  1599. }
  1600. } else {
  1601. leftEdgePoints[i + 1] = mathUtil.getJoinLinePoint(
  1602. points[i + 1],
  1603. leftLine1
  1604. );
  1605. }
  1606. if (!leftEdgePoints[0]) {
  1607. leftEdgePoints[0] = mathUtil.getJoinLinePoint(points[0], leftLine1);
  1608. }
  1609. }
  1610. if (dir == "right" || !dir) {
  1611. if (mathUtil.equalPoint(points[i], points[i + 1])) {
  1612. return null;
  1613. }
  1614. let rightEdgePoins1 = this.RectangleVertex(
  1615. points[i],
  1616. points[i + 1],
  1617. rightWidth * 2
  1618. );
  1619. let rightLine1 = mathUtil.createLine1(
  1620. rightEdgePoins1.rightEdgeStart,
  1621. rightEdgePoins1.rightEdgeEnd
  1622. );
  1623. if (i != points.length - 2) {
  1624. if (mathUtil.equalPoint(points[i + 2], points[i + 1])) {
  1625. return null;
  1626. }
  1627. let rightEdgePoins2 = this.RectangleVertex(
  1628. points[i + 1],
  1629. points[i + 2],
  1630. rightWidth * 2
  1631. );
  1632. let rightLine2 = mathUtil.createLine1(
  1633. rightEdgePoins2.rightEdgeStart,
  1634. rightEdgePoins2.rightEdgeEnd
  1635. );
  1636. let join = mathUtil.getIntersectionPoint(rightLine1, rightLine2);
  1637. if (join != null) {
  1638. rightEdgePoints[i + 1] = join;
  1639. } else {
  1640. rightEdgePoints[i + 1] = mathUtil.getJoinLinePoint(
  1641. points[i + 1],
  1642. rightLine1
  1643. );
  1644. }
  1645. } else {
  1646. rightEdgePoints[i + 1] = mathUtil.getJoinLinePoint(
  1647. points[i + 1],
  1648. rightLine1
  1649. );
  1650. }
  1651. if (!rightEdgePoints[0]) {
  1652. rightEdgePoints[0] = mathUtil.getJoinLinePoint(points[0], rightLine1);
  1653. }
  1654. }
  1655. }
  1656. return {
  1657. leftEdgePoints: leftEdgePoints,
  1658. rightEdgePoints: rightEdgePoints,
  1659. };
  1660. }
  1661. twoOrderBezier(t, p1, cp, p2) {
  1662. //参数分别是t,起始点,控制点和终点
  1663. var x1 = p1.x;
  1664. var y1 = p1.y;
  1665. var cx = cp.x;
  1666. var cy = cp.y;
  1667. var x2 = p2.x;
  1668. var y2 = p2.y;
  1669. // var [x1, y1] = p1,
  1670. // [cx, cy] = cp,
  1671. // [x2, y2] = p2;
  1672. var x = (1 - t) * (1 - t) * x1 + 2 * t * (1 - t) * cx + t * t * x2,
  1673. y = (1 - t) * (1 - t) * y1 + 2 * t * (1 - t) * cy + t * t * y2;
  1674. return {
  1675. x: x,
  1676. y: y,
  1677. };
  1678. }
  1679. //t是0.5,求cp。p是曲线上的点
  1680. twoOrderBezier2(t, p1, p, p2) {
  1681. var x1 = p1.x;
  1682. var y1 = p1.y;
  1683. var x2 = p2.x;
  1684. var y2 = p2.y;
  1685. let cx = (p.x - t * t * x2 - (1 - t) * (1 - t) * x1) / (2 * t * (1 - t));
  1686. let cy = (p.y - t * t * y2 - (1 - t) * (1 - t) * y1) / (2 * t * (1 - t));
  1687. return {
  1688. x: cx,
  1689. y: cy,
  1690. };
  1691. }
  1692. rgb() {
  1693. //rgb颜色随机
  1694. const r = Math.floor(Math.random() * 256);
  1695. const g = Math.floor(Math.random() * 256);
  1696. const b = Math.floor(Math.random() * 256);
  1697. return `rgb(${r},${g},${b})`;
  1698. }
  1699. //获取选段内距离末端断点某个位置点的坐标
  1700. /**
  1701. *
  1702. * @param {*} startPoint //线段起点
  1703. * @param {*} endPoint //线段终点
  1704. * @param {*} targetPointDistance //目标点到终点的距离
  1705. * @returns
  1706. */
  1707. getLinePointPos(startPoint, endPoint, targetPointDistance) {
  1708. if(!targetPointDistance){
  1709. targetPointDistance = Constant.roadWidthTipsDistance
  1710. }
  1711. let lineLength = this.getDistance(startPoint, endPoint);
  1712. var ratio = 1;
  1713. if (targetPointDistance > lineLength) {
  1714. ratio = 0.9;
  1715. } else {
  1716. ratio = (lineLength - targetPointDistance) / lineLength;
  1717. }
  1718. var targetPoint = {
  1719. x: startPoint.x + ratio * (endPoint.x - startPoint.x),
  1720. y: startPoint.y + ratio * (endPoint.y - startPoint.y),
  1721. };
  1722. return targetPoint;
  1723. }
  1724. }
  1725. const mathUtil = new MathUtil();
  1726. export { mathUtil };