123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135 |
- (function (global, factory) {
- typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory(require('wkt-parser')) :
- typeof define === 'function' && define.amd ? define(['wkt-parser'], factory) :
- (global.proj4 = factory(global.wkt));
- }(this, (function (wkt) { 'use strict';
- wkt = wkt && wkt.hasOwnProperty('default') ? wkt['default'] : wkt;
- var globals = function(defs) {
- defs('EPSG:4326', "+title=WGS 84 (long/lat) +proj=longlat +ellps=WGS84 +datum=WGS84 +units=degrees");
- defs('EPSG:4269', "+title=NAD83 (long/lat) +proj=longlat +a=6378137.0 +b=6356752.31414036 +ellps=GRS80 +datum=NAD83 +units=degrees");
- defs('EPSG:3857', "+title=WGS 84 / Pseudo-Mercator +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs");
- defs.WGS84 = defs['EPSG:4326'];
- defs['EPSG:3785'] = defs['EPSG:3857']; // maintain backward compat, official code is 3857
- defs.GOOGLE = defs['EPSG:3857'];
- defs['EPSG:900913'] = defs['EPSG:3857'];
- defs['EPSG:102113'] = defs['EPSG:3857'];
- };
- var PJD_3PARAM = 1;
- var PJD_7PARAM = 2;
- var PJD_WGS84 = 4; // WGS84 or equivalent
- var PJD_NODATUM = 5; // WGS84 or equivalent
- var SEC_TO_RAD = 4.84813681109535993589914102357e-6;
- var HALF_PI = Math.PI/2;
- // ellipoid pj_set_ell.c
- var SIXTH = 0.1666666666666666667;
- /* 1/6 */
- var RA4 = 0.04722222222222222222;
- /* 17/360 */
- var RA6 = 0.02215608465608465608;
- var EPSLN = 1.0e-10;
- // you'd think you could use Number.EPSILON above but that makes
- // Mollweide get into an infinate loop.
- var D2R = 0.01745329251994329577;
- var R2D = 57.29577951308232088;
- var FORTPI = Math.PI/4;
- var TWO_PI = Math.PI * 2;
- // SPI is slightly greater than Math.PI, so values that exceed the -180..180
- // degree range by a tiny amount don't get wrapped. This prevents points that
- // have drifted from their original location along the 180th meridian (due to
- // floating point error) from changing their sign.
- var SPI = 3.14159265359;
- var exports$1 = {};
- exports$1.greenwich = 0.0; //"0dE",
- exports$1.lisbon = -9.131906111111; //"9d07'54.862\"W",
- exports$1.paris = 2.337229166667; //"2d20'14.025\"E",
- exports$1.bogota = -74.080916666667; //"74d04'51.3\"W",
- exports$1.madrid = -3.687938888889; //"3d41'16.58\"W",
- exports$1.rome = 12.452333333333; //"12d27'8.4\"E",
- exports$1.bern = 7.439583333333; //"7d26'22.5\"E",
- exports$1.jakarta = 106.807719444444; //"106d48'27.79\"E",
- exports$1.ferro = -17.666666666667; //"17d40'W",
- exports$1.brussels = 4.367975; //"4d22'4.71\"E",
- exports$1.stockholm = 18.058277777778; //"18d3'29.8\"E",
- exports$1.athens = 23.7163375; //"23d42'58.815\"E",
- exports$1.oslo = 10.722916666667; //"10d43'22.5\"E"
- var units = {
- ft: {to_meter: 0.3048},
- 'us-ft': {to_meter: 1200 / 3937}
- };
- var ignoredChar = /[\s_\-\/\(\)]/g;
- function match(obj, key) {
- if (obj[key]) {
- return obj[key];
- }
- var keys = Object.keys(obj);
- var lkey = key.toLowerCase().replace(ignoredChar, '');
- var i = -1;
- var testkey, processedKey;
- while (++i < keys.length) {
- testkey = keys[i];
- processedKey = testkey.toLowerCase().replace(ignoredChar, '');
- if (processedKey === lkey) {
- return obj[testkey];
- }
- }
- }
- var parseProj = function(defData) {
- var self = {};
- var paramObj = defData.split('+').map(function(v) {
- return v.trim();
- }).filter(function(a) {
- return a;
- }).reduce(function(p, a) {
- var split = a.split('=');
- split.push(true);
- p[split[0].toLowerCase()] = split[1];
- return p;
- }, {});
- var paramName, paramVal, paramOutname;
- var params = {
- proj: 'projName',
- datum: 'datumCode',
- rf: function(v) {
- self.rf = parseFloat(v);
- },
- lat_0: function(v) {
- self.lat0 = v * D2R;
- },
- lat_1: function(v) {
- self.lat1 = v * D2R;
- },
- lat_2: function(v) {
- self.lat2 = v * D2R;
- },
- lat_ts: function(v) {
- self.lat_ts = v * D2R;
- },
- lon_0: function(v) {
- self.long0 = v * D2R;
- },
- lon_1: function(v) {
- self.long1 = v * D2R;
- },
- lon_2: function(v) {
- self.long2 = v * D2R;
- },
- alpha: function(v) {
- self.alpha = parseFloat(v) * D2R;
- },
- lonc: function(v) {
- self.longc = v * D2R;
- },
- x_0: function(v) {
- self.x0 = parseFloat(v);
- },
- y_0: function(v) {
- self.y0 = parseFloat(v);
- },
- k_0: function(v) {
- self.k0 = parseFloat(v);
- },
- k: function(v) {
- self.k0 = parseFloat(v);
- },
- a: function(v) {
- self.a = parseFloat(v);
- },
- b: function(v) {
- self.b = parseFloat(v);
- },
- r_a: function() {
- self.R_A = true;
- },
- zone: function(v) {
- self.zone = parseInt(v, 10);
- },
- south: function() {
- self.utmSouth = true;
- },
- towgs84: function(v) {
- self.datum_params = v.split(",").map(function(a) {
- return parseFloat(a);
- });
- },
- to_meter: function(v) {
- self.to_meter = parseFloat(v);
- },
- units: function(v) {
- self.units = v;
- var unit = match(units, v);
- if (unit) {
- self.to_meter = unit.to_meter;
- }
- },
- from_greenwich: function(v) {
- self.from_greenwich = v * D2R;
- },
- pm: function(v) {
- var pm = match(exports$1, v);
- self.from_greenwich = (pm ? pm : parseFloat(v)) * D2R;
- },
- nadgrids: function(v) {
- if (v === '@null') {
- self.datumCode = 'none';
- }
- else {
- self.nadgrids = v;
- }
- },
- axis: function(v) {
- var legalAxis = "ewnsud";
- if (v.length === 3 && legalAxis.indexOf(v.substr(0, 1)) !== -1 && legalAxis.indexOf(v.substr(1, 1)) !== -1 && legalAxis.indexOf(v.substr(2, 1)) !== -1) {
- self.axis = v;
- }
- }
- };
- for (paramName in paramObj) {
- paramVal = paramObj[paramName];
- if (paramName in params) {
- paramOutname = params[paramName];
- if (typeof paramOutname === 'function') {
- paramOutname(paramVal);
- }
- else {
- self[paramOutname] = paramVal;
- }
- }
- else {
- self[paramName] = paramVal;
- }
- }
- if(typeof self.datumCode === 'string' && self.datumCode !== "WGS84"){
- self.datumCode = self.datumCode.toLowerCase();
- }
- return self;
- };
- function defs(name) {
- /*global console*/
- var that = this;
- if (arguments.length === 2) {
- var def = arguments[1];
- if (typeof def === 'string') {
- if (def.charAt(0) === '+') {
- defs[name] = parseProj(arguments[1]);
- }
- else {
- defs[name] = wkt(arguments[1]);
- }
- } else {
- defs[name] = def;
- }
- }
- else if (arguments.length === 1) {
- if (Array.isArray(name)) {
- return name.map(function(v) {
- if (Array.isArray(v)) {
- defs.apply(that, v);
- }
- else {
- defs(v);
- }
- });
- }
- else if (typeof name === 'string') {
- if (name in defs) {
- return defs[name];
- }
- }
- else if ('EPSG' in name) {
- defs['EPSG:' + name.EPSG] = name;
- }
- else if ('ESRI' in name) {
- defs['ESRI:' + name.ESRI] = name;
- }
- else if ('IAU2000' in name) {
- defs['IAU2000:' + name.IAU2000] = name;
- }
- else {
- console.log(name);
- }
- return;
- }
- }
- globals(defs);
- function testObj(code){
- return typeof code === 'string';
- }
- function testDef(code){
- return code in defs;
- }
- var codeWords = ['PROJECTEDCRS', 'PROJCRS', 'GEOGCS','GEOCCS','PROJCS','LOCAL_CS', 'GEODCRS', 'GEODETICCRS', 'GEODETICDATUM', 'ENGCRS', 'ENGINEERINGCRS'];
- function testWKT(code){
- return codeWords.some(function (word) {
- return code.indexOf(word) > -1;
- });
- }
- var codes = ['3857', '900913', '3785', '102113'];
- function checkMercator(item) {
- var auth = match(item, 'authority');
- if (!auth) {
- return;
- }
- var code = match(auth, 'epsg');
- return code && codes.indexOf(code) > -1;
- }
- function checkProjStr(item) {
- var ext = match(item, 'extension');
- if (!ext) {
- return;
- }
- return match(ext, 'proj4');
- }
- function testProj(code){
- return code[0] === '+';
- }
- function parse(code){
- if (testObj(code)) {
- //check to see if this is a WKT string
- if (testDef(code)) {
- return defs[code];
- }
- if (testWKT(code)) {
- var out = wkt(code);
- // test of spetial case, due to this being a very common and often malformed
- if (checkMercator(out)) {
- return defs['EPSG:3857'];
- }
- var maybeProjStr = checkProjStr(out);
- if (maybeProjStr) {
- return parseProj(maybeProjStr);
- }
- return out;
- }
- if (testProj(code)) {
- return parseProj(code);
- }
- }else{
- return code;
- }
- }
- var extend = function(destination, source) {
- destination = destination || {};
- var value, property;
- if (!source) {
- return destination;
- }
- for (property in source) {
- value = source[property];
- if (value !== undefined) {
- destination[property] = value;
- }
- }
- return destination;
- };
- var msfnz = function(eccent, sinphi, cosphi) {
- var con = eccent * sinphi;
- return cosphi / (Math.sqrt(1 - con * con));
- };
- var sign = function(x) {
- return x<0 ? -1 : 1;
- };
- var adjust_lon = function(x) {
- return (Math.abs(x) <= SPI) ? x : (x - (sign(x) * TWO_PI));
- };
- var tsfnz = function(eccent, phi, sinphi) {
- var con = eccent * sinphi;
- var com = 0.5 * eccent;
- con = Math.pow(((1 - con) / (1 + con)), com);
- return (Math.tan(0.5 * (HALF_PI - phi)) / con);
- };
- var phi2z = function(eccent, ts) {
- var eccnth = 0.5 * eccent;
- var con, dphi;
- var phi = HALF_PI - 2 * Math.atan(ts);
- for (var i = 0; i <= 15; i++) {
- con = eccent * Math.sin(phi);
- dphi = HALF_PI - 2 * Math.atan(ts * (Math.pow(((1 - con) / (1 + con)), eccnth))) - phi;
- phi += dphi;
- if (Math.abs(dphi) <= 0.0000000001) {
- return phi;
- }
- }
- //console.log("phi2z has NoConvergence");
- return -9999;
- };
- function init() {
- var con = this.b / this.a;
- this.es = 1 - con * con;
- if(!('x0' in this)){
- this.x0 = 0;
- }
- if(!('y0' in this)){
- this.y0 = 0;
- }
- this.e = Math.sqrt(this.es);
- if (this.lat_ts) {
- if (this.sphere) {
- this.k0 = Math.cos(this.lat_ts);
- }
- else {
- this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
- }
- }
- else {
- if (!this.k0) {
- if (this.k) {
- this.k0 = this.k;
- }
- else {
- this.k0 = 1;
- }
- }
- }
- }
- /* Mercator forward equations--mapping lat,long to x,y
- --------------------------------------------------*/
- function forward(p) {
- var lon = p.x;
- var lat = p.y;
- // convert to radians
- if (lat * R2D > 90 && lat * R2D < -90 && lon * R2D > 180 && lon * R2D < -180) {
- return null;
- }
- var x, y;
- if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
- return null;
- }
- else {
- if (this.sphere) {
- x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
- y = this.y0 + this.a * this.k0 * Math.log(Math.tan(FORTPI + 0.5 * lat));
- }
- else {
- var sinphi = Math.sin(lat);
- var ts = tsfnz(this.e, lat, sinphi);
- x = this.x0 + this.a * this.k0 * adjust_lon(lon - this.long0);
- y = this.y0 - this.a * this.k0 * Math.log(ts);
- }
- p.x = x;
- p.y = y;
- return p;
- }
- }
- /* Mercator inverse equations--mapping x,y to lat/long
- --------------------------------------------------*/
- function inverse(p) {
- var x = p.x - this.x0;
- var y = p.y - this.y0;
- var lon, lat;
- if (this.sphere) {
- lat = HALF_PI - 2 * Math.atan(Math.exp(-y / (this.a * this.k0)));
- }
- else {
- var ts = Math.exp(-y / (this.a * this.k0));
- lat = phi2z(this.e, ts);
- if (lat === -9999) {
- return null;
- }
- }
- lon = adjust_lon(this.long0 + x / (this.a * this.k0));
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$1 = ["Mercator", "Popular Visualisation Pseudo Mercator", "Mercator_1SP", "Mercator_Auxiliary_Sphere", "merc"];
- var merc = {
- init: init,
- forward: forward,
- inverse: inverse,
- names: names$1
- };
- function init$1() {
- //no-op for longlat
- }
- function identity(pt) {
- return pt;
- }
- var names$2 = ["longlat", "identity"];
- var longlat = {
- init: init$1,
- forward: identity,
- inverse: identity,
- names: names$2
- };
- var projs = [merc, longlat];
- var names = {};
- var projStore = [];
- function add(proj, i) {
- var len = projStore.length;
- if (!proj.names) {
- console.log(i);
- return true;
- }
- projStore[len] = proj;
- proj.names.forEach(function(n) {
- names[n.toLowerCase()] = len;
- });
- return this;
- }
- function get(name) {
- if (!name) {
- return false;
- }
- var n = name.toLowerCase();
- if (typeof names[n] !== 'undefined' && projStore[names[n]]) {
- return projStore[names[n]];
- }
- }
- function start() {
- projs.forEach(add);
- }
- var projections = {
- start: start,
- add: add,
- get: get
- };
- var exports$2 = {};
- exports$2.MERIT = {
- a: 6378137.0,
- rf: 298.257,
- ellipseName: "MERIT 1983"
- };
- exports$2.SGS85 = {
- a: 6378136.0,
- rf: 298.257,
- ellipseName: "Soviet Geodetic System 85"
- };
- exports$2.GRS80 = {
- a: 6378137.0,
- rf: 298.257222101,
- ellipseName: "GRS 1980(IUGG, 1980)"
- };
- exports$2.IAU76 = {
- a: 6378140.0,
- rf: 298.257,
- ellipseName: "IAU 1976"
- };
- exports$2.airy = {
- a: 6377563.396,
- b: 6356256.910,
- ellipseName: "Airy 1830"
- };
- exports$2.APL4 = {
- a: 6378137,
- rf: 298.25,
- ellipseName: "Appl. Physics. 1965"
- };
- exports$2.NWL9D = {
- a: 6378145.0,
- rf: 298.25,
- ellipseName: "Naval Weapons Lab., 1965"
- };
- exports$2.mod_airy = {
- a: 6377340.189,
- b: 6356034.446,
- ellipseName: "Modified Airy"
- };
- exports$2.andrae = {
- a: 6377104.43,
- rf: 300.0,
- ellipseName: "Andrae 1876 (Den., Iclnd.)"
- };
- exports$2.aust_SA = {
- a: 6378160.0,
- rf: 298.25,
- ellipseName: "Australian Natl & S. Amer. 1969"
- };
- exports$2.GRS67 = {
- a: 6378160.0,
- rf: 298.2471674270,
- ellipseName: "GRS 67(IUGG 1967)"
- };
- exports$2.bessel = {
- a: 6377397.155,
- rf: 299.1528128,
- ellipseName: "Bessel 1841"
- };
- exports$2.bess_nam = {
- a: 6377483.865,
- rf: 299.1528128,
- ellipseName: "Bessel 1841 (Namibia)"
- };
- exports$2.clrk66 = {
- a: 6378206.4,
- b: 6356583.8,
- ellipseName: "Clarke 1866"
- };
- exports$2.clrk80 = {
- a: 6378249.145,
- rf: 293.4663,
- ellipseName: "Clarke 1880 mod."
- };
- exports$2.clrk58 = {
- a: 6378293.645208759,
- rf: 294.2606763692654,
- ellipseName: "Clarke 1858"
- };
- exports$2.CPM = {
- a: 6375738.7,
- rf: 334.29,
- ellipseName: "Comm. des Poids et Mesures 1799"
- };
- exports$2.delmbr = {
- a: 6376428.0,
- rf: 311.5,
- ellipseName: "Delambre 1810 (Belgium)"
- };
- exports$2.engelis = {
- a: 6378136.05,
- rf: 298.2566,
- ellipseName: "Engelis 1985"
- };
- exports$2.evrst30 = {
- a: 6377276.345,
- rf: 300.8017,
- ellipseName: "Everest 1830"
- };
- exports$2.evrst48 = {
- a: 6377304.063,
- rf: 300.8017,
- ellipseName: "Everest 1948"
- };
- exports$2.evrst56 = {
- a: 6377301.243,
- rf: 300.8017,
- ellipseName: "Everest 1956"
- };
- exports$2.evrst69 = {
- a: 6377295.664,
- rf: 300.8017,
- ellipseName: "Everest 1969"
- };
- exports$2.evrstSS = {
- a: 6377298.556,
- rf: 300.8017,
- ellipseName: "Everest (Sabah & Sarawak)"
- };
- exports$2.fschr60 = {
- a: 6378166.0,
- rf: 298.3,
- ellipseName: "Fischer (Mercury Datum) 1960"
- };
- exports$2.fschr60m = {
- a: 6378155.0,
- rf: 298.3,
- ellipseName: "Fischer 1960"
- };
- exports$2.fschr68 = {
- a: 6378150.0,
- rf: 298.3,
- ellipseName: "Fischer 1968"
- };
- exports$2.helmert = {
- a: 6378200.0,
- rf: 298.3,
- ellipseName: "Helmert 1906"
- };
- exports$2.hough = {
- a: 6378270.0,
- rf: 297.0,
- ellipseName: "Hough"
- };
- exports$2.intl = {
- a: 6378388.0,
- rf: 297.0,
- ellipseName: "International 1909 (Hayford)"
- };
- exports$2.kaula = {
- a: 6378163.0,
- rf: 298.24,
- ellipseName: "Kaula 1961"
- };
- exports$2.lerch = {
- a: 6378139.0,
- rf: 298.257,
- ellipseName: "Lerch 1979"
- };
- exports$2.mprts = {
- a: 6397300.0,
- rf: 191.0,
- ellipseName: "Maupertius 1738"
- };
- exports$2.new_intl = {
- a: 6378157.5,
- b: 6356772.2,
- ellipseName: "New International 1967"
- };
- exports$2.plessis = {
- a: 6376523.0,
- rf: 6355863.0,
- ellipseName: "Plessis 1817 (France)"
- };
- exports$2.krass = {
- a: 6378245.0,
- rf: 298.3,
- ellipseName: "Krassovsky, 1942"
- };
- exports$2.SEasia = {
- a: 6378155.0,
- b: 6356773.3205,
- ellipseName: "Southeast Asia"
- };
- exports$2.walbeck = {
- a: 6376896.0,
- b: 6355834.8467,
- ellipseName: "Walbeck"
- };
- exports$2.WGS60 = {
- a: 6378165.0,
- rf: 298.3,
- ellipseName: "WGS 60"
- };
- exports$2.WGS66 = {
- a: 6378145.0,
- rf: 298.25,
- ellipseName: "WGS 66"
- };
- exports$2.WGS7 = {
- a: 6378135.0,
- rf: 298.26,
- ellipseName: "WGS 72"
- };
- var WGS84 = exports$2.WGS84 = {
- a: 6378137.0,
- rf: 298.257223563,
- ellipseName: "WGS 84"
- };
- exports$2.sphere = {
- a: 6370997.0,
- b: 6370997.0,
- ellipseName: "Normal Sphere (r=6370997)"
- };
- function eccentricity(a, b, rf, R_A) {
- var a2 = a * a; // used in geocentric
- var b2 = b * b; // used in geocentric
- var es = (a2 - b2) / a2; // e ^ 2
- var e = 0;
- if (R_A) {
- a *= 1 - es * (SIXTH + es * (RA4 + es * RA6));
- a2 = a * a;
- es = 0;
- } else {
- e = Math.sqrt(es); // eccentricity
- }
- var ep2 = (a2 - b2) / b2; // used in geocentric
- return {
- es: es,
- e: e,
- ep2: ep2
- };
- }
- function sphere(a, b, rf, ellps, sphere) {
- if (!a) { // do we have an ellipsoid?
- var ellipse = match(exports$2, ellps);
- if (!ellipse) {
- ellipse = WGS84;
- }
- a = ellipse.a;
- b = ellipse.b;
- rf = ellipse.rf;
- }
- if (rf && !b) {
- b = (1.0 - 1.0 / rf) * a;
- }
- if (rf === 0 || Math.abs(a - b) < EPSLN) {
- sphere = true;
- b = a;
- }
- return {
- a: a,
- b: b,
- rf: rf,
- sphere: sphere
- };
- }
- var exports$3 = {};
- exports$3.wgs84 = {
- towgs84: "0,0,0",
- ellipse: "WGS84",
- datumName: "WGS84"
- };
- exports$3.ch1903 = {
- towgs84: "674.374,15.056,405.346",
- ellipse: "bessel",
- datumName: "swiss"
- };
- exports$3.ggrs87 = {
- towgs84: "-199.87,74.79,246.62",
- ellipse: "GRS80",
- datumName: "Greek_Geodetic_Reference_System_1987"
- };
- exports$3.nad83 = {
- towgs84: "0,0,0",
- ellipse: "GRS80",
- datumName: "North_American_Datum_1983"
- };
- exports$3.nad27 = {
- nadgrids: "@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat",
- ellipse: "clrk66",
- datumName: "North_American_Datum_1927"
- };
- exports$3.potsdam = {
- towgs84: "606.0,23.0,413.0",
- ellipse: "bessel",
- datumName: "Potsdam Rauenberg 1950 DHDN"
- };
- exports$3.carthage = {
- towgs84: "-263.0,6.0,431.0",
- ellipse: "clark80",
- datumName: "Carthage 1934 Tunisia"
- };
- exports$3.hermannskogel = {
- towgs84: "653.0,-212.0,449.0",
- ellipse: "bessel",
- datumName: "Hermannskogel"
- };
- exports$3.osni52 = {
- towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
- ellipse: "airy",
- datumName: "Irish National"
- };
- exports$3.ire65 = {
- towgs84: "482.530,-130.596,564.557,-1.042,-0.214,-0.631,8.15",
- ellipse: "mod_airy",
- datumName: "Ireland 1965"
- };
- exports$3.rassadiran = {
- towgs84: "-133.63,-157.5,-158.62",
- ellipse: "intl",
- datumName: "Rassadiran"
- };
- exports$3.nzgd49 = {
- towgs84: "59.47,-5.04,187.44,0.47,-0.1,1.024,-4.5993",
- ellipse: "intl",
- datumName: "New Zealand Geodetic Datum 1949"
- };
- exports$3.osgb36 = {
- towgs84: "446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894",
- ellipse: "airy",
- datumName: "Airy 1830"
- };
- exports$3.s_jtsk = {
- towgs84: "589,76,480",
- ellipse: 'bessel',
- datumName: 'S-JTSK (Ferro)'
- };
- exports$3.beduaram = {
- towgs84: '-106,-87,188',
- ellipse: 'clrk80',
- datumName: 'Beduaram'
- };
- exports$3.gunung_segara = {
- towgs84: '-403,684,41',
- ellipse: 'bessel',
- datumName: 'Gunung Segara Jakarta'
- };
- exports$3.rnb72 = {
- towgs84: "106.869,-52.2978,103.724,-0.33657,0.456955,-1.84218,1",
- ellipse: "intl",
- datumName: "Reseau National Belge 1972"
- };
- function datum(datumCode, datum_params, a, b, es, ep2) {
- var out = {};
- if (datumCode === undefined || datumCode === 'none') {
- out.datum_type = PJD_NODATUM;
- } else {
- out.datum_type = PJD_WGS84;
- }
- if (datum_params) {
- out.datum_params = datum_params.map(parseFloat);
- if (out.datum_params[0] !== 0 || out.datum_params[1] !== 0 || out.datum_params[2] !== 0) {
- out.datum_type = PJD_3PARAM;
- }
- if (out.datum_params.length > 3) {
- if (out.datum_params[3] !== 0 || out.datum_params[4] !== 0 || out.datum_params[5] !== 0 || out.datum_params[6] !== 0) {
- out.datum_type = PJD_7PARAM;
- out.datum_params[3] *= SEC_TO_RAD;
- out.datum_params[4] *= SEC_TO_RAD;
- out.datum_params[5] *= SEC_TO_RAD;
- out.datum_params[6] = (out.datum_params[6] / 1000000.0) + 1.0;
- }
- }
- }
- out.a = a; //datum object also uses these values
- out.b = b;
- out.es = es;
- out.ep2 = ep2;
- return out;
- }
- function Projection(srsCode,callback) {
- if (!(this instanceof Projection)) {
- return new Projection(srsCode);
- }
- callback = callback || function(error){
- if(error){
- throw error;
- }
- };
- var json = parse(srsCode);
- if(typeof json !== 'object'){
- callback(srsCode);
- return;
- }
- var ourProj = Projection.projections.get(json.projName);
- if(!ourProj){
- callback(srsCode);
- return;
- }
- if (json.datumCode && json.datumCode !== 'none') {
- var datumDef = match(exports$3, json.datumCode);
- if (datumDef) {
- json.datum_params = datumDef.towgs84 ? datumDef.towgs84.split(',') : null;
- json.ellps = datumDef.ellipse;
- json.datumName = datumDef.datumName ? datumDef.datumName : json.datumCode;
- }
- }
- json.k0 = json.k0 || 1.0;
- json.axis = json.axis || 'enu';
- json.ellps = json.ellps || 'wgs84';
- var sphere_ = sphere(json.a, json.b, json.rf, json.ellps, json.sphere);
- var ecc = eccentricity(sphere_.a, sphere_.b, sphere_.rf, json.R_A);
- var datumObj = json.datum || datum(json.datumCode, json.datum_params, sphere_.a, sphere_.b, ecc.es, ecc.ep2);
- extend(this, json); // transfer everything over from the projection because we don't know what we'll need
- extend(this, ourProj); // transfer all the methods from the projection
- // copy the 4 things over we calulated in deriveConstants.sphere
- this.a = sphere_.a;
- this.b = sphere_.b;
- this.rf = sphere_.rf;
- this.sphere = sphere_.sphere;
- // copy the 3 things we calculated in deriveConstants.eccentricity
- this.es = ecc.es;
- this.e = ecc.e;
- this.ep2 = ecc.ep2;
- // add in the datum object
- this.datum = datumObj;
- // init the projection
- this.init();
- // legecy callback from back in the day when it went to spatialreference.org
- callback(null, this);
- }
- Projection.projections = projections;
- Projection.projections.start();
- 'use strict';
- function compareDatums(source, dest) {
- if (source.datum_type !== dest.datum_type) {
- return false; // false, datums are not equal
- } else if (source.a !== dest.a || Math.abs(source.es - dest.es) > 0.000000000050) {
- // the tolerance for es is to ensure that GRS80 and WGS84
- // are considered identical
- return false;
- } else if (source.datum_type === PJD_3PARAM) {
- return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2]);
- } else if (source.datum_type === PJD_7PARAM) {
- return (source.datum_params[0] === dest.datum_params[0] && source.datum_params[1] === dest.datum_params[1] && source.datum_params[2] === dest.datum_params[2] && source.datum_params[3] === dest.datum_params[3] && source.datum_params[4] === dest.datum_params[4] && source.datum_params[5] === dest.datum_params[5] && source.datum_params[6] === dest.datum_params[6]);
- } else {
- return true; // datums are equal
- }
- } // cs_compare_datums()
- /*
- * The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
- * (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
- * according to the current ellipsoid parameters.
- *
- * Latitude : Geodetic latitude in radians (input)
- * Longitude : Geodetic longitude in radians (input)
- * Height : Geodetic height, in meters (input)
- * X : Calculated Geocentric X coordinate, in meters (output)
- * Y : Calculated Geocentric Y coordinate, in meters (output)
- * Z : Calculated Geocentric Z coordinate, in meters (output)
- *
- */
- function geodeticToGeocentric(p, es, a) {
- var Longitude = p.x;
- var Latitude = p.y;
- var Height = p.z ? p.z : 0; //Z value not always supplied
- var Rn; /* Earth radius at location */
- var Sin_Lat; /* Math.sin(Latitude) */
- var Sin2_Lat; /* Square of Math.sin(Latitude) */
- var Cos_Lat; /* Math.cos(Latitude) */
- /*
- ** Don't blow up if Latitude is just a little out of the value
- ** range as it may just be a rounding issue. Also removed longitude
- ** test, it should be wrapped by Math.cos() and Math.sin(). NFW for PROJ.4, Sep/2001.
- */
- if (Latitude < -HALF_PI && Latitude > -1.001 * HALF_PI) {
- Latitude = -HALF_PI;
- } else if (Latitude > HALF_PI && Latitude < 1.001 * HALF_PI) {
- Latitude = HALF_PI;
- } else if (Latitude < -HALF_PI) {
- /* Latitude out of range */
- //..reportError('geocent:lat out of range:' + Latitude);
- return { x: -Infinity, y: -Infinity, z: p.z };
- } else if (Latitude > HALF_PI) {
- /* Latitude out of range */
- return { x: Infinity, y: Infinity, z: p.z };
- }
- if (Longitude > Math.PI) {
- Longitude -= (2 * Math.PI);
- }
- Sin_Lat = Math.sin(Latitude);
- Cos_Lat = Math.cos(Latitude);
- Sin2_Lat = Sin_Lat * Sin_Lat;
- Rn = a / (Math.sqrt(1.0e0 - es * Sin2_Lat));
- return {
- x: (Rn + Height) * Cos_Lat * Math.cos(Longitude),
- y: (Rn + Height) * Cos_Lat * Math.sin(Longitude),
- z: ((Rn * (1 - es)) + Height) * Sin_Lat
- };
- } // cs_geodetic_to_geocentric()
- function geocentricToGeodetic(p, es, a, b) {
- /* local defintions and variables */
- /* end-criterium of loop, accuracy of sin(Latitude) */
- var genau = 1e-12;
- var genau2 = (genau * genau);
- var maxiter = 30;
- var P; /* distance between semi-minor axis and location */
- var RR; /* distance between center and location */
- var CT; /* sin of geocentric latitude */
- var ST; /* cos of geocentric latitude */
- var RX;
- var RK;
- var RN; /* Earth radius at location */
- var CPHI0; /* cos of start or old geodetic latitude in iterations */
- var SPHI0; /* sin of start or old geodetic latitude in iterations */
- var CPHI; /* cos of searched geodetic latitude */
- var SPHI; /* sin of searched geodetic latitude */
- var SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
- var iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
- var X = p.x;
- var Y = p.y;
- var Z = p.z ? p.z : 0.0; //Z value not always supplied
- var Longitude;
- var Latitude;
- var Height;
- P = Math.sqrt(X * X + Y * Y);
- RR = Math.sqrt(X * X + Y * Y + Z * Z);
- /* special cases for latitude and longitude */
- if (P / a < genau) {
- /* special case, if P=0. (X=0., Y=0.) */
- Longitude = 0.0;
- /* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
- * of ellipsoid (=center of mass), Latitude becomes PI/2 */
- if (RR / a < genau) {
- Latitude = HALF_PI;
- Height = -b;
- return {
- x: p.x,
- y: p.y,
- z: p.z
- };
- }
- } else {
- /* ellipsoidal (geodetic) longitude
- * interval: -PI < Longitude <= +PI */
- Longitude = Math.atan2(Y, X);
- }
- /* --------------------------------------------------------------
- * Following iterative algorithm was developped by
- * "Institut for Erdmessung", University of Hannover, July 1988.
- * Internet: www.ife.uni-hannover.de
- * Iterative computation of CPHI,SPHI and Height.
- * Iteration of CPHI and SPHI to 10**-12 radian resp.
- * 2*10**-7 arcsec.
- * --------------------------------------------------------------
- */
- CT = Z / RR;
- ST = P / RR;
- RX = 1.0 / Math.sqrt(1.0 - es * (2.0 - es) * ST * ST);
- CPHI0 = ST * (1.0 - es) * RX;
- SPHI0 = CT * RX;
- iter = 0;
- /* loop to find sin(Latitude) resp. Latitude
- * until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
- do {
- iter++;
- RN = a / Math.sqrt(1.0 - es * SPHI0 * SPHI0);
- /* ellipsoidal (geodetic) height */
- Height = P * CPHI0 + Z * SPHI0 - RN * (1.0 - es * SPHI0 * SPHI0);
- RK = es * RN / (RN + Height);
- RX = 1.0 / Math.sqrt(1.0 - RK * (2.0 - RK) * ST * ST);
- CPHI = ST * (1.0 - RK) * RX;
- SPHI = CT * RX;
- SDPHI = SPHI * CPHI0 - CPHI * SPHI0;
- CPHI0 = CPHI;
- SPHI0 = SPHI;
- }
- while (SDPHI * SDPHI > genau2 && iter < maxiter);
- /* ellipsoidal (geodetic) latitude */
- Latitude = Math.atan(SPHI / Math.abs(CPHI));
- return {
- x: Longitude,
- y: Latitude,
- z: Height
- };
- } // cs_geocentric_to_geodetic()
- /****************************************************************/
- // pj_geocentic_to_wgs84( p )
- // p = point to transform in geocentric coordinates (x,y,z)
- /** point object, nothing fancy, just allows values to be
- passed back and forth by reference rather than by value.
- Other point classes may be used as long as they have
- x and y properties, which will get modified in the transform method.
- */
- function geocentricToWgs84(p, datum_type, datum_params) {
- if (datum_type === PJD_3PARAM) {
- // if( x[io] === HUGE_VAL )
- // continue;
- return {
- x: p.x + datum_params[0],
- y: p.y + datum_params[1],
- z: p.z + datum_params[2],
- };
- } else if (datum_type === PJD_7PARAM) {
- var Dx_BF = datum_params[0];
- var Dy_BF = datum_params[1];
- var Dz_BF = datum_params[2];
- var Rx_BF = datum_params[3];
- var Ry_BF = datum_params[4];
- var Rz_BF = datum_params[5];
- var M_BF = datum_params[6];
- // if( x[io] === HUGE_VAL )
- // continue;
- return {
- x: M_BF * (p.x - Rz_BF * p.y + Ry_BF * p.z) + Dx_BF,
- y: M_BF * (Rz_BF * p.x + p.y - Rx_BF * p.z) + Dy_BF,
- z: M_BF * (-Ry_BF * p.x + Rx_BF * p.y + p.z) + Dz_BF
- };
- }
- } // cs_geocentric_to_wgs84
- /****************************************************************/
- // pj_geocentic_from_wgs84()
- // coordinate system definition,
- // point to transform in geocentric coordinates (x,y,z)
- function geocentricFromWgs84(p, datum_type, datum_params) {
- if (datum_type === PJD_3PARAM) {
- //if( x[io] === HUGE_VAL )
- // continue;
- return {
- x: p.x - datum_params[0],
- y: p.y - datum_params[1],
- z: p.z - datum_params[2],
- };
- } else if (datum_type === PJD_7PARAM) {
- var Dx_BF = datum_params[0];
- var Dy_BF = datum_params[1];
- var Dz_BF = datum_params[2];
- var Rx_BF = datum_params[3];
- var Ry_BF = datum_params[4];
- var Rz_BF = datum_params[5];
- var M_BF = datum_params[6];
- var x_tmp = (p.x - Dx_BF) / M_BF;
- var y_tmp = (p.y - Dy_BF) / M_BF;
- var z_tmp = (p.z - Dz_BF) / M_BF;
- //if( x[io] === HUGE_VAL )
- // continue;
- return {
- x: x_tmp + Rz_BF * y_tmp - Ry_BF * z_tmp,
- y: -Rz_BF * x_tmp + y_tmp + Rx_BF * z_tmp,
- z: Ry_BF * x_tmp - Rx_BF * y_tmp + z_tmp
- };
- } //cs_geocentric_from_wgs84()
- }
- function checkParams(type) {
- return (type === PJD_3PARAM || type === PJD_7PARAM);
- }
- var datum_transform = function(source, dest, point) {
- // Short cut if the datums are identical.
- if (compareDatums(source, dest)) {
- return point; // in this case, zero is sucess,
- // whereas cs_compare_datums returns 1 to indicate TRUE
- // confusing, should fix this
- }
- // Explicitly skip datum transform by setting 'datum=none' as parameter for either source or dest
- if (source.datum_type === PJD_NODATUM || dest.datum_type === PJD_NODATUM) {
- return point;
- }
- // If this datum requires grid shifts, then apply it to geodetic coordinates.
- // Do we need to go through geocentric coordinates?
- if (source.es === dest.es && source.a === dest.a && !checkParams(source.datum_type) && !checkParams(dest.datum_type)) {
- return point;
- }
- // Convert to geocentric coordinates.
- point = geodeticToGeocentric(point, source.es, source.a);
- // Convert between datums
- if (checkParams(source.datum_type)) {
- point = geocentricToWgs84(point, source.datum_type, source.datum_params);
- }
- if (checkParams(dest.datum_type)) {
- point = geocentricFromWgs84(point, dest.datum_type, dest.datum_params);
- }
- return geocentricToGeodetic(point, dest.es, dest.a, dest.b);
- };
- var adjust_axis = function(crs, denorm, point) {
- var xin = point.x,
- yin = point.y,
- zin = point.z || 0.0;
- var v, t, i;
- var out = {};
- for (i = 0; i < 3; i++) {
- if (denorm && i === 2 && point.z === undefined) {
- continue;
- }
- if (i === 0) {
- v = xin;
- if ("ew".indexOf(crs.axis[i]) !== -1) {
- t = 'x';
- } else {
- t = 'y';
- }
- }
- else if (i === 1) {
- v = yin;
- if ("ns".indexOf(crs.axis[i]) !== -1) {
- t = 'y';
- } else {
- t = 'x';
- }
- }
- else {
- v = zin;
- t = 'z';
- }
- switch (crs.axis[i]) {
- case 'e':
- case 'w':
- case 'n':
- case 's':
- out[t] = v;
- break;
- case 'u':
- if (point[t] !== undefined) {
- out.z = v;
- }
- break;
- case 'd':
- if (point[t] !== undefined) {
- out.z = -v;
- }
- break;
- default:
- //console.log("ERROR: unknow axis ("+crs.axis[i]+") - check definition of "+crs.projName);
- return null;
- }
- }
- return out;
- };
- var toPoint = function (array){
- var out = {
- x: array[0],
- y: array[1]
- };
- if (array.length>2) {
- out.z = array[2];
- }
- if (array.length>3) {
- out.m = array[3];
- }
- return out;
- };
- var checkSanity = function (point) {
- checkCoord(point.x);
- checkCoord(point.y);
- };
- function checkCoord(num) {
- if (typeof Number.isFinite === 'function') {
- if (Number.isFinite(num)) {
- return;
- }
- throw new TypeError('coordinates must be finite numbers');
- }
- if (typeof num !== 'number' || num !== num || !isFinite(num)) {
- throw new TypeError('coordinates must be finite numbers');
- }
- }
- function checkNotWGS(source, dest) {
- return ((source.datum.datum_type === PJD_3PARAM || source.datum.datum_type === PJD_7PARAM) && dest.datumCode !== 'WGS84') || ((dest.datum.datum_type === PJD_3PARAM || dest.datum.datum_type === PJD_7PARAM) && source.datumCode !== 'WGS84');
- }
- function transform(source, dest, point) {
- var wgs84;
- if (Array.isArray(point)) {
- point = toPoint(point);
- }
- checkSanity(point);
- // Workaround for datum shifts towgs84, if either source or destination projection is not wgs84
- if (source.datum && dest.datum && checkNotWGS(source, dest)) {
- wgs84 = new Projection('WGS84');
- point = transform(source, wgs84, point);
- source = wgs84;
- }
- // DGR, 2010/11/12
- if (source.axis !== 'enu') {
- point = adjust_axis(source, false, point);
- }
- // Transform source points to long/lat, if they aren't already.
- if (source.projName === 'longlat') {
- point = {
- x: point.x * D2R,
- y: point.y * D2R,
- z: point.z || 0
- };
- } else {
- if (source.to_meter) {
- point = {
- x: point.x * source.to_meter,
- y: point.y * source.to_meter,
- z: point.z || 0
- };
- }
- point = source.inverse(point); // Convert Cartesian to longlat
- if (!point) {
- return;
- }
- }
- // Adjust for the prime meridian if necessary
- if (source.from_greenwich) {
- point.x += source.from_greenwich;
- }
- // Convert datums if needed, and if possible.
- point = datum_transform(source.datum, dest.datum, point);
- // Adjust for the prime meridian if necessary
- if (dest.from_greenwich) {
- point = {
- x: point.x - dest.from_greenwich,
- y: point.y,
- z: point.z || 0
- };
- }
- if (dest.projName === 'longlat') {
- // convert radians to decimal degrees
- point = {
- x: point.x * R2D,
- y: point.y * R2D,
- z: point.z || 0
- };
- } else { // else project
- point = dest.forward(point);
- if (dest.to_meter) {
- point = {
- x: point.x / dest.to_meter,
- y: point.y / dest.to_meter,
- z: point.z || 0
- };
- }
- }
- // DGR, 2010/11/12
- if (dest.axis !== 'enu') {
- return adjust_axis(dest, true, point);
- }
- return point;
- }
- var wgs84 = Projection('WGS84');
- function transformer(from, to, coords) {
- var transformedArray, out, keys;
- if (Array.isArray(coords)) {
- transformedArray = transform(from, to, coords) || {x: NaN, y: NaN};
- if (coords.length > 2) {
- if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) {
- if (typeof transformedArray.z === 'number') {
- return [transformedArray.x, transformedArray.y, transformedArray.z].concat(coords.splice(3));
- } else {
- return [transformedArray.x, transformedArray.y, coords[2]].concat(coords.splice(3));
- }
- } else {
- return [transformedArray.x, transformedArray.y].concat(coords.splice(2));
- }
- } else {
- return [transformedArray.x, transformedArray.y];
- }
- } else {
- out = transform(from, to, coords);
- keys = Object.keys(coords);
- if (keys.length === 2) {
- return out;
- }
- keys.forEach(function (key) {
- if ((typeof from.name !== 'undefined' && from.name === 'geocent') || (typeof to.name !== 'undefined' && to.name === 'geocent')) {
- if (key === 'x' || key === 'y' || key === 'z') {
- return;
- }
- } else {
- if (key === 'x' || key === 'y') {
- return;
- }
- }
- out[key] = coords[key];
- });
- return out;
- }
- }
- function checkProj(item) {
- if (item instanceof Projection) {
- return item;
- }
- if (item.oProj) {
- return item.oProj;
- }
- return Projection(item);
- }
- function proj4$1(fromProj, toProj, coord) {
- fromProj = checkProj(fromProj);
- var single = false;
- var obj;
- if (typeof toProj === 'undefined') {
- toProj = fromProj;
- fromProj = wgs84;
- single = true;
- } else if (typeof toProj.x !== 'undefined' || Array.isArray(toProj)) {
- coord = toProj;
- toProj = fromProj;
- fromProj = wgs84;
- single = true;
- }
- toProj = checkProj(toProj);
- if (coord) {
- return transformer(fromProj, toProj, coord);
- } else {
- obj = {
- forward: function (coords) {
- return transformer(fromProj, toProj, coords);
- },
- inverse: function (coords) {
- return transformer(toProj, fromProj, coords);
- }
- };
- if (single) {
- obj.oProj = toProj;
- }
- return obj;
- }
- }
- /**
- * UTM zones are grouped, and assigned to one of a group of 6
- * sets.
- *
- * {int} @private
- */
- var NUM_100K_SETS = 6;
- /**
- * The column letters (for easting) of the lower left value, per
- * set.
- *
- * {string} @private
- */
- var SET_ORIGIN_COLUMN_LETTERS = 'AJSAJS';
- /**
- * The row letters (for northing) of the lower left value, per
- * set.
- *
- * {string} @private
- */
- var SET_ORIGIN_ROW_LETTERS = 'AFAFAF';
- var A = 65; // A
- var I = 73; // I
- var O = 79; // O
- var V = 86; // V
- var Z = 90; // Z
- var mgrs = {
- forward: forward$1,
- inverse: inverse$1,
- toPoint: toPoint$1
- };
- /**
- * Conversion of lat/lon to MGRS.
- *
- * @param {object} ll Object literal with lat and lon properties on a
- * WGS84 ellipsoid.
- * @param {int} accuracy Accuracy in digits (5 for 1 m, 4 for 10 m, 3 for
- * 100 m, 2 for 1000 m or 1 for 10000 m). Optional, default is 5.
- * @return {string} the MGRS string for the given location and accuracy.
- */
- function forward$1(ll, accuracy) {
- accuracy = accuracy || 5; // default accuracy 1m
- return encode(LLtoUTM({
- lat: ll[1],
- lon: ll[0]
- }), accuracy);
- }
- /**
- * Conversion of MGRS to lat/lon.
- *
- * @param {string} mgrs MGRS string.
- * @return {array} An array with left (longitude), bottom (latitude), right
- * (longitude) and top (latitude) values in WGS84, representing the
- * bounding box for the provided MGRS reference.
- */
- function inverse$1(mgrs) {
- var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
- if (bbox.lat && bbox.lon) {
- return [bbox.lon, bbox.lat, bbox.lon, bbox.lat];
- }
- return [bbox.left, bbox.bottom, bbox.right, bbox.top];
- }
- function toPoint$1(mgrs) {
- var bbox = UTMtoLL(decode(mgrs.toUpperCase()));
- if (bbox.lat && bbox.lon) {
- return [bbox.lon, bbox.lat];
- }
- return [(bbox.left + bbox.right) / 2, (bbox.top + bbox.bottom) / 2];
- }
- /**
- * Conversion from degrees to radians.
- *
- * @private
- * @param {number} deg the angle in degrees.
- * @return {number} the angle in radians.
- */
- function degToRad(deg) {
- return (deg * (Math.PI / 180.0));
- }
- /**
- * Conversion from radians to degrees.
- *
- * @private
- * @param {number} rad the angle in radians.
- * @return {number} the angle in degrees.
- */
- function radToDeg(rad) {
- return (180.0 * (rad / Math.PI));
- }
- /**
- * Converts a set of Longitude and Latitude co-ordinates to UTM
- * using the WGS84 ellipsoid.
- *
- * @private
- * @param {object} ll Object literal with lat and lon properties
- * representing the WGS84 coordinate to be converted.
- * @return {object} Object literal containing the UTM value with easting,
- * northing, zoneNumber and zoneLetter properties, and an optional
- * accuracy property in digits. Returns null if the conversion failed.
- */
- function LLtoUTM(ll) {
- var Lat = ll.lat;
- var Long = ll.lon;
- var a = 6378137.0; //ellip.radius;
- var eccSquared = 0.00669438; //ellip.eccsq;
- var k0 = 0.9996;
- var LongOrigin;
- var eccPrimeSquared;
- var N, T, C, A, M;
- var LatRad = degToRad(Lat);
- var LongRad = degToRad(Long);
- var LongOriginRad;
- var ZoneNumber;
- // (int)
- ZoneNumber = Math.floor((Long + 180) / 6) + 1;
- //Make sure the longitude 180.00 is in Zone 60
- if (Long === 180) {
- ZoneNumber = 60;
- }
- // Special zone for Norway
- if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
- ZoneNumber = 32;
- }
- // Special zones for Svalbard
- if (Lat >= 72.0 && Lat < 84.0) {
- if (Long >= 0.0 && Long < 9.0) {
- ZoneNumber = 31;
- }
- else if (Long >= 9.0 && Long < 21.0) {
- ZoneNumber = 33;
- }
- else if (Long >= 21.0 && Long < 33.0) {
- ZoneNumber = 35;
- }
- else if (Long >= 33.0 && Long < 42.0) {
- ZoneNumber = 37;
- }
- }
- LongOrigin = (ZoneNumber - 1) * 6 - 180 + 3; //+3 puts origin
- // in middle of
- // zone
- LongOriginRad = degToRad(LongOrigin);
- eccPrimeSquared = (eccSquared) / (1 - eccSquared);
- N = a / Math.sqrt(1 - eccSquared * Math.sin(LatRad) * Math.sin(LatRad));
- T = Math.tan(LatRad) * Math.tan(LatRad);
- C = eccPrimeSquared * Math.cos(LatRad) * Math.cos(LatRad);
- A = Math.cos(LatRad) * (LongRad - LongOriginRad);
- M = a * ((1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256) * LatRad - (3 * eccSquared / 8 + 3 * eccSquared * eccSquared / 32 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(2 * LatRad) + (15 * eccSquared * eccSquared / 256 + 45 * eccSquared * eccSquared * eccSquared / 1024) * Math.sin(4 * LatRad) - (35 * eccSquared * eccSquared * eccSquared / 3072) * Math.sin(6 * LatRad));
- var UTMEasting = (k0 * N * (A + (1 - T + C) * A * A * A / 6.0 + (5 - 18 * T + T * T + 72 * C - 58 * eccPrimeSquared) * A * A * A * A * A / 120.0) + 500000.0);
- var UTMNorthing = (k0 * (M + N * Math.tan(LatRad) * (A * A / 2 + (5 - T + 9 * C + 4 * C * C) * A * A * A * A / 24.0 + (61 - 58 * T + T * T + 600 * C - 330 * eccPrimeSquared) * A * A * A * A * A * A / 720.0)));
- if (Lat < 0.0) {
- UTMNorthing += 10000000.0; //10000000 meter offset for
- // southern hemisphere
- }
- return {
- northing: Math.round(UTMNorthing),
- easting: Math.round(UTMEasting),
- zoneNumber: ZoneNumber,
- zoneLetter: getLetterDesignator(Lat)
- };
- }
- /**
- * Converts UTM coords to lat/long, using the WGS84 ellipsoid. This is a convenience
- * class where the Zone can be specified as a single string eg."60N" which
- * is then broken down into the ZoneNumber and ZoneLetter.
- *
- * @private
- * @param {object} utm An object literal with northing, easting, zoneNumber
- * and zoneLetter properties. If an optional accuracy property is
- * provided (in meters), a bounding box will be returned instead of
- * latitude and longitude.
- * @return {object} An object literal containing either lat and lon values
- * (if no accuracy was provided), or top, right, bottom and left values
- * for the bounding box calculated according to the provided accuracy.
- * Returns null if the conversion failed.
- */
- function UTMtoLL(utm) {
- var UTMNorthing = utm.northing;
- var UTMEasting = utm.easting;
- var zoneLetter = utm.zoneLetter;
- var zoneNumber = utm.zoneNumber;
- // check the ZoneNummber is valid
- if (zoneNumber < 0 || zoneNumber > 60) {
- return null;
- }
- var k0 = 0.9996;
- var a = 6378137.0; //ellip.radius;
- var eccSquared = 0.00669438; //ellip.eccsq;
- var eccPrimeSquared;
- var e1 = (1 - Math.sqrt(1 - eccSquared)) / (1 + Math.sqrt(1 - eccSquared));
- var N1, T1, C1, R1, D, M;
- var LongOrigin;
- var mu, phi1Rad;
- // remove 500,000 meter offset for longitude
- var x = UTMEasting - 500000.0;
- var y = UTMNorthing;
- // We must know somehow if we are in the Northern or Southern
- // hemisphere, this is the only time we use the letter So even
- // if the Zone letter isn't exactly correct it should indicate
- // the hemisphere correctly
- if (zoneLetter < 'N') {
- y -= 10000000.0; // remove 10,000,000 meter offset used
- // for southern hemisphere
- }
- // There are 60 zones with zone 1 being at West -180 to -174
- LongOrigin = (zoneNumber - 1) * 6 - 180 + 3; // +3 puts origin
- // in middle of
- // zone
- eccPrimeSquared = (eccSquared) / (1 - eccSquared);
- M = y / k0;
- mu = M / (a * (1 - eccSquared / 4 - 3 * eccSquared * eccSquared / 64 - 5 * eccSquared * eccSquared * eccSquared / 256));
- phi1Rad = mu + (3 * e1 / 2 - 27 * e1 * e1 * e1 / 32) * Math.sin(2 * mu) + (21 * e1 * e1 / 16 - 55 * e1 * e1 * e1 * e1 / 32) * Math.sin(4 * mu) + (151 * e1 * e1 * e1 / 96) * Math.sin(6 * mu);
- // double phi1 = ProjMath.radToDeg(phi1Rad);
- N1 = a / Math.sqrt(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad));
- T1 = Math.tan(phi1Rad) * Math.tan(phi1Rad);
- C1 = eccPrimeSquared * Math.cos(phi1Rad) * Math.cos(phi1Rad);
- R1 = a * (1 - eccSquared) / Math.pow(1 - eccSquared * Math.sin(phi1Rad) * Math.sin(phi1Rad), 1.5);
- D = x / (N1 * k0);
- var lat = phi1Rad - (N1 * Math.tan(phi1Rad) / R1) * (D * D / 2 - (5 + 3 * T1 + 10 * C1 - 4 * C1 * C1 - 9 * eccPrimeSquared) * D * D * D * D / 24 + (61 + 90 * T1 + 298 * C1 + 45 * T1 * T1 - 252 * eccPrimeSquared - 3 * C1 * C1) * D * D * D * D * D * D / 720);
- lat = radToDeg(lat);
- var lon = (D - (1 + 2 * T1 + C1) * D * D * D / 6 + (5 - 2 * C1 + 28 * T1 - 3 * C1 * C1 + 8 * eccPrimeSquared + 24 * T1 * T1) * D * D * D * D * D / 120) / Math.cos(phi1Rad);
- lon = LongOrigin + radToDeg(lon);
- var result;
- if (utm.accuracy) {
- var topRight = UTMtoLL({
- northing: utm.northing + utm.accuracy,
- easting: utm.easting + utm.accuracy,
- zoneLetter: utm.zoneLetter,
- zoneNumber: utm.zoneNumber
- });
- result = {
- top: topRight.lat,
- right: topRight.lon,
- bottom: lat,
- left: lon
- };
- }
- else {
- result = {
- lat: lat,
- lon: lon
- };
- }
- return result;
- }
- /**
- * Calculates the MGRS letter designator for the given latitude.
- *
- * @private
- * @param {number} lat The latitude in WGS84 to get the letter designator
- * for.
- * @return {char} The letter designator.
- */
- function getLetterDesignator(lat) {
- //This is here as an error flag to show that the Latitude is
- //outside MGRS limits
- var LetterDesignator = 'Z';
- if ((84 >= lat) && (lat >= 72)) {
- LetterDesignator = 'X';
- }
- else if ((72 > lat) && (lat >= 64)) {
- LetterDesignator = 'W';
- }
- else if ((64 > lat) && (lat >= 56)) {
- LetterDesignator = 'V';
- }
- else if ((56 > lat) && (lat >= 48)) {
- LetterDesignator = 'U';
- }
- else if ((48 > lat) && (lat >= 40)) {
- LetterDesignator = 'T';
- }
- else if ((40 > lat) && (lat >= 32)) {
- LetterDesignator = 'S';
- }
- else if ((32 > lat) && (lat >= 24)) {
- LetterDesignator = 'R';
- }
- else if ((24 > lat) && (lat >= 16)) {
- LetterDesignator = 'Q';
- }
- else if ((16 > lat) && (lat >= 8)) {
- LetterDesignator = 'P';
- }
- else if ((8 > lat) && (lat >= 0)) {
- LetterDesignator = 'N';
- }
- else if ((0 > lat) && (lat >= -8)) {
- LetterDesignator = 'M';
- }
- else if ((-8 > lat) && (lat >= -16)) {
- LetterDesignator = 'L';
- }
- else if ((-16 > lat) && (lat >= -24)) {
- LetterDesignator = 'K';
- }
- else if ((-24 > lat) && (lat >= -32)) {
- LetterDesignator = 'J';
- }
- else if ((-32 > lat) && (lat >= -40)) {
- LetterDesignator = 'H';
- }
- else if ((-40 > lat) && (lat >= -48)) {
- LetterDesignator = 'G';
- }
- else if ((-48 > lat) && (lat >= -56)) {
- LetterDesignator = 'F';
- }
- else if ((-56 > lat) && (lat >= -64)) {
- LetterDesignator = 'E';
- }
- else if ((-64 > lat) && (lat >= -72)) {
- LetterDesignator = 'D';
- }
- else if ((-72 > lat) && (lat >= -80)) {
- LetterDesignator = 'C';
- }
- return LetterDesignator;
- }
- /**
- * Encodes a UTM location as MGRS string.
- *
- * @private
- * @param {object} utm An object literal with easting, northing,
- * zoneLetter, zoneNumber
- * @param {number} accuracy Accuracy in digits (1-5).
- * @return {string} MGRS string for the given UTM location.
- */
- function encode(utm, accuracy) {
- // prepend with leading zeroes
- var seasting = "00000" + utm.easting,
- snorthing = "00000" + utm.northing;
- return utm.zoneNumber + utm.zoneLetter + get100kID(utm.easting, utm.northing, utm.zoneNumber) + seasting.substr(seasting.length - 5, accuracy) + snorthing.substr(snorthing.length - 5, accuracy);
- }
- /**
- * Get the two letter 100k designator for a given UTM easting,
- * northing and zone number value.
- *
- * @private
- * @param {number} easting
- * @param {number} northing
- * @param {number} zoneNumber
- * @return the two letter 100k designator for the given UTM location.
- */
- function get100kID(easting, northing, zoneNumber) {
- var setParm = get100kSetForZone(zoneNumber);
- var setColumn = Math.floor(easting / 100000);
- var setRow = Math.floor(northing / 100000) % 20;
- return getLetter100kID(setColumn, setRow, setParm);
- }
- /**
- * Given a UTM zone number, figure out the MGRS 100K set it is in.
- *
- * @private
- * @param {number} i An UTM zone number.
- * @return {number} the 100k set the UTM zone is in.
- */
- function get100kSetForZone(i) {
- var setParm = i % NUM_100K_SETS;
- if (setParm === 0) {
- setParm = NUM_100K_SETS;
- }
- return setParm;
- }
- /**
- * Get the two-letter MGRS 100k designator given information
- * translated from the UTM northing, easting and zone number.
- *
- * @private
- * @param {number} column the column index as it relates to the MGRS
- * 100k set spreadsheet, created from the UTM easting.
- * Values are 1-8.
- * @param {number} row the row index as it relates to the MGRS 100k set
- * spreadsheet, created from the UTM northing value. Values
- * are from 0-19.
- * @param {number} parm the set block, as it relates to the MGRS 100k set
- * spreadsheet, created from the UTM zone. Values are from
- * 1-60.
- * @return two letter MGRS 100k code.
- */
- function getLetter100kID(column, row, parm) {
- // colOrigin and rowOrigin are the letters at the origin of the set
- var index = parm - 1;
- var colOrigin = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(index);
- var rowOrigin = SET_ORIGIN_ROW_LETTERS.charCodeAt(index);
- // colInt and rowInt are the letters to build to return
- var colInt = colOrigin + column - 1;
- var rowInt = rowOrigin + row;
- var rollover = false;
- if (colInt > Z) {
- colInt = colInt - Z + A - 1;
- rollover = true;
- }
- if (colInt === I || (colOrigin < I && colInt > I) || ((colInt > I || colOrigin < I) && rollover)) {
- colInt++;
- }
- if (colInt === O || (colOrigin < O && colInt > O) || ((colInt > O || colOrigin < O) && rollover)) {
- colInt++;
- if (colInt === I) {
- colInt++;
- }
- }
- if (colInt > Z) {
- colInt = colInt - Z + A - 1;
- }
- if (rowInt > V) {
- rowInt = rowInt - V + A - 1;
- rollover = true;
- }
- else {
- rollover = false;
- }
- if (((rowInt === I) || ((rowOrigin < I) && (rowInt > I))) || (((rowInt > I) || (rowOrigin < I)) && rollover)) {
- rowInt++;
- }
- if (((rowInt === O) || ((rowOrigin < O) && (rowInt > O))) || (((rowInt > O) || (rowOrigin < O)) && rollover)) {
- rowInt++;
- if (rowInt === I) {
- rowInt++;
- }
- }
- if (rowInt > V) {
- rowInt = rowInt - V + A - 1;
- }
- var twoLetter = String.fromCharCode(colInt) + String.fromCharCode(rowInt);
- return twoLetter;
- }
- /**
- * Decode the UTM parameters from a MGRS string.
- *
- * @private
- * @param {string} mgrsString an UPPERCASE coordinate string is expected.
- * @return {object} An object literal with easting, northing, zoneLetter,
- * zoneNumber and accuracy (in meters) properties.
- */
- function decode(mgrsString) {
- if (mgrsString && mgrsString.length === 0) {
- throw ("MGRSPoint coverting from nothing");
- }
- var length = mgrsString.length;
- var hunK = null;
- var sb = "";
- var testChar;
- var i = 0;
- // get Zone number
- while (!(/[A-Z]/).test(testChar = mgrsString.charAt(i))) {
- if (i >= 2) {
- throw ("MGRSPoint bad conversion from: " + mgrsString);
- }
- sb += testChar;
- i++;
- }
- var zoneNumber = parseInt(sb, 10);
- if (i === 0 || i + 3 > length) {
- // A good MGRS string has to be 4-5 digits long,
- // ##AAA/#AAA at least.
- throw ("MGRSPoint bad conversion from: " + mgrsString);
- }
- var zoneLetter = mgrsString.charAt(i++);
- // Should we check the zone letter here? Why not.
- if (zoneLetter <= 'A' || zoneLetter === 'B' || zoneLetter === 'Y' || zoneLetter >= 'Z' || zoneLetter === 'I' || zoneLetter === 'O') {
- throw ("MGRSPoint zone letter " + zoneLetter + " not handled: " + mgrsString);
- }
- hunK = mgrsString.substring(i, i += 2);
- var set = get100kSetForZone(zoneNumber);
- var east100k = getEastingFromChar(hunK.charAt(0), set);
- var north100k = getNorthingFromChar(hunK.charAt(1), set);
- // We have a bug where the northing may be 2000000 too low.
- // How
- // do we know when to roll over?
- while (north100k < getMinNorthing(zoneLetter)) {
- north100k += 2000000;
- }
- // calculate the char index for easting/northing separator
- var remainder = length - i;
- if (remainder % 2 !== 0) {
- throw ("MGRSPoint has to have an even number \nof digits after the zone letter and two 100km letters - front \nhalf for easting meters, second half for \nnorthing meters" + mgrsString);
- }
- var sep = remainder / 2;
- var sepEasting = 0.0;
- var sepNorthing = 0.0;
- var accuracyBonus, sepEastingString, sepNorthingString, easting, northing;
- if (sep > 0) {
- accuracyBonus = 100000.0 / Math.pow(10, sep);
- sepEastingString = mgrsString.substring(i, i + sep);
- sepEasting = parseFloat(sepEastingString) * accuracyBonus;
- sepNorthingString = mgrsString.substring(i + sep);
- sepNorthing = parseFloat(sepNorthingString) * accuracyBonus;
- }
- easting = sepEasting + east100k;
- northing = sepNorthing + north100k;
- return {
- easting: easting,
- northing: northing,
- zoneLetter: zoneLetter,
- zoneNumber: zoneNumber,
- accuracy: accuracyBonus
- };
- }
- /**
- * Given the first letter from a two-letter MGRS 100k zone, and given the
- * MGRS table set for the zone number, figure out the easting value that
- * should be added to the other, secondary easting value.
- *
- * @private
- * @param {char} e The first letter from a two-letter MGRS 100´k zone.
- * @param {number} set The MGRS table set for the zone number.
- * @return {number} The easting value for the given letter and set.
- */
- function getEastingFromChar(e, set) {
- // colOrigin is the letter at the origin of the set for the
- // column
- var curCol = SET_ORIGIN_COLUMN_LETTERS.charCodeAt(set - 1);
- var eastingValue = 100000.0;
- var rewindMarker = false;
- while (curCol !== e.charCodeAt(0)) {
- curCol++;
- if (curCol === I) {
- curCol++;
- }
- if (curCol === O) {
- curCol++;
- }
- if (curCol > Z) {
- if (rewindMarker) {
- throw ("Bad character: " + e);
- }
- curCol = A;
- rewindMarker = true;
- }
- eastingValue += 100000.0;
- }
- return eastingValue;
- }
- /**
- * Given the second letter from a two-letter MGRS 100k zone, and given the
- * MGRS table set for the zone number, figure out the northing value that
- * should be added to the other, secondary northing value. You have to
- * remember that Northings are determined from the equator, and the vertical
- * cycle of letters mean a 2000000 additional northing meters. This happens
- * approx. every 18 degrees of latitude. This method does *NOT* count any
- * additional northings. You have to figure out how many 2000000 meters need
- * to be added for the zone letter of the MGRS coordinate.
- *
- * @private
- * @param {char} n Second letter of the MGRS 100k zone
- * @param {number} set The MGRS table set number, which is dependent on the
- * UTM zone number.
- * @return {number} The northing value for the given letter and set.
- */
- function getNorthingFromChar(n, set) {
- if (n > 'V') {
- throw ("MGRSPoint given invalid Northing " + n);
- }
- // rowOrigin is the letter at the origin of the set for the
- // column
- var curRow = SET_ORIGIN_ROW_LETTERS.charCodeAt(set - 1);
- var northingValue = 0.0;
- var rewindMarker = false;
- while (curRow !== n.charCodeAt(0)) {
- curRow++;
- if (curRow === I) {
- curRow++;
- }
- if (curRow === O) {
- curRow++;
- }
- // fixing a bug making whole application hang in this loop
- // when 'n' is a wrong character
- if (curRow > V) {
- if (rewindMarker) { // making sure that this loop ends
- throw ("Bad character: " + n);
- }
- curRow = A;
- rewindMarker = true;
- }
- northingValue += 100000.0;
- }
- return northingValue;
- }
- /**
- * The function getMinNorthing returns the minimum northing value of a MGRS
- * zone.
- *
- * Ported from Geotrans' c Lattitude_Band_Value structure table.
- *
- * @private
- * @param {char} zoneLetter The MGRS zone to get the min northing for.
- * @return {number}
- */
- function getMinNorthing(zoneLetter) {
- var northing;
- switch (zoneLetter) {
- case 'C':
- northing = 1100000.0;
- break;
- case 'D':
- northing = 2000000.0;
- break;
- case 'E':
- northing = 2800000.0;
- break;
- case 'F':
- northing = 3700000.0;
- break;
- case 'G':
- northing = 4600000.0;
- break;
- case 'H':
- northing = 5500000.0;
- break;
- case 'J':
- northing = 6400000.0;
- break;
- case 'K':
- northing = 7300000.0;
- break;
- case 'L':
- northing = 8200000.0;
- break;
- case 'M':
- northing = 9100000.0;
- break;
- case 'N':
- northing = 0.0;
- break;
- case 'P':
- northing = 800000.0;
- break;
- case 'Q':
- northing = 1700000.0;
- break;
- case 'R':
- northing = 2600000.0;
- break;
- case 'S':
- northing = 3500000.0;
- break;
- case 'T':
- northing = 4400000.0;
- break;
- case 'U':
- northing = 5300000.0;
- break;
- case 'V':
- northing = 6200000.0;
- break;
- case 'W':
- northing = 7000000.0;
- break;
- case 'X':
- northing = 7900000.0;
- break;
- default:
- northing = -1.0;
- }
- if (northing >= 0.0) {
- return northing;
- }
- else {
- throw ("Invalid zone letter: " + zoneLetter);
- }
- }
- function Point(x, y, z) {
- if (!(this instanceof Point)) {
- return new Point(x, y, z);
- }
- if (Array.isArray(x)) {
- this.x = x[0];
- this.y = x[1];
- this.z = x[2] || 0.0;
- } else if(typeof x === 'object') {
- this.x = x.x;
- this.y = x.y;
- this.z = x.z || 0.0;
- } else if (typeof x === 'string' && typeof y === 'undefined') {
- var coords = x.split(',');
- this.x = parseFloat(coords[0], 10);
- this.y = parseFloat(coords[1], 10);
- this.z = parseFloat(coords[2], 10) || 0.0;
- } else {
- this.x = x;
- this.y = y;
- this.z = z || 0.0;
- }
- console.warn('proj4.Point will be removed in version 3, use proj4.toPoint');
- }
- Point.fromMGRS = function(mgrsStr) {
- return new Point(toPoint$1(mgrsStr));
- };
- Point.prototype.toMGRS = function(accuracy) {
- return forward$1([this.x, this.y], accuracy);
- };
- var C00 = 1;
- var C02 = 0.25;
- var C04 = 0.046875;
- var C06 = 0.01953125;
- var C08 = 0.01068115234375;
- var C22 = 0.75;
- var C44 = 0.46875;
- var C46 = 0.01302083333333333333;
- var C48 = 0.00712076822916666666;
- var C66 = 0.36458333333333333333;
- var C68 = 0.00569661458333333333;
- var C88 = 0.3076171875;
- var pj_enfn = function(es) {
- var en = [];
- en[0] = C00 - es * (C02 + es * (C04 + es * (C06 + es * C08)));
- en[1] = es * (C22 - es * (C04 + es * (C06 + es * C08)));
- var t = es * es;
- en[2] = t * (C44 - es * (C46 + es * C48));
- t *= es;
- en[3] = t * (C66 - es * C68);
- en[4] = t * es * C88;
- return en;
- };
- var pj_mlfn = function(phi, sphi, cphi, en) {
- cphi *= sphi;
- sphi *= sphi;
- return (en[0] * phi - cphi * (en[1] + sphi * (en[2] + sphi * (en[3] + sphi * en[4]))));
- };
- var MAX_ITER = 20;
- var pj_inv_mlfn = function(arg, es, en) {
- var k = 1 / (1 - es);
- var phi = arg;
- for (var i = MAX_ITER; i; --i) { /* rarely goes over 2 iterations */
- var s = Math.sin(phi);
- var t = 1 - es * s * s;
- //t = this.pj_mlfn(phi, s, Math.cos(phi), en) - arg;
- //phi -= t * (t * Math.sqrt(t)) * k;
- t = (pj_mlfn(phi, s, Math.cos(phi), en) - arg) * (t * Math.sqrt(t)) * k;
- phi -= t;
- if (Math.abs(t) < EPSLN) {
- return phi;
- }
- }
- //..reportError("cass:pj_inv_mlfn: Convergence error");
- return phi;
- };
- // Heavily based on this tmerc projection implementation
- // https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/tmerc.js
- function init$2() {
- this.x0 = this.x0 !== undefined ? this.x0 : 0;
- this.y0 = this.y0 !== undefined ? this.y0 : 0;
- this.long0 = this.long0 !== undefined ? this.long0 : 0;
- this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
- if (this.es) {
- this.en = pj_enfn(this.es);
- this.ml0 = pj_mlfn(this.lat0, Math.sin(this.lat0), Math.cos(this.lat0), this.en);
- }
- }
- /**
- Transverse Mercator Forward - long/lat to x/y
- long/lat in radians
- */
- function forward$2(p) {
- var lon = p.x;
- var lat = p.y;
- var delta_lon = adjust_lon(lon - this.long0);
- var con;
- var x, y;
- var sin_phi = Math.sin(lat);
- var cos_phi = Math.cos(lat);
- if (!this.es) {
- var b = cos_phi * Math.sin(delta_lon);
- if ((Math.abs(Math.abs(b) - 1)) < EPSLN) {
- return (93);
- }
- else {
- x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)) + this.x0;
- y = cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - Math.pow(b, 2));
- b = Math.abs(y);
- if (b >= 1) {
- if ((b - 1) > EPSLN) {
- return (93);
- }
- else {
- y = 0;
- }
- }
- else {
- y = Math.acos(y);
- }
- if (lat < 0) {
- y = -y;
- }
- y = this.a * this.k0 * (y - this.lat0) + this.y0;
- }
- }
- else {
- var al = cos_phi * delta_lon;
- var als = Math.pow(al, 2);
- var c = this.ep2 * Math.pow(cos_phi, 2);
- var cs = Math.pow(c, 2);
- var tq = Math.abs(cos_phi) > EPSLN ? Math.tan(lat) : 0;
- var t = Math.pow(tq, 2);
- var ts = Math.pow(t, 2);
- con = 1 - this.es * Math.pow(sin_phi, 2);
- al = al / Math.sqrt(con);
- var ml = pj_mlfn(lat, sin_phi, cos_phi, this.en);
- x = this.a * (this.k0 * al * (1 +
- als / 6 * (1 - t + c +
- als / 20 * (5 - 18 * t + ts + 14 * c - 58 * t * c +
- als / 42 * (61 + 179 * ts - ts * t - 479 * t))))) +
- this.x0;
- y = this.a * (this.k0 * (ml - this.ml0 +
- sin_phi * delta_lon * al / 2 * (1 +
- als / 12 * (5 - t + 9 * c + 4 * cs +
- als / 30 * (61 + ts - 58 * t + 270 * c - 330 * t * c +
- als / 56 * (1385 + 543 * ts - ts * t - 3111 * t)))))) +
- this.y0;
- }
- p.x = x;
- p.y = y;
- return p;
- }
- /**
- Transverse Mercator Inverse - x/y to long/lat
- */
- function inverse$2(p) {
- var con, phi;
- var lat, lon;
- var x = (p.x - this.x0) * (1 / this.a);
- var y = (p.y - this.y0) * (1 / this.a);
- if (!this.es) {
- var f = Math.exp(x / this.k0);
- var g = 0.5 * (f - 1 / f);
- var temp = this.lat0 + y / this.k0;
- var h = Math.cos(temp);
- con = Math.sqrt((1 - Math.pow(h, 2)) / (1 + Math.pow(g, 2)));
- lat = Math.asin(con);
- if (y < 0) {
- lat = -lat;
- }
- if ((g === 0) && (h === 0)) {
- lon = 0;
- }
- else {
- lon = adjust_lon(Math.atan2(g, h) + this.long0);
- }
- }
- else { // ellipsoidal form
- con = this.ml0 + y / this.k0;
- phi = pj_inv_mlfn(con, this.es, this.en);
- if (Math.abs(phi) < HALF_PI) {
- var sin_phi = Math.sin(phi);
- var cos_phi = Math.cos(phi);
- var tan_phi = Math.abs(cos_phi) > EPSLN ? Math.tan(phi) : 0;
- var c = this.ep2 * Math.pow(cos_phi, 2);
- var cs = Math.pow(c, 2);
- var t = Math.pow(tan_phi, 2);
- var ts = Math.pow(t, 2);
- con = 1 - this.es * Math.pow(sin_phi, 2);
- var d = x * Math.sqrt(con) / this.k0;
- var ds = Math.pow(d, 2);
- con = con * tan_phi;
- lat = phi - (con * ds / (1 - this.es)) * 0.5 * (1 -
- ds / 12 * (5 + 3 * t - 9 * c * t + c - 4 * cs -
- ds / 30 * (61 + 90 * t - 252 * c * t + 45 * ts + 46 * c -
- ds / 56 * (1385 + 3633 * t + 4095 * ts + 1574 * ts * t))));
- lon = adjust_lon(this.long0 + (d * (1 -
- ds / 6 * (1 + 2 * t + c -
- ds / 20 * (5 + 28 * t + 24 * ts + 8 * c * t + 6 * c -
- ds / 42 * (61 + 662 * t + 1320 * ts + 720 * ts * t)))) / cos_phi));
- }
- else {
- lat = HALF_PI * sign(y);
- lon = 0;
- }
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$3 = ["Transverse_Mercator", "Transverse Mercator", "tmerc"];
- var tmerc = {
- init: init$2,
- forward: forward$2,
- inverse: inverse$2,
- names: names$3
- };
- var sinh = function(x) {
- var r = Math.exp(x);
- r = (r - 1 / r) / 2;
- return r;
- };
- var hypot = function(x, y) {
- x = Math.abs(x);
- y = Math.abs(y);
- var a = Math.max(x, y);
- var b = Math.min(x, y) / (a ? a : 1);
- return a * Math.sqrt(1 + Math.pow(b, 2));
- };
- var log1py = function(x) {
- var y = 1 + x;
- var z = y - 1;
- return z === 0 ? x : x * Math.log(y) / z;
- };
- var asinhy = function(x) {
- var y = Math.abs(x);
- y = log1py(y * (1 + y / (hypot(1, y) + 1)));
- return x < 0 ? -y : y;
- };
- var gatg = function(pp, B) {
- var cos_2B = 2 * Math.cos(2 * B);
- var i = pp.length - 1;
- var h1 = pp[i];
- var h2 = 0;
- var h;
- while (--i >= 0) {
- h = -h2 + cos_2B * h1 + pp[i];
- h2 = h1;
- h1 = h;
- }
- return (B + h * Math.sin(2 * B));
- };
- var clens = function(pp, arg_r) {
- var r = 2 * Math.cos(arg_r);
- var i = pp.length - 1;
- var hr1 = pp[i];
- var hr2 = 0;
- var hr;
- while (--i >= 0) {
- hr = -hr2 + r * hr1 + pp[i];
- hr2 = hr1;
- hr1 = hr;
- }
- return Math.sin(arg_r) * hr;
- };
- var cosh = function(x) {
- var r = Math.exp(x);
- r = (r + 1 / r) / 2;
- return r;
- };
- var clens_cmplx = function(pp, arg_r, arg_i) {
- var sin_arg_r = Math.sin(arg_r);
- var cos_arg_r = Math.cos(arg_r);
- var sinh_arg_i = sinh(arg_i);
- var cosh_arg_i = cosh(arg_i);
- var r = 2 * cos_arg_r * cosh_arg_i;
- var i = -2 * sin_arg_r * sinh_arg_i;
- var j = pp.length - 1;
- var hr = pp[j];
- var hi1 = 0;
- var hr1 = 0;
- var hi = 0;
- var hr2;
- var hi2;
- while (--j >= 0) {
- hr2 = hr1;
- hi2 = hi1;
- hr1 = hr;
- hi1 = hi;
- hr = -hr2 + r * hr1 - i * hi1 + pp[j];
- hi = -hi2 + i * hr1 + r * hi1;
- }
- r = sin_arg_r * cosh_arg_i;
- i = cos_arg_r * sinh_arg_i;
- return [r * hr - i * hi, r * hi + i * hr];
- };
- // Heavily based on this etmerc projection implementation
- // https://github.com/mbloch/mapshaper-proj/blob/master/src/projections/etmerc.js
- function init$3() {
- if (this.es === undefined || this.es <= 0) {
- throw new Error('incorrect elliptical usage');
- }
- this.x0 = this.x0 !== undefined ? this.x0 : 0;
- this.y0 = this.y0 !== undefined ? this.y0 : 0;
- this.long0 = this.long0 !== undefined ? this.long0 : 0;
- this.lat0 = this.lat0 !== undefined ? this.lat0 : 0;
- this.cgb = [];
- this.cbg = [];
- this.utg = [];
- this.gtu = [];
- var f = this.es / (1 + Math.sqrt(1 - this.es));
- var n = f / (2 - f);
- var np = n;
- this.cgb[0] = n * (2 + n * (-2 / 3 + n * (-2 + n * (116 / 45 + n * (26 / 45 + n * (-2854 / 675 ))))));
- this.cbg[0] = n * (-2 + n * ( 2 / 3 + n * ( 4 / 3 + n * (-82 / 45 + n * (32 / 45 + n * (4642 / 4725))))));
- np = np * n;
- this.cgb[1] = np * (7 / 3 + n * (-8 / 5 + n * (-227 / 45 + n * (2704 / 315 + n * (2323 / 945)))));
- this.cbg[1] = np * (5 / 3 + n * (-16 / 15 + n * ( -13 / 9 + n * (904 / 315 + n * (-1522 / 945)))));
- np = np * n;
- this.cgb[2] = np * (56 / 15 + n * (-136 / 35 + n * (-1262 / 105 + n * (73814 / 2835))));
- this.cbg[2] = np * (-26 / 15 + n * (34 / 21 + n * (8 / 5 + n * (-12686 / 2835))));
- np = np * n;
- this.cgb[3] = np * (4279 / 630 + n * (-332 / 35 + n * (-399572 / 14175)));
- this.cbg[3] = np * (1237 / 630 + n * (-12 / 5 + n * ( -24832 / 14175)));
- np = np * n;
- this.cgb[4] = np * (4174 / 315 + n * (-144838 / 6237));
- this.cbg[4] = np * (-734 / 315 + n * (109598 / 31185));
- np = np * n;
- this.cgb[5] = np * (601676 / 22275);
- this.cbg[5] = np * (444337 / 155925);
- np = Math.pow(n, 2);
- this.Qn = this.k0 / (1 + n) * (1 + np * (1 / 4 + np * (1 / 64 + np / 256)));
- this.utg[0] = n * (-0.5 + n * ( 2 / 3 + n * (-37 / 96 + n * ( 1 / 360 + n * (81 / 512 + n * (-96199 / 604800))))));
- this.gtu[0] = n * (0.5 + n * (-2 / 3 + n * (5 / 16 + n * (41 / 180 + n * (-127 / 288 + n * (7891 / 37800))))));
- this.utg[1] = np * (-1 / 48 + n * (-1 / 15 + n * (437 / 1440 + n * (-46 / 105 + n * (1118711 / 3870720)))));
- this.gtu[1] = np * (13 / 48 + n * (-3 / 5 + n * (557 / 1440 + n * (281 / 630 + n * (-1983433 / 1935360)))));
- np = np * n;
- this.utg[2] = np * (-17 / 480 + n * (37 / 840 + n * (209 / 4480 + n * (-5569 / 90720 ))));
- this.gtu[2] = np * (61 / 240 + n * (-103 / 140 + n * (15061 / 26880 + n * (167603 / 181440))));
- np = np * n;
- this.utg[3] = np * (-4397 / 161280 + n * (11 / 504 + n * (830251 / 7257600)));
- this.gtu[3] = np * (49561 / 161280 + n * (-179 / 168 + n * (6601661 / 7257600)));
- np = np * n;
- this.utg[4] = np * (-4583 / 161280 + n * (108847 / 3991680));
- this.gtu[4] = np * (34729 / 80640 + n * (-3418889 / 1995840));
- np = np * n;
- this.utg[5] = np * (-20648693 / 638668800);
- this.gtu[5] = np * (212378941 / 319334400);
- var Z = gatg(this.cbg, this.lat0);
- this.Zb = -this.Qn * (Z + clens(this.gtu, 2 * Z));
- }
- function forward$3(p) {
- var Ce = adjust_lon(p.x - this.long0);
- var Cn = p.y;
- Cn = gatg(this.cbg, Cn);
- var sin_Cn = Math.sin(Cn);
- var cos_Cn = Math.cos(Cn);
- var sin_Ce = Math.sin(Ce);
- var cos_Ce = Math.cos(Ce);
- Cn = Math.atan2(sin_Cn, cos_Ce * cos_Cn);
- Ce = Math.atan2(sin_Ce * cos_Cn, hypot(sin_Cn, cos_Cn * cos_Ce));
- Ce = asinhy(Math.tan(Ce));
- var tmp = clens_cmplx(this.gtu, 2 * Cn, 2 * Ce);
- Cn = Cn + tmp[0];
- Ce = Ce + tmp[1];
- var x;
- var y;
- if (Math.abs(Ce) <= 2.623395162778) {
- x = this.a * (this.Qn * Ce) + this.x0;
- y = this.a * (this.Qn * Cn + this.Zb) + this.y0;
- }
- else {
- x = Infinity;
- y = Infinity;
- }
- p.x = x;
- p.y = y;
- return p;
- }
- function inverse$3(p) {
- var Ce = (p.x - this.x0) * (1 / this.a);
- var Cn = (p.y - this.y0) * (1 / this.a);
- Cn = (Cn - this.Zb) / this.Qn;
- Ce = Ce / this.Qn;
- var lon;
- var lat;
- if (Math.abs(Ce) <= 2.623395162778) {
- var tmp = clens_cmplx(this.utg, 2 * Cn, 2 * Ce);
- Cn = Cn + tmp[0];
- Ce = Ce + tmp[1];
- Ce = Math.atan(sinh(Ce));
- var sin_Cn = Math.sin(Cn);
- var cos_Cn = Math.cos(Cn);
- var sin_Ce = Math.sin(Ce);
- var cos_Ce = Math.cos(Ce);
- Cn = Math.atan2(sin_Cn * cos_Ce, hypot(sin_Ce, cos_Ce * cos_Cn));
- Ce = Math.atan2(sin_Ce, cos_Ce * cos_Cn);
- lon = adjust_lon(Ce + this.long0);
- lat = gatg(this.cgb, Cn);
- }
- else {
- lon = Infinity;
- lat = Infinity;
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$4 = ["Extended_Transverse_Mercator", "Extended Transverse Mercator", "etmerc"];
- var etmerc = {
- init: init$3,
- forward: forward$3,
- inverse: inverse$3,
- names: names$4
- };
- var adjust_zone = function(zone, lon) {
- if (zone === undefined) {
- zone = Math.floor((adjust_lon(lon) + Math.PI) * 30 / Math.PI) + 1;
- if (zone < 0) {
- return 0;
- } else if (zone > 60) {
- return 60;
- }
- }
- return zone;
- };
- var dependsOn = 'etmerc';
- function init$4() {
- var zone = adjust_zone(this.zone, this.long0);
- if (zone === undefined) {
- throw new Error('unknown utm zone');
- }
- this.lat0 = 0;
- this.long0 = ((6 * Math.abs(zone)) - 183) * D2R;
- this.x0 = 500000;
- this.y0 = this.utmSouth ? 10000000 : 0;
- this.k0 = 0.9996;
- etmerc.init.apply(this);
- this.forward = etmerc.forward;
- this.inverse = etmerc.inverse;
- }
- var names$5 = ["Universal Transverse Mercator System", "utm"];
- var utm = {
- init: init$4,
- names: names$5,
- dependsOn: dependsOn
- };
- var srat = function(esinp, exp) {
- return (Math.pow((1 - esinp) / (1 + esinp), exp));
- };
- var MAX_ITER$1 = 20;
- function init$6() {
- var sphi = Math.sin(this.lat0);
- var cphi = Math.cos(this.lat0);
- cphi *= cphi;
- this.rc = Math.sqrt(1 - this.es) / (1 - this.es * sphi * sphi);
- this.C = Math.sqrt(1 + this.es * cphi * cphi / (1 - this.es));
- this.phic0 = Math.asin(sphi / this.C);
- this.ratexp = 0.5 * this.C * this.e;
- this.K = Math.tan(0.5 * this.phic0 + FORTPI) / (Math.pow(Math.tan(0.5 * this.lat0 + FORTPI), this.C) * srat(this.e * sphi, this.ratexp));
- }
- function forward$5(p) {
- var lon = p.x;
- var lat = p.y;
- p.y = 2 * Math.atan(this.K * Math.pow(Math.tan(0.5 * lat + FORTPI), this.C) * srat(this.e * Math.sin(lat), this.ratexp)) - HALF_PI;
- p.x = this.C * lon;
- return p;
- }
- function inverse$5(p) {
- var DEL_TOL = 1e-14;
- var lon = p.x / this.C;
- var lat = p.y;
- var num = Math.pow(Math.tan(0.5 * lat + FORTPI) / this.K, 1 / this.C);
- for (var i = MAX_ITER$1; i > 0; --i) {
- lat = 2 * Math.atan(num * srat(this.e * Math.sin(p.y), - 0.5 * this.e)) - HALF_PI;
- if (Math.abs(lat - p.y) < DEL_TOL) {
- break;
- }
- p.y = lat;
- }
- /* convergence failed */
- if (!i) {
- return null;
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$7 = ["gauss"];
- var gauss = {
- init: init$6,
- forward: forward$5,
- inverse: inverse$5,
- names: names$7
- };
- function init$5() {
- gauss.init.apply(this);
- if (!this.rc) {
- return;
- }
- this.sinc0 = Math.sin(this.phic0);
- this.cosc0 = Math.cos(this.phic0);
- this.R2 = 2 * this.rc;
- if (!this.title) {
- this.title = "Oblique Stereographic Alternative";
- }
- }
- function forward$4(p) {
- var sinc, cosc, cosl, k;
- p.x = adjust_lon(p.x - this.long0);
- gauss.forward.apply(this, [p]);
- sinc = Math.sin(p.y);
- cosc = Math.cos(p.y);
- cosl = Math.cos(p.x);
- k = this.k0 * this.R2 / (1 + this.sinc0 * sinc + this.cosc0 * cosc * cosl);
- p.x = k * cosc * Math.sin(p.x);
- p.y = k * (this.cosc0 * sinc - this.sinc0 * cosc * cosl);
- p.x = this.a * p.x + this.x0;
- p.y = this.a * p.y + this.y0;
- return p;
- }
- function inverse$4(p) {
- var sinc, cosc, lon, lat, rho;
- p.x = (p.x - this.x0) / this.a;
- p.y = (p.y - this.y0) / this.a;
- p.x /= this.k0;
- p.y /= this.k0;
- if ((rho = Math.sqrt(p.x * p.x + p.y * p.y))) {
- var c = 2 * Math.atan2(rho, this.R2);
- sinc = Math.sin(c);
- cosc = Math.cos(c);
- lat = Math.asin(cosc * this.sinc0 + p.y * sinc * this.cosc0 / rho);
- lon = Math.atan2(p.x * sinc, rho * this.cosc0 * cosc - p.y * this.sinc0 * sinc);
- }
- else {
- lat = this.phic0;
- lon = 0;
- }
- p.x = lon;
- p.y = lat;
- gauss.inverse.apply(this, [p]);
- p.x = adjust_lon(p.x + this.long0);
- return p;
- }
- var names$6 = ["Stereographic_North_Pole", "Oblique_Stereographic", "Polar_Stereographic", "sterea","Oblique Stereographic Alternative","Double_Stereographic"];
- var sterea = {
- init: init$5,
- forward: forward$4,
- inverse: inverse$4,
- names: names$6
- };
- function ssfn_(phit, sinphi, eccen) {
- sinphi *= eccen;
- return (Math.tan(0.5 * (HALF_PI + phit)) * Math.pow((1 - sinphi) / (1 + sinphi), 0.5 * eccen));
- }
- function init$7() {
- this.coslat0 = Math.cos(this.lat0);
- this.sinlat0 = Math.sin(this.lat0);
- if (this.sphere) {
- if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
- this.k0 = 0.5 * (1 + sign(this.lat0) * Math.sin(this.lat_ts));
- }
- }
- else {
- if (Math.abs(this.coslat0) <= EPSLN) {
- if (this.lat0 > 0) {
- //North pole
- //trace('stere:north pole');
- this.con = 1;
- }
- else {
- //South pole
- //trace('stere:south pole');
- this.con = -1;
- }
- }
- this.cons = Math.sqrt(Math.pow(1 + this.e, 1 + this.e) * Math.pow(1 - this.e, 1 - this.e));
- if (this.k0 === 1 && !isNaN(this.lat_ts) && Math.abs(this.coslat0) <= EPSLN) {
- this.k0 = 0.5 * this.cons * msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts)) / tsfnz(this.e, this.con * this.lat_ts, this.con * Math.sin(this.lat_ts));
- }
- this.ms1 = msfnz(this.e, this.sinlat0, this.coslat0);
- this.X0 = 2 * Math.atan(this.ssfn_(this.lat0, this.sinlat0, this.e)) - HALF_PI;
- this.cosX0 = Math.cos(this.X0);
- this.sinX0 = Math.sin(this.X0);
- }
- }
- // Stereographic forward equations--mapping lat,long to x,y
- function forward$6(p) {
- var lon = p.x;
- var lat = p.y;
- var sinlat = Math.sin(lat);
- var coslat = Math.cos(lat);
- var A, X, sinX, cosX, ts, rh;
- var dlon = adjust_lon(lon - this.long0);
- if (Math.abs(Math.abs(lon - this.long0) - Math.PI) <= EPSLN && Math.abs(lat + this.lat0) <= EPSLN) {
- //case of the origine point
- //trace('stere:this is the origin point');
- p.x = NaN;
- p.y = NaN;
- return p;
- }
- if (this.sphere) {
- //trace('stere:sphere case');
- A = 2 * this.k0 / (1 + this.sinlat0 * sinlat + this.coslat0 * coslat * Math.cos(dlon));
- p.x = this.a * A * coslat * Math.sin(dlon) + this.x0;
- p.y = this.a * A * (this.coslat0 * sinlat - this.sinlat0 * coslat * Math.cos(dlon)) + this.y0;
- return p;
- }
- else {
- X = 2 * Math.atan(this.ssfn_(lat, sinlat, this.e)) - HALF_PI;
- cosX = Math.cos(X);
- sinX = Math.sin(X);
- if (Math.abs(this.coslat0) <= EPSLN) {
- ts = tsfnz(this.e, lat * this.con, this.con * sinlat);
- rh = 2 * this.a * this.k0 * ts / this.cons;
- p.x = this.x0 + rh * Math.sin(lon - this.long0);
- p.y = this.y0 - this.con * rh * Math.cos(lon - this.long0);
- //trace(p.toString());
- return p;
- }
- else if (Math.abs(this.sinlat0) < EPSLN) {
- //Eq
- //trace('stere:equateur');
- A = 2 * this.a * this.k0 / (1 + cosX * Math.cos(dlon));
- p.y = A * sinX;
- }
- else {
- //other case
- //trace('stere:normal case');
- A = 2 * this.a * this.k0 * this.ms1 / (this.cosX0 * (1 + this.sinX0 * sinX + this.cosX0 * cosX * Math.cos(dlon)));
- p.y = A * (this.cosX0 * sinX - this.sinX0 * cosX * Math.cos(dlon)) + this.y0;
- }
- p.x = A * cosX * Math.sin(dlon) + this.x0;
- }
- //trace(p.toString());
- return p;
- }
- //* Stereographic inverse equations--mapping x,y to lat/long
- function inverse$6(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var lon, lat, ts, ce, Chi;
- var rh = Math.sqrt(p.x * p.x + p.y * p.y);
- if (this.sphere) {
- var c = 2 * Math.atan(rh / (2 * this.a * this.k0));
- lon = this.long0;
- lat = this.lat0;
- if (rh <= EPSLN) {
- p.x = lon;
- p.y = lat;
- return p;
- }
- lat = Math.asin(Math.cos(c) * this.sinlat0 + p.y * Math.sin(c) * this.coslat0 / rh);
- if (Math.abs(this.coslat0) < EPSLN) {
- if (this.lat0 > 0) {
- lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
- }
- else {
- lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
- }
- }
- else {
- lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(c), rh * this.coslat0 * Math.cos(c) - p.y * this.sinlat0 * Math.sin(c)));
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- else {
- if (Math.abs(this.coslat0) <= EPSLN) {
- if (rh <= EPSLN) {
- lat = this.lat0;
- lon = this.long0;
- p.x = lon;
- p.y = lat;
- //trace(p.toString());
- return p;
- }
- p.x *= this.con;
- p.y *= this.con;
- ts = rh * this.cons / (2 * this.a * this.k0);
- lat = this.con * phi2z(this.e, ts);
- lon = this.con * adjust_lon(this.con * this.long0 + Math.atan2(p.x, - 1 * p.y));
- }
- else {
- ce = 2 * Math.atan(rh * this.cosX0 / (2 * this.a * this.k0 * this.ms1));
- lon = this.long0;
- if (rh <= EPSLN) {
- Chi = this.X0;
- }
- else {
- Chi = Math.asin(Math.cos(ce) * this.sinX0 + p.y * Math.sin(ce) * this.cosX0 / rh);
- lon = adjust_lon(this.long0 + Math.atan2(p.x * Math.sin(ce), rh * this.cosX0 * Math.cos(ce) - p.y * this.sinX0 * Math.sin(ce)));
- }
- lat = -1 * phi2z(this.e, Math.tan(0.5 * (HALF_PI + Chi)));
- }
- }
- p.x = lon;
- p.y = lat;
- //trace(p.toString());
- return p;
- }
- var names$8 = ["stere", "Stereographic_South_Pole", "Polar Stereographic (variant B)"];
- var stere = {
- init: init$7,
- forward: forward$6,
- inverse: inverse$6,
- names: names$8,
- ssfn_: ssfn_
- };
- /*
- references:
- Formules et constantes pour le Calcul pour la
- projection cylindrique conforme à axe oblique et pour la transformation entre
- des systèmes de référence.
- http://www.swisstopo.admin.ch/internet/swisstopo/fr/home/topics/survey/sys/refsys/switzerland.parsysrelated1.31216.downloadList.77004.DownloadFile.tmp/swissprojectionfr.pdf
- */
- function init$8() {
- var phy0 = this.lat0;
- this.lambda0 = this.long0;
- var sinPhy0 = Math.sin(phy0);
- var semiMajorAxis = this.a;
- var invF = this.rf;
- var flattening = 1 / invF;
- var e2 = 2 * flattening - Math.pow(flattening, 2);
- var e = this.e = Math.sqrt(e2);
- this.R = this.k0 * semiMajorAxis * Math.sqrt(1 - e2) / (1 - e2 * Math.pow(sinPhy0, 2));
- this.alpha = Math.sqrt(1 + e2 / (1 - e2) * Math.pow(Math.cos(phy0), 4));
- this.b0 = Math.asin(sinPhy0 / this.alpha);
- var k1 = Math.log(Math.tan(Math.PI / 4 + this.b0 / 2));
- var k2 = Math.log(Math.tan(Math.PI / 4 + phy0 / 2));
- var k3 = Math.log((1 + e * sinPhy0) / (1 - e * sinPhy0));
- this.K = k1 - this.alpha * k2 + this.alpha * e / 2 * k3;
- }
- function forward$7(p) {
- var Sa1 = Math.log(Math.tan(Math.PI / 4 - p.y / 2));
- var Sa2 = this.e / 2 * Math.log((1 + this.e * Math.sin(p.y)) / (1 - this.e * Math.sin(p.y)));
- var S = -this.alpha * (Sa1 + Sa2) + this.K;
- // spheric latitude
- var b = 2 * (Math.atan(Math.exp(S)) - Math.PI / 4);
- // spheric longitude
- var I = this.alpha * (p.x - this.lambda0);
- // psoeudo equatorial rotation
- var rotI = Math.atan(Math.sin(I) / (Math.sin(this.b0) * Math.tan(b) + Math.cos(this.b0) * Math.cos(I)));
- var rotB = Math.asin(Math.cos(this.b0) * Math.sin(b) - Math.sin(this.b0) * Math.cos(b) * Math.cos(I));
- p.y = this.R / 2 * Math.log((1 + Math.sin(rotB)) / (1 - Math.sin(rotB))) + this.y0;
- p.x = this.R * rotI + this.x0;
- return p;
- }
- function inverse$7(p) {
- var Y = p.x - this.x0;
- var X = p.y - this.y0;
- var rotI = Y / this.R;
- var rotB = 2 * (Math.atan(Math.exp(X / this.R)) - Math.PI / 4);
- var b = Math.asin(Math.cos(this.b0) * Math.sin(rotB) + Math.sin(this.b0) * Math.cos(rotB) * Math.cos(rotI));
- var I = Math.atan(Math.sin(rotI) / (Math.cos(this.b0) * Math.cos(rotI) - Math.sin(this.b0) * Math.tan(rotB)));
- var lambda = this.lambda0 + I / this.alpha;
- var S = 0;
- var phy = b;
- var prevPhy = -1000;
- var iteration = 0;
- while (Math.abs(phy - prevPhy) > 0.0000001) {
- if (++iteration > 20) {
- //...reportError("omercFwdInfinity");
- return;
- }
- //S = Math.log(Math.tan(Math.PI / 4 + phy / 2));
- S = 1 / this.alpha * (Math.log(Math.tan(Math.PI / 4 + b / 2)) - this.K) + this.e * Math.log(Math.tan(Math.PI / 4 + Math.asin(this.e * Math.sin(phy)) / 2));
- prevPhy = phy;
- phy = 2 * Math.atan(Math.exp(S)) - Math.PI / 2;
- }
- p.x = lambda;
- p.y = phy;
- return p;
- }
- var names$9 = ["somerc"];
- var somerc = {
- init: init$8,
- forward: forward$7,
- inverse: inverse$7,
- names: names$9
- };
- /* Initialize the Oblique Mercator projection
- ------------------------------------------*/
- function init$9() {
- this.no_off = this.no_off || false;
- this.no_rot = this.no_rot || false;
- if (isNaN(this.k0)) {
- this.k0 = 1;
- }
- var sinlat = Math.sin(this.lat0);
- var coslat = Math.cos(this.lat0);
- var con = this.e * sinlat;
- this.bl = Math.sqrt(1 + this.es / (1 - this.es) * Math.pow(coslat, 4));
- this.al = this.a * this.bl * this.k0 * Math.sqrt(1 - this.es) / (1 - con * con);
- var t0 = tsfnz(this.e, this.lat0, sinlat);
- var dl = this.bl / coslat * Math.sqrt((1 - this.es) / (1 - con * con));
- if (dl * dl < 1) {
- dl = 1;
- }
- var fl;
- var gl;
- if (!isNaN(this.longc)) {
- //Central point and azimuth method
- if (this.lat0 >= 0) {
- fl = dl + Math.sqrt(dl * dl - 1);
- }
- else {
- fl = dl - Math.sqrt(dl * dl - 1);
- }
- this.el = fl * Math.pow(t0, this.bl);
- gl = 0.5 * (fl - 1 / fl);
- this.gamma0 = Math.asin(Math.sin(this.alpha) / dl);
- this.long0 = this.longc - Math.asin(gl * Math.tan(this.gamma0)) / this.bl;
- }
- else {
- //2 points method
- var t1 = tsfnz(this.e, this.lat1, Math.sin(this.lat1));
- var t2 = tsfnz(this.e, this.lat2, Math.sin(this.lat2));
- if (this.lat0 >= 0) {
- this.el = (dl + Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
- }
- else {
- this.el = (dl - Math.sqrt(dl * dl - 1)) * Math.pow(t0, this.bl);
- }
- var hl = Math.pow(t1, this.bl);
- var ll = Math.pow(t2, this.bl);
- fl = this.el / hl;
- gl = 0.5 * (fl - 1 / fl);
- var jl = (this.el * this.el - ll * hl) / (this.el * this.el + ll * hl);
- var pl = (ll - hl) / (ll + hl);
- var dlon12 = adjust_lon(this.long1 - this.long2);
- this.long0 = 0.5 * (this.long1 + this.long2) - Math.atan(jl * Math.tan(0.5 * this.bl * (dlon12)) / pl) / this.bl;
- this.long0 = adjust_lon(this.long0);
- var dlon10 = adjust_lon(this.long1 - this.long0);
- this.gamma0 = Math.atan(Math.sin(this.bl * (dlon10)) / gl);
- this.alpha = Math.asin(dl * Math.sin(this.gamma0));
- }
- if (this.no_off) {
- this.uc = 0;
- }
- else {
- if (this.lat0 >= 0) {
- this.uc = this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
- }
- else {
- this.uc = -1 * this.al / this.bl * Math.atan2(Math.sqrt(dl * dl - 1), Math.cos(this.alpha));
- }
- }
- }
- /* Oblique Mercator forward equations--mapping lat,long to x,y
- ----------------------------------------------------------*/
- function forward$8(p) {
- var lon = p.x;
- var lat = p.y;
- var dlon = adjust_lon(lon - this.long0);
- var us, vs;
- var con;
- if (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN) {
- if (lat > 0) {
- con = -1;
- }
- else {
- con = 1;
- }
- vs = this.al / this.bl * Math.log(Math.tan(FORTPI + con * this.gamma0 * 0.5));
- us = -1 * con * HALF_PI * this.al / this.bl;
- }
- else {
- var t = tsfnz(this.e, lat, Math.sin(lat));
- var ql = this.el / Math.pow(t, this.bl);
- var sl = 0.5 * (ql - 1 / ql);
- var tl = 0.5 * (ql + 1 / ql);
- var vl = Math.sin(this.bl * (dlon));
- var ul = (sl * Math.sin(this.gamma0) - vl * Math.cos(this.gamma0)) / tl;
- if (Math.abs(Math.abs(ul) - 1) <= EPSLN) {
- vs = Number.POSITIVE_INFINITY;
- }
- else {
- vs = 0.5 * this.al * Math.log((1 - ul) / (1 + ul)) / this.bl;
- }
- if (Math.abs(Math.cos(this.bl * (dlon))) <= EPSLN) {
- us = this.al * this.bl * (dlon);
- }
- else {
- us = this.al * Math.atan2(sl * Math.cos(this.gamma0) + vl * Math.sin(this.gamma0), Math.cos(this.bl * dlon)) / this.bl;
- }
- }
- if (this.no_rot) {
- p.x = this.x0 + us;
- p.y = this.y0 + vs;
- }
- else {
- us -= this.uc;
- p.x = this.x0 + vs * Math.cos(this.alpha) + us * Math.sin(this.alpha);
- p.y = this.y0 + us * Math.cos(this.alpha) - vs * Math.sin(this.alpha);
- }
- return p;
- }
- function inverse$8(p) {
- var us, vs;
- if (this.no_rot) {
- vs = p.y - this.y0;
- us = p.x - this.x0;
- }
- else {
- vs = (p.x - this.x0) * Math.cos(this.alpha) - (p.y - this.y0) * Math.sin(this.alpha);
- us = (p.y - this.y0) * Math.cos(this.alpha) + (p.x - this.x0) * Math.sin(this.alpha);
- us += this.uc;
- }
- var qp = Math.exp(-1 * this.bl * vs / this.al);
- var sp = 0.5 * (qp - 1 / qp);
- var tp = 0.5 * (qp + 1 / qp);
- var vp = Math.sin(this.bl * us / this.al);
- var up = (vp * Math.cos(this.gamma0) + sp * Math.sin(this.gamma0)) / tp;
- var ts = Math.pow(this.el / Math.sqrt((1 + up) / (1 - up)), 1 / this.bl);
- if (Math.abs(up - 1) < EPSLN) {
- p.x = this.long0;
- p.y = HALF_PI;
- }
- else if (Math.abs(up + 1) < EPSLN) {
- p.x = this.long0;
- p.y = -1 * HALF_PI;
- }
- else {
- p.y = phi2z(this.e, ts);
- p.x = adjust_lon(this.long0 - Math.atan2(sp * Math.cos(this.gamma0) - vp * Math.sin(this.gamma0), Math.cos(this.bl * us / this.al)) / this.bl);
- }
- return p;
- }
- var names$10 = ["Hotine_Oblique_Mercator", "Hotine Oblique Mercator", "Hotine_Oblique_Mercator_Azimuth_Natural_Origin", "Hotine_Oblique_Mercator_Azimuth_Center", "omerc"];
- var omerc = {
- init: init$9,
- forward: forward$8,
- inverse: inverse$8,
- names: names$10
- };
- function init$10() {
- // array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north
- //double c_lat; /* center latitude */
- //double c_lon; /* center longitude */
- //double lat1; /* first standard parallel */
- //double lat2; /* second standard parallel */
- //double r_maj; /* major axis */
- //double r_min; /* minor axis */
- //double false_east; /* x offset in meters */
- //double false_north; /* y offset in meters */
- if (!this.lat2) {
- this.lat2 = this.lat1;
- } //if lat2 is not defined
- if (!this.k0) {
- this.k0 = 1;
- }
- this.x0 = this.x0 || 0;
- this.y0 = this.y0 || 0;
- // Standard Parallels cannot be equal and on opposite sides of the equator
- if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
- return;
- }
- var temp = this.b / this.a;
- this.e = Math.sqrt(1 - temp * temp);
- var sin1 = Math.sin(this.lat1);
- var cos1 = Math.cos(this.lat1);
- var ms1 = msfnz(this.e, sin1, cos1);
- var ts1 = tsfnz(this.e, this.lat1, sin1);
- var sin2 = Math.sin(this.lat2);
- var cos2 = Math.cos(this.lat2);
- var ms2 = msfnz(this.e, sin2, cos2);
- var ts2 = tsfnz(this.e, this.lat2, sin2);
- var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0));
- if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
- this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2);
- }
- else {
- this.ns = sin1;
- }
- if (isNaN(this.ns)) {
- this.ns = sin1;
- }
- this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns));
- this.rh = this.a * this.f0 * Math.pow(ts0, this.ns);
- if (!this.title) {
- this.title = "Lambert Conformal Conic";
- }
- }
- // Lambert Conformal conic forward equations--mapping lat,long to x,y
- // -----------------------------------------------------------------
- function forward$9(p) {
- var lon = p.x;
- var lat = p.y;
- // singular cases :
- if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) {
- lat = sign(lat) * (HALF_PI - 2 * EPSLN);
- }
- var con = Math.abs(Math.abs(lat) - HALF_PI);
- var ts, rh1;
- if (con > EPSLN) {
- ts = tsfnz(this.e, lat, Math.sin(lat));
- rh1 = this.a * this.f0 * Math.pow(ts, this.ns);
- }
- else {
- con = lat * this.ns;
- if (con <= 0) {
- return null;
- }
- rh1 = 0;
- }
- var theta = this.ns * adjust_lon(lon - this.long0);
- p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0;
- p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0;
- return p;
- }
- // Lambert Conformal Conic inverse equations--mapping x,y to lat/long
- // -----------------------------------------------------------------
- function inverse$9(p) {
- var rh1, con, ts;
- var lat, lon;
- var x = (p.x - this.x0) / this.k0;
- var y = (this.rh - (p.y - this.y0) / this.k0);
- if (this.ns > 0) {
- rh1 = Math.sqrt(x * x + y * y);
- con = 1;
- }
- else {
- rh1 = -Math.sqrt(x * x + y * y);
- con = -1;
- }
- var theta = 0;
- if (rh1 !== 0) {
- theta = Math.atan2((con * x), (con * y));
- }
- if ((rh1 !== 0) || (this.ns > 0)) {
- con = 1 / this.ns;
- ts = Math.pow((rh1 / (this.a * this.f0)), con);
- lat = phi2z(this.e, ts);
- if (lat === -9999) {
- return null;
- }
- }
- else {
- lat = -HALF_PI;
- }
- lon = adjust_lon(theta / this.ns + this.long0);
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$11 = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"];
- var lcc = {
- init: init$10,
- forward: forward$9,
- inverse: inverse$9,
- names: names$11
- };
- function init$11() {
- this.a = 6377397.155;
- this.es = 0.006674372230614;
- this.e = Math.sqrt(this.es);
- if (!this.lat0) {
- this.lat0 = 0.863937979737193;
- }
- if (!this.long0) {
- this.long0 = 0.7417649320975901 - 0.308341501185665;
- }
- /* if scale not set default to 0.9999 */
- if (!this.k0) {
- this.k0 = 0.9999;
- }
- this.s45 = 0.785398163397448; /* 45 */
- this.s90 = 2 * this.s45;
- this.fi0 = this.lat0;
- this.e2 = this.es;
- this.e = Math.sqrt(this.e2);
- this.alfa = Math.sqrt(1 + (this.e2 * Math.pow(Math.cos(this.fi0), 4)) / (1 - this.e2));
- this.uq = 1.04216856380474;
- this.u0 = Math.asin(Math.sin(this.fi0) / this.alfa);
- this.g = Math.pow((1 + this.e * Math.sin(this.fi0)) / (1 - this.e * Math.sin(this.fi0)), this.alfa * this.e / 2);
- this.k = Math.tan(this.u0 / 2 + this.s45) / Math.pow(Math.tan(this.fi0 / 2 + this.s45), this.alfa) * this.g;
- this.k1 = this.k0;
- this.n0 = this.a * Math.sqrt(1 - this.e2) / (1 - this.e2 * Math.pow(Math.sin(this.fi0), 2));
- this.s0 = 1.37008346281555;
- this.n = Math.sin(this.s0);
- this.ro0 = this.k1 * this.n0 / Math.tan(this.s0);
- this.ad = this.s90 - this.uq;
- }
- /* ellipsoid */
- /* calculate xy from lat/lon */
- /* Constants, identical to inverse transform function */
- function forward$10(p) {
- var gfi, u, deltav, s, d, eps, ro;
- var lon = p.x;
- var lat = p.y;
- var delta_lon = adjust_lon(lon - this.long0);
- /* Transformation */
- gfi = Math.pow(((1 + this.e * Math.sin(lat)) / (1 - this.e * Math.sin(lat))), (this.alfa * this.e / 2));
- u = 2 * (Math.atan(this.k * Math.pow(Math.tan(lat / 2 + this.s45), this.alfa) / gfi) - this.s45);
- deltav = -delta_lon * this.alfa;
- s = Math.asin(Math.cos(this.ad) * Math.sin(u) + Math.sin(this.ad) * Math.cos(u) * Math.cos(deltav));
- d = Math.asin(Math.cos(u) * Math.sin(deltav) / Math.cos(s));
- eps = this.n * d;
- ro = this.ro0 * Math.pow(Math.tan(this.s0 / 2 + this.s45), this.n) / Math.pow(Math.tan(s / 2 + this.s45), this.n);
- p.y = ro * Math.cos(eps) / 1;
- p.x = ro * Math.sin(eps) / 1;
- if (!this.czech) {
- p.y *= -1;
- p.x *= -1;
- }
- return (p);
- }
- /* calculate lat/lon from xy */
- function inverse$10(p) {
- var u, deltav, s, d, eps, ro, fi1;
- var ok;
- /* Transformation */
- /* revert y, x*/
- var tmp = p.x;
- p.x = p.y;
- p.y = tmp;
- if (!this.czech) {
- p.y *= -1;
- p.x *= -1;
- }
- ro = Math.sqrt(p.x * p.x + p.y * p.y);
- eps = Math.atan2(p.y, p.x);
- d = eps / Math.sin(this.s0);
- s = 2 * (Math.atan(Math.pow(this.ro0 / ro, 1 / this.n) * Math.tan(this.s0 / 2 + this.s45)) - this.s45);
- u = Math.asin(Math.cos(this.ad) * Math.sin(s) - Math.sin(this.ad) * Math.cos(s) * Math.cos(d));
- deltav = Math.asin(Math.cos(s) * Math.sin(d) / Math.cos(u));
- p.x = this.long0 - deltav / this.alfa;
- fi1 = u;
- ok = 0;
- var iter = 0;
- do {
- p.y = 2 * (Math.atan(Math.pow(this.k, - 1 / this.alfa) * Math.pow(Math.tan(u / 2 + this.s45), 1 / this.alfa) * Math.pow((1 + this.e * Math.sin(fi1)) / (1 - this.e * Math.sin(fi1)), this.e / 2)) - this.s45);
- if (Math.abs(fi1 - p.y) < 0.0000000001) {
- ok = 1;
- }
- fi1 = p.y;
- iter += 1;
- } while (ok === 0 && iter < 15);
- if (iter >= 15) {
- return null;
- }
- return (p);
- }
- var names$12 = ["Krovak", "krovak"];
- var krovak = {
- init: init$11,
- forward: forward$10,
- inverse: inverse$10,
- names: names$12
- };
- var mlfn = function(e0, e1, e2, e3, phi) {
- return (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi));
- };
- var e0fn = function(x) {
- return (1 - 0.25 * x * (1 + x / 16 * (3 + 1.25 * x)));
- };
- var e1fn = function(x) {
- return (0.375 * x * (1 + 0.25 * x * (1 + 0.46875 * x)));
- };
- var e2fn = function(x) {
- return (0.05859375 * x * x * (1 + 0.75 * x));
- };
- var e3fn = function(x) {
- return (x * x * x * (35 / 3072));
- };
- var gN = function(a, e, sinphi) {
- var temp = e * sinphi;
- return a / Math.sqrt(1 - temp * temp);
- };
- var adjust_lat = function(x) {
- return (Math.abs(x) < HALF_PI) ? x : (x - (sign(x) * Math.PI));
- };
- var imlfn = function(ml, e0, e1, e2, e3) {
- var phi;
- var dphi;
- phi = ml / e0;
- for (var i = 0; i < 15; i++) {
- dphi = (ml - (e0 * phi - e1 * Math.sin(2 * phi) + e2 * Math.sin(4 * phi) - e3 * Math.sin(6 * phi))) / (e0 - 2 * e1 * Math.cos(2 * phi) + 4 * e2 * Math.cos(4 * phi) - 6 * e3 * Math.cos(6 * phi));
- phi += dphi;
- if (Math.abs(dphi) <= 0.0000000001) {
- return phi;
- }
- }
- //..reportError("IMLFN-CONV:Latitude failed to converge after 15 iterations");
- return NaN;
- };
- function init$12() {
- if (!this.sphere) {
- this.e0 = e0fn(this.es);
- this.e1 = e1fn(this.es);
- this.e2 = e2fn(this.es);
- this.e3 = e3fn(this.es);
- this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
- }
- }
- /* Cassini forward equations--mapping lat,long to x,y
- -----------------------------------------------------------------------*/
- function forward$11(p) {
- /* Forward equations
- -----------------*/
- var x, y;
- var lam = p.x;
- var phi = p.y;
- lam = adjust_lon(lam - this.long0);
- if (this.sphere) {
- x = this.a * Math.asin(Math.cos(phi) * Math.sin(lam));
- y = this.a * (Math.atan2(Math.tan(phi), Math.cos(lam)) - this.lat0);
- }
- else {
- //ellipsoid
- var sinphi = Math.sin(phi);
- var cosphi = Math.cos(phi);
- var nl = gN(this.a, this.e, sinphi);
- var tl = Math.tan(phi) * Math.tan(phi);
- var al = lam * Math.cos(phi);
- var asq = al * al;
- var cl = this.es * cosphi * cosphi / (1 - this.es);
- var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
- x = nl * al * (1 - asq * tl * (1 / 6 - (8 - tl + 8 * cl) * asq / 120));
- y = ml - this.ml0 + nl * sinphi / cosphi * asq * (0.5 + (5 - tl + 6 * cl) * asq / 24);
- }
- p.x = x + this.x0;
- p.y = y + this.y0;
- return p;
- }
- /* Inverse equations
- -----------------*/
- function inverse$11(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var x = p.x / this.a;
- var y = p.y / this.a;
- var phi, lam;
- if (this.sphere) {
- var dd = y + this.lat0;
- phi = Math.asin(Math.sin(dd) * Math.cos(x));
- lam = Math.atan2(Math.tan(x), Math.cos(dd));
- }
- else {
- /* ellipsoid */
- var ml1 = this.ml0 / this.a + y;
- var phi1 = imlfn(ml1, this.e0, this.e1, this.e2, this.e3);
- if (Math.abs(Math.abs(phi1) - HALF_PI) <= EPSLN) {
- p.x = this.long0;
- p.y = HALF_PI;
- if (y < 0) {
- p.y *= -1;
- }
- return p;
- }
- var nl1 = gN(this.a, this.e, Math.sin(phi1));
- var rl1 = nl1 * nl1 * nl1 / this.a / this.a * (1 - this.es);
- var tl1 = Math.pow(Math.tan(phi1), 2);
- var dl = x * this.a / nl1;
- var dsq = dl * dl;
- phi = phi1 - nl1 * Math.tan(phi1) / rl1 * dl * dl * (0.5 - (1 + 3 * tl1) * dl * dl / 24);
- lam = dl * (1 - dsq * (tl1 / 3 + (1 + 3 * tl1) * tl1 * dsq / 15)) / Math.cos(phi1);
- }
- p.x = adjust_lon(lam + this.long0);
- p.y = adjust_lat(phi);
- return p;
- }
- var names$13 = ["Cassini", "Cassini_Soldner", "cass"];
- var cass = {
- init: init$12,
- forward: forward$11,
- inverse: inverse$11,
- names: names$13
- };
- var qsfnz = function(eccent, sinphi) {
- var con;
- if (eccent > 1.0e-7) {
- con = eccent * sinphi;
- return ((1 - eccent * eccent) * (sinphi / (1 - con * con) - (0.5 / eccent) * Math.log((1 - con) / (1 + con))));
- }
- else {
- return (2 * sinphi);
- }
- };
- /*
- reference
- "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
- The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
- */
- var S_POLE = 1;
- var N_POLE = 2;
- var EQUIT = 3;
- var OBLIQ = 4;
- /* Initialize the Lambert Azimuthal Equal Area projection
- ------------------------------------------------------*/
- function init$13() {
- var t = Math.abs(this.lat0);
- if (Math.abs(t - HALF_PI) < EPSLN) {
- this.mode = this.lat0 < 0 ? this.S_POLE : this.N_POLE;
- }
- else if (Math.abs(t) < EPSLN) {
- this.mode = this.EQUIT;
- }
- else {
- this.mode = this.OBLIQ;
- }
- if (this.es > 0) {
- var sinphi;
- this.qp = qsfnz(this.e, 1);
- this.mmf = 0.5 / (1 - this.es);
- this.apa = authset(this.es);
- switch (this.mode) {
- case this.N_POLE:
- this.dd = 1;
- break;
- case this.S_POLE:
- this.dd = 1;
- break;
- case this.EQUIT:
- this.rq = Math.sqrt(0.5 * this.qp);
- this.dd = 1 / this.rq;
- this.xmf = 1;
- this.ymf = 0.5 * this.qp;
- break;
- case this.OBLIQ:
- this.rq = Math.sqrt(0.5 * this.qp);
- sinphi = Math.sin(this.lat0);
- this.sinb1 = qsfnz(this.e, sinphi) / this.qp;
- this.cosb1 = Math.sqrt(1 - this.sinb1 * this.sinb1);
- this.dd = Math.cos(this.lat0) / (Math.sqrt(1 - this.es * sinphi * sinphi) * this.rq * this.cosb1);
- this.ymf = (this.xmf = this.rq) / this.dd;
- this.xmf *= this.dd;
- break;
- }
- }
- else {
- if (this.mode === this.OBLIQ) {
- this.sinph0 = Math.sin(this.lat0);
- this.cosph0 = Math.cos(this.lat0);
- }
- }
- }
- /* Lambert Azimuthal Equal Area forward equations--mapping lat,long to x,y
- -----------------------------------------------------------------------*/
- function forward$12(p) {
- /* Forward equations
- -----------------*/
- var x, y, coslam, sinlam, sinphi, q, sinb, cosb, b, cosphi;
- var lam = p.x;
- var phi = p.y;
- lam = adjust_lon(lam - this.long0);
- if (this.sphere) {
- sinphi = Math.sin(phi);
- cosphi = Math.cos(phi);
- coslam = Math.cos(lam);
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- y = (this.mode === this.EQUIT) ? 1 + cosphi * coslam : 1 + this.sinph0 * sinphi + this.cosph0 * cosphi * coslam;
- if (y <= EPSLN) {
- return null;
- }
- y = Math.sqrt(2 / y);
- x = y * cosphi * Math.sin(lam);
- y *= (this.mode === this.EQUIT) ? sinphi : this.cosph0 * sinphi - this.sinph0 * cosphi * coslam;
- }
- else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
- if (this.mode === this.N_POLE) {
- coslam = -coslam;
- }
- if (Math.abs(phi + this.lat0) < EPSLN) {
- return null;
- }
- y = FORTPI - phi * 0.5;
- y = 2 * ((this.mode === this.S_POLE) ? Math.cos(y) : Math.sin(y));
- x = y * Math.sin(lam);
- y *= coslam;
- }
- }
- else {
- sinb = 0;
- cosb = 0;
- b = 0;
- coslam = Math.cos(lam);
- sinlam = Math.sin(lam);
- sinphi = Math.sin(phi);
- q = qsfnz(this.e, sinphi);
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- sinb = q / this.qp;
- cosb = Math.sqrt(1 - sinb * sinb);
- }
- switch (this.mode) {
- case this.OBLIQ:
- b = 1 + this.sinb1 * sinb + this.cosb1 * cosb * coslam;
- break;
- case this.EQUIT:
- b = 1 + cosb * coslam;
- break;
- case this.N_POLE:
- b = HALF_PI + phi;
- q = this.qp - q;
- break;
- case this.S_POLE:
- b = phi - HALF_PI;
- q = this.qp + q;
- break;
- }
- if (Math.abs(b) < EPSLN) {
- return null;
- }
- switch (this.mode) {
- case this.OBLIQ:
- case this.EQUIT:
- b = Math.sqrt(2 / b);
- if (this.mode === this.OBLIQ) {
- y = this.ymf * b * (this.cosb1 * sinb - this.sinb1 * cosb * coslam);
- }
- else {
- y = (b = Math.sqrt(2 / (1 + cosb * coslam))) * sinb * this.ymf;
- }
- x = this.xmf * b * cosb * sinlam;
- break;
- case this.N_POLE:
- case this.S_POLE:
- if (q >= 0) {
- x = (b = Math.sqrt(q)) * sinlam;
- y = coslam * ((this.mode === this.S_POLE) ? b : -b);
- }
- else {
- x = y = 0;
- }
- break;
- }
- }
- p.x = this.a * x + this.x0;
- p.y = this.a * y + this.y0;
- return p;
- }
- /* Inverse equations
- -----------------*/
- function inverse$12(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var x = p.x / this.a;
- var y = p.y / this.a;
- var lam, phi, cCe, sCe, q, rho, ab;
- if (this.sphere) {
- var cosz = 0,
- rh, sinz = 0;
- rh = Math.sqrt(x * x + y * y);
- phi = rh * 0.5;
- if (phi > 1) {
- return null;
- }
- phi = 2 * Math.asin(phi);
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- sinz = Math.sin(phi);
- cosz = Math.cos(phi);
- }
- switch (this.mode) {
- case this.EQUIT:
- phi = (Math.abs(rh) <= EPSLN) ? 0 : Math.asin(y * sinz / rh);
- x *= sinz;
- y = cosz * rh;
- break;
- case this.OBLIQ:
- phi = (Math.abs(rh) <= EPSLN) ? this.lat0 : Math.asin(cosz * this.sinph0 + y * sinz * this.cosph0 / rh);
- x *= sinz * this.cosph0;
- y = (cosz - Math.sin(phi) * this.sinph0) * rh;
- break;
- case this.N_POLE:
- y = -y;
- phi = HALF_PI - phi;
- break;
- case this.S_POLE:
- phi -= HALF_PI;
- break;
- }
- lam = (y === 0 && (this.mode === this.EQUIT || this.mode === this.OBLIQ)) ? 0 : Math.atan2(x, y);
- }
- else {
- ab = 0;
- if (this.mode === this.OBLIQ || this.mode === this.EQUIT) {
- x /= this.dd;
- y *= this.dd;
- rho = Math.sqrt(x * x + y * y);
- if (rho < EPSLN) {
- p.x = this.long0;
- p.y = this.lat0;
- return p;
- }
- sCe = 2 * Math.asin(0.5 * rho / this.rq);
- cCe = Math.cos(sCe);
- x *= (sCe = Math.sin(sCe));
- if (this.mode === this.OBLIQ) {
- ab = cCe * this.sinb1 + y * sCe * this.cosb1 / rho;
- q = this.qp * ab;
- y = rho * this.cosb1 * cCe - y * this.sinb1 * sCe;
- }
- else {
- ab = y * sCe / rho;
- q = this.qp * ab;
- y = rho * cCe;
- }
- }
- else if (this.mode === this.N_POLE || this.mode === this.S_POLE) {
- if (this.mode === this.N_POLE) {
- y = -y;
- }
- q = (x * x + y * y);
- if (!q) {
- p.x = this.long0;
- p.y = this.lat0;
- return p;
- }
- ab = 1 - q / this.qp;
- if (this.mode === this.S_POLE) {
- ab = -ab;
- }
- }
- lam = Math.atan2(x, y);
- phi = authlat(Math.asin(ab), this.apa);
- }
- p.x = adjust_lon(this.long0 + lam);
- p.y = phi;
- return p;
- }
- /* determine latitude from authalic latitude */
- var P00 = 0.33333333333333333333;
- var P01 = 0.17222222222222222222;
- var P02 = 0.10257936507936507936;
- var P10 = 0.06388888888888888888;
- var P11 = 0.06640211640211640211;
- var P20 = 0.01641501294219154443;
- function authset(es) {
- var t;
- var APA = [];
- APA[0] = es * P00;
- t = es * es;
- APA[0] += t * P01;
- APA[1] = t * P10;
- t *= es;
- APA[0] += t * P02;
- APA[1] += t * P11;
- APA[2] = t * P20;
- return APA;
- }
- function authlat(beta, APA) {
- var t = beta + beta;
- return (beta + APA[0] * Math.sin(t) + APA[1] * Math.sin(t + t) + APA[2] * Math.sin(t + t + t));
- }
- var names$14 = ["Lambert Azimuthal Equal Area", "Lambert_Azimuthal_Equal_Area", "laea"];
- var laea = {
- init: init$13,
- forward: forward$12,
- inverse: inverse$12,
- names: names$14,
- S_POLE: S_POLE,
- N_POLE: N_POLE,
- EQUIT: EQUIT,
- OBLIQ: OBLIQ
- };
- var asinz = function(x) {
- if (Math.abs(x) > 1) {
- x = (x > 1) ? 1 : -1;
- }
- return Math.asin(x);
- };
- function init$14() {
- if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
- return;
- }
- this.temp = this.b / this.a;
- this.es = 1 - Math.pow(this.temp, 2);
- this.e3 = Math.sqrt(this.es);
- this.sin_po = Math.sin(this.lat1);
- this.cos_po = Math.cos(this.lat1);
- this.t1 = this.sin_po;
- this.con = this.sin_po;
- this.ms1 = msfnz(this.e3, this.sin_po, this.cos_po);
- this.qs1 = qsfnz(this.e3, this.sin_po, this.cos_po);
- this.sin_po = Math.sin(this.lat2);
- this.cos_po = Math.cos(this.lat2);
- this.t2 = this.sin_po;
- this.ms2 = msfnz(this.e3, this.sin_po, this.cos_po);
- this.qs2 = qsfnz(this.e3, this.sin_po, this.cos_po);
- this.sin_po = Math.sin(this.lat0);
- this.cos_po = Math.cos(this.lat0);
- this.t3 = this.sin_po;
- this.qs0 = qsfnz(this.e3, this.sin_po, this.cos_po);
- if (Math.abs(this.lat1 - this.lat2) > EPSLN) {
- this.ns0 = (this.ms1 * this.ms1 - this.ms2 * this.ms2) / (this.qs2 - this.qs1);
- }
- else {
- this.ns0 = this.con;
- }
- this.c = this.ms1 * this.ms1 + this.ns0 * this.qs1;
- this.rh = this.a * Math.sqrt(this.c - this.ns0 * this.qs0) / this.ns0;
- }
- /* Albers Conical Equal Area forward equations--mapping lat,long to x,y
- -------------------------------------------------------------------*/
- function forward$13(p) {
- var lon = p.x;
- var lat = p.y;
- this.sin_phi = Math.sin(lat);
- this.cos_phi = Math.cos(lat);
- var qs = qsfnz(this.e3, this.sin_phi, this.cos_phi);
- var rh1 = this.a * Math.sqrt(this.c - this.ns0 * qs) / this.ns0;
- var theta = this.ns0 * adjust_lon(lon - this.long0);
- var x = rh1 * Math.sin(theta) + this.x0;
- var y = this.rh - rh1 * Math.cos(theta) + this.y0;
- p.x = x;
- p.y = y;
- return p;
- }
- function inverse$13(p) {
- var rh1, qs, con, theta, lon, lat;
- p.x -= this.x0;
- p.y = this.rh - p.y + this.y0;
- if (this.ns0 >= 0) {
- rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
- con = 1;
- }
- else {
- rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
- con = -1;
- }
- theta = 0;
- if (rh1 !== 0) {
- theta = Math.atan2(con * p.x, con * p.y);
- }
- con = rh1 * this.ns0 / this.a;
- if (this.sphere) {
- lat = Math.asin((this.c - con * con) / (2 * this.ns0));
- }
- else {
- qs = (this.c - con * con) / this.ns0;
- lat = this.phi1z(this.e3, qs);
- }
- lon = adjust_lon(theta / this.ns0 + this.long0);
- p.x = lon;
- p.y = lat;
- return p;
- }
- /* Function to compute phi1, the latitude for the inverse of the
- Albers Conical Equal-Area projection.
- -------------------------------------------*/
- function phi1z(eccent, qs) {
- var sinphi, cosphi, con, com, dphi;
- var phi = asinz(0.5 * qs);
- if (eccent < EPSLN) {
- return phi;
- }
- var eccnts = eccent * eccent;
- for (var i = 1; i <= 25; i++) {
- sinphi = Math.sin(phi);
- cosphi = Math.cos(phi);
- con = eccent * sinphi;
- com = 1 - con * con;
- dphi = 0.5 * com * com / cosphi * (qs / (1 - eccnts) - sinphi / com + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
- phi = phi + dphi;
- if (Math.abs(dphi) <= 1e-7) {
- return phi;
- }
- }
- return null;
- }
- var names$15 = ["Albers_Conic_Equal_Area", "Albers", "aea"];
- var aea = {
- init: init$14,
- forward: forward$13,
- inverse: inverse$13,
- names: names$15,
- phi1z: phi1z
- };
- /*
- reference:
- Wolfram Mathworld "Gnomonic Projection"
- http://mathworld.wolfram.com/GnomonicProjection.html
- Accessed: 12th November 2009
- */
- function init$15() {
- /* Place parameters in static storage for common use
- -------------------------------------------------*/
- this.sin_p14 = Math.sin(this.lat0);
- this.cos_p14 = Math.cos(this.lat0);
- // Approximation for projecting points to the horizon (infinity)
- this.infinity_dist = 1000 * this.a;
- this.rc = 1;
- }
- /* Gnomonic forward equations--mapping lat,long to x,y
- ---------------------------------------------------*/
- function forward$14(p) {
- var sinphi, cosphi; /* sin and cos value */
- var dlon; /* delta longitude value */
- var coslon; /* cos of longitude */
- var ksp; /* scale factor */
- var g;
- var x, y;
- var lon = p.x;
- var lat = p.y;
- /* Forward equations
- -----------------*/
- dlon = adjust_lon(lon - this.long0);
- sinphi = Math.sin(lat);
- cosphi = Math.cos(lat);
- coslon = Math.cos(dlon);
- g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
- ksp = 1;
- if ((g > 0) || (Math.abs(g) <= EPSLN)) {
- x = this.x0 + this.a * ksp * cosphi * Math.sin(dlon) / g;
- y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon) / g;
- }
- else {
- // Point is in the opposing hemisphere and is unprojectable
- // We still need to return a reasonable point, so we project
- // to infinity, on a bearing
- // equivalent to the northern hemisphere equivalent
- // This is a reasonable approximation for short shapes and lines that
- // straddle the horizon.
- x = this.x0 + this.infinity_dist * cosphi * Math.sin(dlon);
- y = this.y0 + this.infinity_dist * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
- }
- p.x = x;
- p.y = y;
- return p;
- }
- function inverse$14(p) {
- var rh; /* Rho */
- var sinc, cosc;
- var c;
- var lon, lat;
- /* Inverse equations
- -----------------*/
- p.x = (p.x - this.x0) / this.a;
- p.y = (p.y - this.y0) / this.a;
- p.x /= this.k0;
- p.y /= this.k0;
- if ((rh = Math.sqrt(p.x * p.x + p.y * p.y))) {
- c = Math.atan2(rh, this.rc);
- sinc = Math.sin(c);
- cosc = Math.cos(c);
- lat = asinz(cosc * this.sin_p14 + (p.y * sinc * this.cos_p14) / rh);
- lon = Math.atan2(p.x * sinc, rh * this.cos_p14 * cosc - p.y * this.sin_p14 * sinc);
- lon = adjust_lon(this.long0 + lon);
- }
- else {
- lat = this.phic0;
- lon = 0;
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$16 = ["gnom"];
- var gnom = {
- init: init$15,
- forward: forward$14,
- inverse: inverse$14,
- names: names$16
- };
- var iqsfnz = function(eccent, q) {
- var temp = 1 - (1 - eccent * eccent) / (2 * eccent) * Math.log((1 - eccent) / (1 + eccent));
- if (Math.abs(Math.abs(q) - temp) < 1.0E-6) {
- if (q < 0) {
- return (-1 * HALF_PI);
- }
- else {
- return HALF_PI;
- }
- }
- //var phi = 0.5* q/(1-eccent*eccent);
- var phi = Math.asin(0.5 * q);
- var dphi;
- var sin_phi;
- var cos_phi;
- var con;
- for (var i = 0; i < 30; i++) {
- sin_phi = Math.sin(phi);
- cos_phi = Math.cos(phi);
- con = eccent * sin_phi;
- dphi = Math.pow(1 - con * con, 2) / (2 * cos_phi) * (q / (1 - eccent * eccent) - sin_phi / (1 - con * con) + 0.5 / eccent * Math.log((1 - con) / (1 + con)));
- phi += dphi;
- if (Math.abs(dphi) <= 0.0000000001) {
- return phi;
- }
- }
- //console.log("IQSFN-CONV:Latitude failed to converge after 30 iterations");
- return NaN;
- };
- /*
- reference:
- "Cartographic Projection Procedures for the UNIX Environment-
- A User's Manual" by Gerald I. Evenden,
- USGS Open File Report 90-284and Release 4 Interim Reports (2003)
- */
- function init$16() {
- //no-op
- if (!this.sphere) {
- this.k0 = msfnz(this.e, Math.sin(this.lat_ts), Math.cos(this.lat_ts));
- }
- }
- /* Cylindrical Equal Area forward equations--mapping lat,long to x,y
- ------------------------------------------------------------*/
- function forward$15(p) {
- var lon = p.x;
- var lat = p.y;
- var x, y;
- /* Forward equations
- -----------------*/
- var dlon = adjust_lon(lon - this.long0);
- if (this.sphere) {
- x = this.x0 + this.a * dlon * Math.cos(this.lat_ts);
- y = this.y0 + this.a * Math.sin(lat) / Math.cos(this.lat_ts);
- }
- else {
- var qs = qsfnz(this.e, Math.sin(lat));
- x = this.x0 + this.a * this.k0 * dlon;
- y = this.y0 + this.a * qs * 0.5 / this.k0;
- }
- p.x = x;
- p.y = y;
- return p;
- }
- /* Cylindrical Equal Area inverse equations--mapping x,y to lat/long
- ------------------------------------------------------------*/
- function inverse$15(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var lon, lat;
- if (this.sphere) {
- lon = adjust_lon(this.long0 + (p.x / this.a) / Math.cos(this.lat_ts));
- lat = Math.asin((p.y / this.a) * Math.cos(this.lat_ts));
- }
- else {
- lat = iqsfnz(this.e, 2 * p.y * this.k0 / this.a);
- lon = adjust_lon(this.long0 + p.x / (this.a * this.k0));
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$17 = ["cea"];
- var cea = {
- init: init$16,
- forward: forward$15,
- inverse: inverse$15,
- names: names$17
- };
- function init$17() {
- this.x0 = this.x0 || 0;
- this.y0 = this.y0 || 0;
- this.lat0 = this.lat0 || 0;
- this.long0 = this.long0 || 0;
- this.lat_ts = this.lat_ts || 0;
- this.title = this.title || "Equidistant Cylindrical (Plate Carre)";
- this.rc = Math.cos(this.lat_ts);
- }
- // forward equations--mapping lat,long to x,y
- // -----------------------------------------------------------------
- function forward$16(p) {
- var lon = p.x;
- var lat = p.y;
- var dlon = adjust_lon(lon - this.long0);
- var dlat = adjust_lat(lat - this.lat0);
- p.x = this.x0 + (this.a * dlon * this.rc);
- p.y = this.y0 + (this.a * dlat);
- return p;
- }
- // inverse equations--mapping x,y to lat/long
- // -----------------------------------------------------------------
- function inverse$16(p) {
- var x = p.x;
- var y = p.y;
- p.x = adjust_lon(this.long0 + ((x - this.x0) / (this.a * this.rc)));
- p.y = adjust_lat(this.lat0 + ((y - this.y0) / (this.a)));
- return p;
- }
- var names$18 = ["Equirectangular", "Equidistant_Cylindrical", "eqc"];
- var eqc = {
- init: init$17,
- forward: forward$16,
- inverse: inverse$16,
- names: names$18
- };
- var MAX_ITER$2 = 20;
- function init$18() {
- /* Place parameters in static storage for common use
- -------------------------------------------------*/
- this.temp = this.b / this.a;
- this.es = 1 - Math.pow(this.temp, 2); // devait etre dans tmerc.js mais n y est pas donc je commente sinon retour de valeurs nulles
- this.e = Math.sqrt(this.es);
- this.e0 = e0fn(this.es);
- this.e1 = e1fn(this.es);
- this.e2 = e2fn(this.es);
- this.e3 = e3fn(this.es);
- this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); //si que des zeros le calcul ne se fait pas
- }
- /* Polyconic forward equations--mapping lat,long to x,y
- ---------------------------------------------------*/
- function forward$17(p) {
- var lon = p.x;
- var lat = p.y;
- var x, y, el;
- var dlon = adjust_lon(lon - this.long0);
- el = dlon * Math.sin(lat);
- if (this.sphere) {
- if (Math.abs(lat) <= EPSLN) {
- x = this.a * dlon;
- y = -1 * this.a * this.lat0;
- }
- else {
- x = this.a * Math.sin(el) / Math.tan(lat);
- y = this.a * (adjust_lat(lat - this.lat0) + (1 - Math.cos(el)) / Math.tan(lat));
- }
- }
- else {
- if (Math.abs(lat) <= EPSLN) {
- x = this.a * dlon;
- y = -1 * this.ml0;
- }
- else {
- var nl = gN(this.a, this.e, Math.sin(lat)) / Math.tan(lat);
- x = nl * Math.sin(el);
- y = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat) - this.ml0 + nl * (1 - Math.cos(el));
- }
- }
- p.x = x + this.x0;
- p.y = y + this.y0;
- return p;
- }
- /* Inverse equations
- -----------------*/
- function inverse$17(p) {
- var lon, lat, x, y, i;
- var al, bl;
- var phi, dphi;
- x = p.x - this.x0;
- y = p.y - this.y0;
- if (this.sphere) {
- if (Math.abs(y + this.a * this.lat0) <= EPSLN) {
- lon = adjust_lon(x / this.a + this.long0);
- lat = 0;
- }
- else {
- al = this.lat0 + y / this.a;
- bl = x * x / this.a / this.a + al * al;
- phi = al;
- var tanphi;
- for (i = MAX_ITER$2; i; --i) {
- tanphi = Math.tan(phi);
- dphi = -1 * (al * (phi * tanphi + 1) - phi - 0.5 * (phi * phi + bl) * tanphi) / ((phi - al) / tanphi - 1);
- phi += dphi;
- if (Math.abs(dphi) <= EPSLN) {
- lat = phi;
- break;
- }
- }
- lon = adjust_lon(this.long0 + (Math.asin(x * Math.tan(phi) / this.a)) / Math.sin(lat));
- }
- }
- else {
- if (Math.abs(y + this.ml0) <= EPSLN) {
- lat = 0;
- lon = adjust_lon(this.long0 + x / this.a);
- }
- else {
- al = (this.ml0 + y) / this.a;
- bl = x * x / this.a / this.a + al * al;
- phi = al;
- var cl, mln, mlnp, ma;
- var con;
- for (i = MAX_ITER$2; i; --i) {
- con = this.e * Math.sin(phi);
- cl = Math.sqrt(1 - con * con) * Math.tan(phi);
- mln = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, phi);
- mlnp = this.e0 - 2 * this.e1 * Math.cos(2 * phi) + 4 * this.e2 * Math.cos(4 * phi) - 6 * this.e3 * Math.cos(6 * phi);
- ma = mln / this.a;
- dphi = (al * (cl * ma + 1) - ma - 0.5 * cl * (ma * ma + bl)) / (this.es * Math.sin(2 * phi) * (ma * ma + bl - 2 * al * ma) / (4 * cl) + (al - ma) * (cl * mlnp - 2 / Math.sin(2 * phi)) - mlnp);
- phi -= dphi;
- if (Math.abs(dphi) <= EPSLN) {
- lat = phi;
- break;
- }
- }
- //lat=phi4z(this.e,this.e0,this.e1,this.e2,this.e3,al,bl,0,0);
- cl = Math.sqrt(1 - this.es * Math.pow(Math.sin(lat), 2)) * Math.tan(lat);
- lon = adjust_lon(this.long0 + Math.asin(x * cl / this.a) / Math.sin(lat));
- }
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$19 = ["Polyconic", "poly"];
- var poly = {
- init: init$18,
- forward: forward$17,
- inverse: inverse$17,
- names: names$19
- };
- /*
- reference
- Department of Land and Survey Technical Circular 1973/32
- http://www.linz.govt.nz/docs/miscellaneous/nz-map-definition.pdf
- OSG Technical Report 4.1
- http://www.linz.govt.nz/docs/miscellaneous/nzmg.pdf
- */
- /**
- * iterations: Number of iterations to refine inverse transform.
- * 0 -> km accuracy
- * 1 -> m accuracy -- suitable for most mapping applications
- * 2 -> mm accuracy
- */
- function init$19() {
- this.A = [];
- this.A[1] = 0.6399175073;
- this.A[2] = -0.1358797613;
- this.A[3] = 0.063294409;
- this.A[4] = -0.02526853;
- this.A[5] = 0.0117879;
- this.A[6] = -0.0055161;
- this.A[7] = 0.0026906;
- this.A[8] = -0.001333;
- this.A[9] = 0.00067;
- this.A[10] = -0.00034;
- this.B_re = [];
- this.B_im = [];
- this.B_re[1] = 0.7557853228;
- this.B_im[1] = 0;
- this.B_re[2] = 0.249204646;
- this.B_im[2] = 0.003371507;
- this.B_re[3] = -0.001541739;
- this.B_im[3] = 0.041058560;
- this.B_re[4] = -0.10162907;
- this.B_im[4] = 0.01727609;
- this.B_re[5] = -0.26623489;
- this.B_im[5] = -0.36249218;
- this.B_re[6] = -0.6870983;
- this.B_im[6] = -1.1651967;
- this.C_re = [];
- this.C_im = [];
- this.C_re[1] = 1.3231270439;
- this.C_im[1] = 0;
- this.C_re[2] = -0.577245789;
- this.C_im[2] = -0.007809598;
- this.C_re[3] = 0.508307513;
- this.C_im[3] = -0.112208952;
- this.C_re[4] = -0.15094762;
- this.C_im[4] = 0.18200602;
- this.C_re[5] = 1.01418179;
- this.C_im[5] = 1.64497696;
- this.C_re[6] = 1.9660549;
- this.C_im[6] = 2.5127645;
- this.D = [];
- this.D[1] = 1.5627014243;
- this.D[2] = 0.5185406398;
- this.D[3] = -0.03333098;
- this.D[4] = -0.1052906;
- this.D[5] = -0.0368594;
- this.D[6] = 0.007317;
- this.D[7] = 0.01220;
- this.D[8] = 0.00394;
- this.D[9] = -0.0013;
- }
- /**
- New Zealand Map Grid Forward - long/lat to x/y
- long/lat in radians
- */
- function forward$18(p) {
- var n;
- var lon = p.x;
- var lat = p.y;
- var delta_lat = lat - this.lat0;
- var delta_lon = lon - this.long0;
- // 1. Calculate d_phi and d_psi ... // and d_lambda
- // For this algorithm, delta_latitude is in seconds of arc x 10-5, so we need to scale to those units. Longitude is radians.
- var d_phi = delta_lat / SEC_TO_RAD * 1E-5;
- var d_lambda = delta_lon;
- var d_phi_n = 1; // d_phi^0
- var d_psi = 0;
- for (n = 1; n <= 10; n++) {
- d_phi_n = d_phi_n * d_phi;
- d_psi = d_psi + this.A[n] * d_phi_n;
- }
- // 2. Calculate theta
- var th_re = d_psi;
- var th_im = d_lambda;
- // 3. Calculate z
- var th_n_re = 1;
- var th_n_im = 0; // theta^0
- var th_n_re1;
- var th_n_im1;
- var z_re = 0;
- var z_im = 0;
- for (n = 1; n <= 6; n++) {
- th_n_re1 = th_n_re * th_re - th_n_im * th_im;
- th_n_im1 = th_n_im * th_re + th_n_re * th_im;
- th_n_re = th_n_re1;
- th_n_im = th_n_im1;
- z_re = z_re + this.B_re[n] * th_n_re - this.B_im[n] * th_n_im;
- z_im = z_im + this.B_im[n] * th_n_re + this.B_re[n] * th_n_im;
- }
- // 4. Calculate easting and northing
- p.x = (z_im * this.a) + this.x0;
- p.y = (z_re * this.a) + this.y0;
- return p;
- }
- /**
- New Zealand Map Grid Inverse - x/y to long/lat
- */
- function inverse$18(p) {
- var n;
- var x = p.x;
- var y = p.y;
- var delta_x = x - this.x0;
- var delta_y = y - this.y0;
- // 1. Calculate z
- var z_re = delta_y / this.a;
- var z_im = delta_x / this.a;
- // 2a. Calculate theta - first approximation gives km accuracy
- var z_n_re = 1;
- var z_n_im = 0; // z^0
- var z_n_re1;
- var z_n_im1;
- var th_re = 0;
- var th_im = 0;
- for (n = 1; n <= 6; n++) {
- z_n_re1 = z_n_re * z_re - z_n_im * z_im;
- z_n_im1 = z_n_im * z_re + z_n_re * z_im;
- z_n_re = z_n_re1;
- z_n_im = z_n_im1;
- th_re = th_re + this.C_re[n] * z_n_re - this.C_im[n] * z_n_im;
- th_im = th_im + this.C_im[n] * z_n_re + this.C_re[n] * z_n_im;
- }
- // 2b. Iterate to refine the accuracy of the calculation
- // 0 iterations gives km accuracy
- // 1 iteration gives m accuracy -- good enough for most mapping applications
- // 2 iterations bives mm accuracy
- for (var i = 0; i < this.iterations; i++) {
- var th_n_re = th_re;
- var th_n_im = th_im;
- var th_n_re1;
- var th_n_im1;
- var num_re = z_re;
- var num_im = z_im;
- for (n = 2; n <= 6; n++) {
- th_n_re1 = th_n_re * th_re - th_n_im * th_im;
- th_n_im1 = th_n_im * th_re + th_n_re * th_im;
- th_n_re = th_n_re1;
- th_n_im = th_n_im1;
- num_re = num_re + (n - 1) * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
- num_im = num_im + (n - 1) * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
- }
- th_n_re = 1;
- th_n_im = 0;
- var den_re = this.B_re[1];
- var den_im = this.B_im[1];
- for (n = 2; n <= 6; n++) {
- th_n_re1 = th_n_re * th_re - th_n_im * th_im;
- th_n_im1 = th_n_im * th_re + th_n_re * th_im;
- th_n_re = th_n_re1;
- th_n_im = th_n_im1;
- den_re = den_re + n * (this.B_re[n] * th_n_re - this.B_im[n] * th_n_im);
- den_im = den_im + n * (this.B_im[n] * th_n_re + this.B_re[n] * th_n_im);
- }
- // Complex division
- var den2 = den_re * den_re + den_im * den_im;
- th_re = (num_re * den_re + num_im * den_im) / den2;
- th_im = (num_im * den_re - num_re * den_im) / den2;
- }
- // 3. Calculate d_phi ... // and d_lambda
- var d_psi = th_re;
- var d_lambda = th_im;
- var d_psi_n = 1; // d_psi^0
- var d_phi = 0;
- for (n = 1; n <= 9; n++) {
- d_psi_n = d_psi_n * d_psi;
- d_phi = d_phi + this.D[n] * d_psi_n;
- }
- // 4. Calculate latitude and longitude
- // d_phi is calcuated in second of arc * 10^-5, so we need to scale back to radians. d_lambda is in radians.
- var lat = this.lat0 + (d_phi * SEC_TO_RAD * 1E5);
- var lon = this.long0 + d_lambda;
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$20 = ["New_Zealand_Map_Grid", "nzmg"];
- var nzmg = {
- init: init$19,
- forward: forward$18,
- inverse: inverse$18,
- names: names$20
- };
- /*
- reference
- "New Equal-Area Map Projections for Noncircular Regions", John P. Snyder,
- The American Cartographer, Vol 15, No. 4, October 1988, pp. 341-355.
- */
- /* Initialize the Miller Cylindrical projection
- -------------------------------------------*/
- function init$20() {
- //no-op
- }
- /* Miller Cylindrical forward equations--mapping lat,long to x,y
- ------------------------------------------------------------*/
- function forward$19(p) {
- var lon = p.x;
- var lat = p.y;
- /* Forward equations
- -----------------*/
- var dlon = adjust_lon(lon - this.long0);
- var x = this.x0 + this.a * dlon;
- var y = this.y0 + this.a * Math.log(Math.tan((Math.PI / 4) + (lat / 2.5))) * 1.25;
- p.x = x;
- p.y = y;
- return p;
- }
- /* Miller Cylindrical inverse equations--mapping x,y to lat/long
- ------------------------------------------------------------*/
- function inverse$19(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var lon = adjust_lon(this.long0 + p.x / this.a);
- var lat = 2.5 * (Math.atan(Math.exp(0.8 * p.y / this.a)) - Math.PI / 4);
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$21 = ["Miller_Cylindrical", "mill"];
- var mill = {
- init: init$20,
- forward: forward$19,
- inverse: inverse$19,
- names: names$21
- };
- var MAX_ITER$3 = 20;
- function init$21() {
- /* Place parameters in static storage for common use
- -------------------------------------------------*/
- if (!this.sphere) {
- this.en = pj_enfn(this.es);
- }
- else {
- this.n = 1;
- this.m = 0;
- this.es = 0;
- this.C_y = Math.sqrt((this.m + 1) / this.n);
- this.C_x = this.C_y / (this.m + 1);
- }
- }
- /* Sinusoidal forward equations--mapping lat,long to x,y
- -----------------------------------------------------*/
- function forward$20(p) {
- var x, y;
- var lon = p.x;
- var lat = p.y;
- /* Forward equations
- -----------------*/
- lon = adjust_lon(lon - this.long0);
- if (this.sphere) {
- if (!this.m) {
- lat = this.n !== 1 ? Math.asin(this.n * Math.sin(lat)) : lat;
- }
- else {
- var k = this.n * Math.sin(lat);
- for (var i = MAX_ITER$3; i; --i) {
- var V = (this.m * lat + Math.sin(lat) - k) / (this.m + Math.cos(lat));
- lat -= V;
- if (Math.abs(V) < EPSLN) {
- break;
- }
- }
- }
- x = this.a * this.C_x * lon * (this.m + Math.cos(lat));
- y = this.a * this.C_y * lat;
- }
- else {
- var s = Math.sin(lat);
- var c = Math.cos(lat);
- y = this.a * pj_mlfn(lat, s, c, this.en);
- x = this.a * lon * c / Math.sqrt(1 - this.es * s * s);
- }
- p.x = x;
- p.y = y;
- return p;
- }
- function inverse$20(p) {
- var lat, temp, lon, s;
- p.x -= this.x0;
- lon = p.x / this.a;
- p.y -= this.y0;
- lat = p.y / this.a;
- if (this.sphere) {
- lat /= this.C_y;
- lon = lon / (this.C_x * (this.m + Math.cos(lat)));
- if (this.m) {
- lat = asinz((this.m * lat + Math.sin(lat)) / this.n);
- }
- else if (this.n !== 1) {
- lat = asinz(Math.sin(lat) / this.n);
- }
- lon = adjust_lon(lon + this.long0);
- lat = adjust_lat(lat);
- }
- else {
- lat = pj_inv_mlfn(p.y / this.a, this.es, this.en);
- s = Math.abs(lat);
- if (s < HALF_PI) {
- s = Math.sin(lat);
- temp = this.long0 + p.x * Math.sqrt(1 - this.es * s * s) / (this.a * Math.cos(lat));
- //temp = this.long0 + p.x / (this.a * Math.cos(lat));
- lon = adjust_lon(temp);
- }
- else if ((s - EPSLN) < HALF_PI) {
- lon = this.long0;
- }
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$22 = ["Sinusoidal", "sinu"];
- var sinu = {
- init: init$21,
- forward: forward$20,
- inverse: inverse$20,
- names: names$22
- };
- function init$22() {}
- /* Mollweide forward equations--mapping lat,long to x,y
- ----------------------------------------------------*/
- function forward$21(p) {
- /* Forward equations
- -----------------*/
- var lon = p.x;
- var lat = p.y;
- var delta_lon = adjust_lon(lon - this.long0);
- var theta = lat;
- var con = Math.PI * Math.sin(lat);
- /* Iterate using the Newton-Raphson method to find theta
- -----------------------------------------------------*/
- while (true) {
- var delta_theta = -(theta + Math.sin(theta) - con) / (1 + Math.cos(theta));
- theta += delta_theta;
- if (Math.abs(delta_theta) < EPSLN) {
- break;
- }
- }
- theta /= 2;
- /* If the latitude is 90 deg, force the x coordinate to be "0 + false easting"
- this is done here because of precision problems with "cos(theta)"
- --------------------------------------------------------------------------*/
- if (Math.PI / 2 - Math.abs(lat) < EPSLN) {
- delta_lon = 0;
- }
- var x = 0.900316316158 * this.a * delta_lon * Math.cos(theta) + this.x0;
- var y = 1.4142135623731 * this.a * Math.sin(theta) + this.y0;
- p.x = x;
- p.y = y;
- return p;
- }
- function inverse$21(p) {
- var theta;
- var arg;
- /* Inverse equations
- -----------------*/
- p.x -= this.x0;
- p.y -= this.y0;
- arg = p.y / (1.4142135623731 * this.a);
- /* Because of division by zero problems, 'arg' can not be 1. Therefore
- a number very close to one is used instead.
- -------------------------------------------------------------------*/
- if (Math.abs(arg) > 0.999999999999) {
- arg = 0.999999999999;
- }
- theta = Math.asin(arg);
- var lon = adjust_lon(this.long0 + (p.x / (0.900316316158 * this.a * Math.cos(theta))));
- if (lon < (-Math.PI)) {
- lon = -Math.PI;
- }
- if (lon > Math.PI) {
- lon = Math.PI;
- }
- arg = (2 * theta + Math.sin(2 * theta)) / Math.PI;
- if (Math.abs(arg) > 1) {
- arg = 1;
- }
- var lat = Math.asin(arg);
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$23 = ["Mollweide", "moll"];
- var moll = {
- init: init$22,
- forward: forward$21,
- inverse: inverse$21,
- names: names$23
- };
- function init$23() {
- /* Place parameters in static storage for common use
- -------------------------------------------------*/
- // Standard Parallels cannot be equal and on opposite sides of the equator
- if (Math.abs(this.lat1 + this.lat2) < EPSLN) {
- return;
- }
- this.lat2 = this.lat2 || this.lat1;
- this.temp = this.b / this.a;
- this.es = 1 - Math.pow(this.temp, 2);
- this.e = Math.sqrt(this.es);
- this.e0 = e0fn(this.es);
- this.e1 = e1fn(this.es);
- this.e2 = e2fn(this.es);
- this.e3 = e3fn(this.es);
- this.sinphi = Math.sin(this.lat1);
- this.cosphi = Math.cos(this.lat1);
- this.ms1 = msfnz(this.e, this.sinphi, this.cosphi);
- this.ml1 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat1);
- if (Math.abs(this.lat1 - this.lat2) < EPSLN) {
- this.ns = this.sinphi;
- }
- else {
- this.sinphi = Math.sin(this.lat2);
- this.cosphi = Math.cos(this.lat2);
- this.ms2 = msfnz(this.e, this.sinphi, this.cosphi);
- this.ml2 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat2);
- this.ns = (this.ms1 - this.ms2) / (this.ml2 - this.ml1);
- }
- this.g = this.ml1 + this.ms1 / this.ns;
- this.ml0 = mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0);
- this.rh = this.a * (this.g - this.ml0);
- }
- /* Equidistant Conic forward equations--mapping lat,long to x,y
- -----------------------------------------------------------*/
- function forward$22(p) {
- var lon = p.x;
- var lat = p.y;
- var rh1;
- /* Forward equations
- -----------------*/
- if (this.sphere) {
- rh1 = this.a * (this.g - lat);
- }
- else {
- var ml = mlfn(this.e0, this.e1, this.e2, this.e3, lat);
- rh1 = this.a * (this.g - ml);
- }
- var theta = this.ns * adjust_lon(lon - this.long0);
- var x = this.x0 + rh1 * Math.sin(theta);
- var y = this.y0 + this.rh - rh1 * Math.cos(theta);
- p.x = x;
- p.y = y;
- return p;
- }
- /* Inverse equations
- -----------------*/
- function inverse$22(p) {
- p.x -= this.x0;
- p.y = this.rh - p.y + this.y0;
- var con, rh1, lat, lon;
- if (this.ns >= 0) {
- rh1 = Math.sqrt(p.x * p.x + p.y * p.y);
- con = 1;
- }
- else {
- rh1 = -Math.sqrt(p.x * p.x + p.y * p.y);
- con = -1;
- }
- var theta = 0;
- if (rh1 !== 0) {
- theta = Math.atan2(con * p.x, con * p.y);
- }
- if (this.sphere) {
- lon = adjust_lon(this.long0 + theta / this.ns);
- lat = adjust_lat(this.g - rh1 / this.a);
- p.x = lon;
- p.y = lat;
- return p;
- }
- else {
- var ml = this.g - rh1 / this.a;
- lat = imlfn(ml, this.e0, this.e1, this.e2, this.e3);
- lon = adjust_lon(this.long0 + theta / this.ns);
- p.x = lon;
- p.y = lat;
- return p;
- }
- }
- var names$24 = ["Equidistant_Conic", "eqdc"];
- var eqdc = {
- init: init$23,
- forward: forward$22,
- inverse: inverse$22,
- names: names$24
- };
- /* Initialize the Van Der Grinten projection
- ----------------------------------------*/
- function init$24() {
- //this.R = 6370997; //Radius of earth
- this.R = this.a;
- }
- function forward$23(p) {
- var lon = p.x;
- var lat = p.y;
- /* Forward equations
- -----------------*/
- var dlon = adjust_lon(lon - this.long0);
- var x, y;
- if (Math.abs(lat) <= EPSLN) {
- x = this.x0 + this.R * dlon;
- y = this.y0;
- }
- var theta = asinz(2 * Math.abs(lat / Math.PI));
- if ((Math.abs(dlon) <= EPSLN) || (Math.abs(Math.abs(lat) - HALF_PI) <= EPSLN)) {
- x = this.x0;
- if (lat >= 0) {
- y = this.y0 + Math.PI * this.R * Math.tan(0.5 * theta);
- }
- else {
- y = this.y0 + Math.PI * this.R * -Math.tan(0.5 * theta);
- }
- // return(OK);
- }
- var al = 0.5 * Math.abs((Math.PI / dlon) - (dlon / Math.PI));
- var asq = al * al;
- var sinth = Math.sin(theta);
- var costh = Math.cos(theta);
- var g = costh / (sinth + costh - 1);
- var gsq = g * g;
- var m = g * (2 / sinth - 1);
- var msq = m * m;
- var con = Math.PI * this.R * (al * (g - msq) + Math.sqrt(asq * (g - msq) * (g - msq) - (msq + asq) * (gsq - msq))) / (msq + asq);
- if (dlon < 0) {
- con = -con;
- }
- x = this.x0 + con;
- //con = Math.abs(con / (Math.PI * this.R));
- var q = asq + g;
- con = Math.PI * this.R * (m * q - al * Math.sqrt((msq + asq) * (asq + 1) - q * q)) / (msq + asq);
- if (lat >= 0) {
- //y = this.y0 + Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
- y = this.y0 + con;
- }
- else {
- //y = this.y0 - Math.PI * this.R * Math.sqrt(1 - con * con - 2 * al * con);
- y = this.y0 - con;
- }
- p.x = x;
- p.y = y;
- return p;
- }
- /* Van Der Grinten inverse equations--mapping x,y to lat/long
- ---------------------------------------------------------*/
- function inverse$23(p) {
- var lon, lat;
- var xx, yy, xys, c1, c2, c3;
- var a1;
- var m1;
- var con;
- var th1;
- var d;
- /* inverse equations
- -----------------*/
- p.x -= this.x0;
- p.y -= this.y0;
- con = Math.PI * this.R;
- xx = p.x / con;
- yy = p.y / con;
- xys = xx * xx + yy * yy;
- c1 = -Math.abs(yy) * (1 + xys);
- c2 = c1 - 2 * yy * yy + xx * xx;
- c3 = -2 * c1 + 1 + 2 * yy * yy + xys * xys;
- d = yy * yy / c3 + (2 * c2 * c2 * c2 / c3 / c3 / c3 - 9 * c1 * c2 / c3 / c3) / 27;
- a1 = (c1 - c2 * c2 / 3 / c3) / c3;
- m1 = 2 * Math.sqrt(-a1 / 3);
- con = ((3 * d) / a1) / m1;
- if (Math.abs(con) > 1) {
- if (con >= 0) {
- con = 1;
- }
- else {
- con = -1;
- }
- }
- th1 = Math.acos(con) / 3;
- if (p.y >= 0) {
- lat = (-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
- }
- else {
- lat = -(-m1 * Math.cos(th1 + Math.PI / 3) - c2 / 3 / c3) * Math.PI;
- }
- if (Math.abs(xx) < EPSLN) {
- lon = this.long0;
- }
- else {
- lon = adjust_lon(this.long0 + Math.PI * (xys - 1 + Math.sqrt(1 + 2 * (xx * xx - yy * yy) + xys * xys)) / 2 / xx);
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$25 = ["Van_der_Grinten_I", "VanDerGrinten", "vandg"];
- var vandg = {
- init: init$24,
- forward: forward$23,
- inverse: inverse$23,
- names: names$25
- };
- function init$25() {
- this.sin_p12 = Math.sin(this.lat0);
- this.cos_p12 = Math.cos(this.lat0);
- }
- function forward$24(p) {
- var lon = p.x;
- var lat = p.y;
- var sinphi = Math.sin(p.y);
- var cosphi = Math.cos(p.y);
- var dlon = adjust_lon(lon - this.long0);
- var e0, e1, e2, e3, Mlp, Ml, tanphi, Nl1, Nl, psi, Az, G, H, GH, Hs, c, kp, cos_c, s, s2, s3, s4, s5;
- if (this.sphere) {
- if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
- //North Pole case
- p.x = this.x0 + this.a * (HALF_PI - lat) * Math.sin(dlon);
- p.y = this.y0 - this.a * (HALF_PI - lat) * Math.cos(dlon);
- return p;
- }
- else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
- //South Pole case
- p.x = this.x0 + this.a * (HALF_PI + lat) * Math.sin(dlon);
- p.y = this.y0 + this.a * (HALF_PI + lat) * Math.cos(dlon);
- return p;
- }
- else {
- //default case
- cos_c = this.sin_p12 * sinphi + this.cos_p12 * cosphi * Math.cos(dlon);
- c = Math.acos(cos_c);
- kp = c ? c / Math.sin(c) : 1;
- p.x = this.x0 + this.a * kp * cosphi * Math.sin(dlon);
- p.y = this.y0 + this.a * kp * (this.cos_p12 * sinphi - this.sin_p12 * cosphi * Math.cos(dlon));
- return p;
- }
- }
- else {
- e0 = e0fn(this.es);
- e1 = e1fn(this.es);
- e2 = e2fn(this.es);
- e3 = e3fn(this.es);
- if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
- //North Pole case
- Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
- Ml = this.a * mlfn(e0, e1, e2, e3, lat);
- p.x = this.x0 + (Mlp - Ml) * Math.sin(dlon);
- p.y = this.y0 - (Mlp - Ml) * Math.cos(dlon);
- return p;
- }
- else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
- //South Pole case
- Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
- Ml = this.a * mlfn(e0, e1, e2, e3, lat);
- p.x = this.x0 + (Mlp + Ml) * Math.sin(dlon);
- p.y = this.y0 + (Mlp + Ml) * Math.cos(dlon);
- return p;
- }
- else {
- //Default case
- tanphi = sinphi / cosphi;
- Nl1 = gN(this.a, this.e, this.sin_p12);
- Nl = gN(this.a, this.e, sinphi);
- psi = Math.atan((1 - this.es) * tanphi + this.es * Nl1 * this.sin_p12 / (Nl * cosphi));
- Az = Math.atan2(Math.sin(dlon), this.cos_p12 * Math.tan(psi) - this.sin_p12 * Math.cos(dlon));
- if (Az === 0) {
- s = Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
- }
- else if (Math.abs(Math.abs(Az) - Math.PI) <= EPSLN) {
- s = -Math.asin(this.cos_p12 * Math.sin(psi) - this.sin_p12 * Math.cos(psi));
- }
- else {
- s = Math.asin(Math.sin(dlon) * Math.cos(psi) / Math.sin(Az));
- }
- G = this.e * this.sin_p12 / Math.sqrt(1 - this.es);
- H = this.e * this.cos_p12 * Math.cos(Az) / Math.sqrt(1 - this.es);
- GH = G * H;
- Hs = H * H;
- s2 = s * s;
- s3 = s2 * s;
- s4 = s3 * s;
- s5 = s4 * s;
- c = Nl1 * s * (1 - s2 * Hs * (1 - Hs) / 6 + s3 / 8 * GH * (1 - 2 * Hs) + s4 / 120 * (Hs * (4 - 7 * Hs) - 3 * G * G * (1 - 7 * Hs)) - s5 / 48 * GH);
- p.x = this.x0 + c * Math.sin(Az);
- p.y = this.y0 + c * Math.cos(Az);
- return p;
- }
- }
- }
- function inverse$24(p) {
- p.x -= this.x0;
- p.y -= this.y0;
- var rh, z, sinz, cosz, lon, lat, con, e0, e1, e2, e3, Mlp, M, N1, psi, Az, cosAz, tmp, A, B, D, Ee, F, sinpsi;
- if (this.sphere) {
- rh = Math.sqrt(p.x * p.x + p.y * p.y);
- if (rh > (2 * HALF_PI * this.a)) {
- return;
- }
- z = rh / this.a;
- sinz = Math.sin(z);
- cosz = Math.cos(z);
- lon = this.long0;
- if (Math.abs(rh) <= EPSLN) {
- lat = this.lat0;
- }
- else {
- lat = asinz(cosz * this.sin_p12 + (p.y * sinz * this.cos_p12) / rh);
- con = Math.abs(this.lat0) - HALF_PI;
- if (Math.abs(con) <= EPSLN) {
- if (this.lat0 >= 0) {
- lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
- }
- else {
- lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
- }
- }
- else {
- /*con = cosz - this.sin_p12 * Math.sin(lat);
- if ((Math.abs(con) < EPSLN) && (Math.abs(p.x) < EPSLN)) {
- //no-op, just keep the lon value as is
- } else {
- var temp = Math.atan2((p.x * sinz * this.cos_p12), (con * rh));
- lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz * this.cos_p12), (con * rh)));
- }*/
- lon = adjust_lon(this.long0 + Math.atan2(p.x * sinz, rh * this.cos_p12 * cosz - p.y * this.sin_p12 * sinz));
- }
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- else {
- e0 = e0fn(this.es);
- e1 = e1fn(this.es);
- e2 = e2fn(this.es);
- e3 = e3fn(this.es);
- if (Math.abs(this.sin_p12 - 1) <= EPSLN) {
- //North pole case
- Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
- rh = Math.sqrt(p.x * p.x + p.y * p.y);
- M = Mlp - rh;
- lat = imlfn(M / this.a, e0, e1, e2, e3);
- lon = adjust_lon(this.long0 + Math.atan2(p.x, - 1 * p.y));
- p.x = lon;
- p.y = lat;
- return p;
- }
- else if (Math.abs(this.sin_p12 + 1) <= EPSLN) {
- //South pole case
- Mlp = this.a * mlfn(e0, e1, e2, e3, HALF_PI);
- rh = Math.sqrt(p.x * p.x + p.y * p.y);
- M = rh - Mlp;
- lat = imlfn(M / this.a, e0, e1, e2, e3);
- lon = adjust_lon(this.long0 + Math.atan2(p.x, p.y));
- p.x = lon;
- p.y = lat;
- return p;
- }
- else {
- //default case
- rh = Math.sqrt(p.x * p.x + p.y * p.y);
- Az = Math.atan2(p.x, p.y);
- N1 = gN(this.a, this.e, this.sin_p12);
- cosAz = Math.cos(Az);
- tmp = this.e * this.cos_p12 * cosAz;
- A = -tmp * tmp / (1 - this.es);
- B = 3 * this.es * (1 - A) * this.sin_p12 * this.cos_p12 * cosAz / (1 - this.es);
- D = rh / N1;
- Ee = D - A * (1 + A) * Math.pow(D, 3) / 6 - B * (1 + 3 * A) * Math.pow(D, 4) / 24;
- F = 1 - A * Ee * Ee / 2 - D * Ee * Ee * Ee / 6;
- psi = Math.asin(this.sin_p12 * Math.cos(Ee) + this.cos_p12 * Math.sin(Ee) * cosAz);
- lon = adjust_lon(this.long0 + Math.asin(Math.sin(Az) * Math.sin(Ee) / Math.cos(psi)));
- sinpsi = Math.sin(psi);
- lat = Math.atan2((sinpsi - this.es * F * this.sin_p12) * Math.tan(psi), sinpsi * (1 - this.es));
- p.x = lon;
- p.y = lat;
- return p;
- }
- }
- }
- var names$26 = ["Azimuthal_Equidistant", "aeqd"];
- var aeqd = {
- init: init$25,
- forward: forward$24,
- inverse: inverse$24,
- names: names$26
- };
- function init$26() {
- //double temp; /* temporary variable */
- /* Place parameters in static storage for common use
- -------------------------------------------------*/
- this.sin_p14 = Math.sin(this.lat0);
- this.cos_p14 = Math.cos(this.lat0);
- }
- /* Orthographic forward equations--mapping lat,long to x,y
- ---------------------------------------------------*/
- function forward$25(p) {
- var sinphi, cosphi; /* sin and cos value */
- var dlon; /* delta longitude value */
- var coslon; /* cos of longitude */
- var ksp; /* scale factor */
- var g, x, y;
- var lon = p.x;
- var lat = p.y;
- /* Forward equations
- -----------------*/
- dlon = adjust_lon(lon - this.long0);
- sinphi = Math.sin(lat);
- cosphi = Math.cos(lat);
- coslon = Math.cos(dlon);
- g = this.sin_p14 * sinphi + this.cos_p14 * cosphi * coslon;
- ksp = 1;
- if ((g > 0) || (Math.abs(g) <= EPSLN)) {
- x = this.a * ksp * cosphi * Math.sin(dlon);
- y = this.y0 + this.a * ksp * (this.cos_p14 * sinphi - this.sin_p14 * cosphi * coslon);
- }
- p.x = x;
- p.y = y;
- return p;
- }
- function inverse$25(p) {
- var rh; /* height above ellipsoid */
- var z; /* angle */
- var sinz, cosz; /* sin of z and cos of z */
- var con;
- var lon, lat;
- /* Inverse equations
- -----------------*/
- p.x -= this.x0;
- p.y -= this.y0;
- rh = Math.sqrt(p.x * p.x + p.y * p.y);
- z = asinz(rh / this.a);
- sinz = Math.sin(z);
- cosz = Math.cos(z);
- lon = this.long0;
- if (Math.abs(rh) <= EPSLN) {
- lat = this.lat0;
- p.x = lon;
- p.y = lat;
- return p;
- }
- lat = asinz(cosz * this.sin_p14 + (p.y * sinz * this.cos_p14) / rh);
- con = Math.abs(this.lat0) - HALF_PI;
- if (Math.abs(con) <= EPSLN) {
- if (this.lat0 >= 0) {
- lon = adjust_lon(this.long0 + Math.atan2(p.x, - p.y));
- }
- else {
- lon = adjust_lon(this.long0 - Math.atan2(-p.x, p.y));
- }
- p.x = lon;
- p.y = lat;
- return p;
- }
- lon = adjust_lon(this.long0 + Math.atan2((p.x * sinz), rh * this.cos_p14 * cosz - p.y * this.sin_p14 * sinz));
- p.x = lon;
- p.y = lat;
- return p;
- }
- var names$27 = ["ortho"];
- var ortho = {
- init: init$26,
- forward: forward$25,
- inverse: inverse$25,
- names: names$27
- };
- // QSC projection rewritten from the original PROJ4
- // https://github.com/OSGeo/proj.4/blob/master/src/PJ_qsc.c
- /* constants */
- var FACE_ENUM = {
- FRONT: 1,
- RIGHT: 2,
- BACK: 3,
- LEFT: 4,
- TOP: 5,
- BOTTOM: 6
- };
- var AREA_ENUM = {
- AREA_0: 1,
- AREA_1: 2,
- AREA_2: 3,
- AREA_3: 4
- };
- function init$27() {
- this.x0 = this.x0 || 0;
- this.y0 = this.y0 || 0;
- this.lat0 = this.lat0 || 0;
- this.long0 = this.long0 || 0;
- this.lat_ts = this.lat_ts || 0;
- this.title = this.title || "Quadrilateralized Spherical Cube";
- /* Determine the cube face from the center of projection. */
- if (this.lat0 >= HALF_PI - FORTPI / 2.0) {
- this.face = FACE_ENUM.TOP;
- } else if (this.lat0 <= -(HALF_PI - FORTPI / 2.0)) {
- this.face = FACE_ENUM.BOTTOM;
- } else if (Math.abs(this.long0) <= FORTPI) {
- this.face = FACE_ENUM.FRONT;
- } else if (Math.abs(this.long0) <= HALF_PI + FORTPI) {
- this.face = this.long0 > 0.0 ? FACE_ENUM.RIGHT : FACE_ENUM.LEFT;
- } else {
- this.face = FACE_ENUM.BACK;
- }
- /* Fill in useful values for the ellipsoid <-> sphere shift
- * described in [LK12]. */
- if (this.es !== 0) {
- this.one_minus_f = 1 - (this.a - this.b) / this.a;
- this.one_minus_f_squared = this.one_minus_f * this.one_minus_f;
- }
- }
- // QSC forward equations--mapping lat,long to x,y
- // -----------------------------------------------------------------
- function forward$26(p) {
- var xy = {x: 0, y: 0};
- var lat, lon;
- var theta, phi;
- var t, mu;
- /* nu; */
- var area = {value: 0};
- // move lon according to projection's lon
- p.x -= this.long0;
- /* Convert the geodetic latitude to a geocentric latitude.
- * This corresponds to the shift from the ellipsoid to the sphere
- * described in [LK12]. */
- if (this.es !== 0) {//if (P->es != 0) {
- lat = Math.atan(this.one_minus_f_squared * Math.tan(p.y));
- } else {
- lat = p.y;
- }
- /* Convert the input lat, lon into theta, phi as used by QSC.
- * This depends on the cube face and the area on it.
- * For the top and bottom face, we can compute theta and phi
- * directly from phi, lam. For the other faces, we must use
- * unit sphere cartesian coordinates as an intermediate step. */
- lon = p.x; //lon = lp.lam;
- if (this.face === FACE_ENUM.TOP) {
- phi = HALF_PI - lat;
- if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
- area.value = AREA_ENUM.AREA_0;
- theta = lon - HALF_PI;
- } else if (lon > HALF_PI + FORTPI || lon <= -(HALF_PI + FORTPI)) {
- area.value = AREA_ENUM.AREA_1;
- theta = (lon > 0.0 ? lon - SPI : lon + SPI);
- } else if (lon > -(HALF_PI + FORTPI) && lon <= -FORTPI) {
- area.value = AREA_ENUM.AREA_2;
- theta = lon + HALF_PI;
- } else {
- area.value = AREA_ENUM.AREA_3;
- theta = lon;
- }
- } else if (this.face === FACE_ENUM.BOTTOM) {
- phi = HALF_PI + lat;
- if (lon >= FORTPI && lon <= HALF_PI + FORTPI) {
- area.value = AREA_ENUM.AREA_0;
- theta = -lon + HALF_PI;
- } else if (lon < FORTPI && lon >= -FORTPI) {
- area.value = AREA_ENUM.AREA_1;
- theta = -lon;
- } else if (lon < -FORTPI && lon >= -(HALF_PI + FORTPI)) {
- area.value = AREA_ENUM.AREA_2;
- theta = -lon - HALF_PI;
- } else {
- area.value = AREA_ENUM.AREA_3;
- theta = (lon > 0.0 ? -lon + SPI : -lon - SPI);
- }
- } else {
- var q, r, s;
- var sinlat, coslat;
- var sinlon, coslon;
- if (this.face === FACE_ENUM.RIGHT) {
- lon = qsc_shift_lon_origin(lon, +HALF_PI);
- } else if (this.face === FACE_ENUM.BACK) {
- lon = qsc_shift_lon_origin(lon, +SPI);
- } else if (this.face === FACE_ENUM.LEFT) {
- lon = qsc_shift_lon_origin(lon, -HALF_PI);
- }
- sinlat = Math.sin(lat);
- coslat = Math.cos(lat);
- sinlon = Math.sin(lon);
- coslon = Math.cos(lon);
- q = coslat * coslon;
- r = coslat * sinlon;
- s = sinlat;
- if (this.face === FACE_ENUM.FRONT) {
- phi = Math.acos(q);
- theta = qsc_fwd_equat_face_theta(phi, s, r, area);
- } else if (this.face === FACE_ENUM.RIGHT) {
- phi = Math.acos(r);
- theta = qsc_fwd_equat_face_theta(phi, s, -q, area);
- } else if (this.face === FACE_ENUM.BACK) {
- phi = Math.acos(-q);
- theta = qsc_fwd_equat_face_theta(phi, s, -r, area);
- } else if (this.face === FACE_ENUM.LEFT) {
- phi = Math.acos(-r);
- theta = qsc_fwd_equat_face_theta(phi, s, q, area);
- } else {
- /* Impossible */
- phi = theta = 0;
- area.value = AREA_ENUM.AREA_0;
- }
- }
- /* Compute mu and nu for the area of definition.
- * For mu, see Eq. (3-21) in [OL76], but note the typos:
- * compare with Eq. (3-14). For nu, see Eq. (3-38). */
- mu = Math.atan((12 / SPI) * (theta + Math.acos(Math.sin(theta) * Math.cos(FORTPI)) - HALF_PI));
- t = Math.sqrt((1 - Math.cos(phi)) / (Math.cos(mu) * Math.cos(mu)) / (1 - Math.cos(Math.atan(1 / Math.cos(theta)))));
- /* Apply the result to the real area. */
- if (area.value === AREA_ENUM.AREA_1) {
- mu += HALF_PI;
- } else if (area.value === AREA_ENUM.AREA_2) {
- mu += SPI;
- } else if (area.value === AREA_ENUM.AREA_3) {
- mu += 1.5 * SPI;
- }
- /* Now compute x, y from mu and nu */
- xy.x = t * Math.cos(mu);
- xy.y = t * Math.sin(mu);
- xy.x = xy.x * this.a + this.x0;
- xy.y = xy.y * this.a + this.y0;
- p.x = xy.x;
- p.y = xy.y;
- return p;
- }
- // QSC inverse equations--mapping x,y to lat/long
- // -----------------------------------------------------------------
- function inverse$26(p) {
- var lp = {lam: 0, phi: 0};
- var mu, nu, cosmu, tannu;
- var tantheta, theta, cosphi, phi;
- var t;
- var area = {value: 0};
- /* de-offset */
- p.x = (p.x - this.x0) / this.a;
- p.y = (p.y - this.y0) / this.a;
- /* Convert the input x, y to the mu and nu angles as used by QSC.
- * This depends on the area of the cube face. */
- nu = Math.atan(Math.sqrt(p.x * p.x + p.y * p.y));
- mu = Math.atan2(p.y, p.x);
- if (p.x >= 0.0 && p.x >= Math.abs(p.y)) {
- area.value = AREA_ENUM.AREA_0;
- } else if (p.y >= 0.0 && p.y >= Math.abs(p.x)) {
- area.value = AREA_ENUM.AREA_1;
- mu -= HALF_PI;
- } else if (p.x < 0.0 && -p.x >= Math.abs(p.y)) {
- area.value = AREA_ENUM.AREA_2;
- mu = (mu < 0.0 ? mu + SPI : mu - SPI);
- } else {
- area.value = AREA_ENUM.AREA_3;
- mu += HALF_PI;
- }
- /* Compute phi and theta for the area of definition.
- * The inverse projection is not described in the original paper, but some
- * good hints can be found here (as of 2011-12-14):
- * http://fits.gsfc.nasa.gov/fitsbits/saf.93/saf.9302
- * (search for "Message-Id: <9302181759.AA25477 at fits.cv.nrao.edu>") */
- t = (SPI / 12) * Math.tan(mu);
- tantheta = Math.sin(t) / (Math.cos(t) - (1 / Math.sqrt(2)));
- theta = Math.atan(tantheta);
- cosmu = Math.cos(mu);
- tannu = Math.tan(nu);
- cosphi = 1 - cosmu * cosmu * tannu * tannu * (1 - Math.cos(Math.atan(1 / Math.cos(theta))));
- if (cosphi < -1) {
- cosphi = -1;
- } else if (cosphi > +1) {
- cosphi = +1;
- }
- /* Apply the result to the real area on the cube face.
- * For the top and bottom face, we can compute phi and lam directly.
- * For the other faces, we must use unit sphere cartesian coordinates
- * as an intermediate step. */
- if (this.face === FACE_ENUM.TOP) {
- phi = Math.acos(cosphi);
- lp.phi = HALF_PI - phi;
- if (area.value === AREA_ENUM.AREA_0) {
- lp.lam = theta + HALF_PI;
- } else if (area.value === AREA_ENUM.AREA_1) {
- lp.lam = (theta < 0.0 ? theta + SPI : theta - SPI);
- } else if (area.value === AREA_ENUM.AREA_2) {
- lp.lam = theta - HALF_PI;
- } else /* area.value == AREA_ENUM.AREA_3 */ {
- lp.lam = theta;
- }
- } else if (this.face === FACE_ENUM.BOTTOM) {
- phi = Math.acos(cosphi);
- lp.phi = phi - HALF_PI;
- if (area.value === AREA_ENUM.AREA_0) {
- lp.lam = -theta + HALF_PI;
- } else if (area.value === AREA_ENUM.AREA_1) {
- lp.lam = -theta;
- } else if (area.value === AREA_ENUM.AREA_2) {
- lp.lam = -theta - HALF_PI;
- } else /* area.value == AREA_ENUM.AREA_3 */ {
- lp.lam = (theta < 0.0 ? -theta - SPI : -theta + SPI);
- }
- } else {
- /* Compute phi and lam via cartesian unit sphere coordinates. */
- var q, r, s;
- q = cosphi;
- t = q * q;
- if (t >= 1) {
- s = 0;
- } else {
- s = Math.sqrt(1 - t) * Math.sin(theta);
- }
- t += s * s;
- if (t >= 1) {
- r = 0;
- } else {
- r = Math.sqrt(1 - t);
- }
- /* Rotate q,r,s into the correct area. */
- if (area.value === AREA_ENUM.AREA_1) {
- t = r;
- r = -s;
- s = t;
- } else if (area.value === AREA_ENUM.AREA_2) {
- r = -r;
- s = -s;
- } else if (area.value === AREA_ENUM.AREA_3) {
- t = r;
- r = s;
- s = -t;
- }
- /* Rotate q,r,s into the correct cube face. */
- if (this.face === FACE_ENUM.RIGHT) {
- t = q;
- q = -r;
- r = t;
- } else if (this.face === FACE_ENUM.BACK) {
- q = -q;
- r = -r;
- } else if (this.face === FACE_ENUM.LEFT) {
- t = q;
- q = r;
- r = -t;
- }
- /* Now compute phi and lam from the unit sphere coordinates. */
- lp.phi = Math.acos(-s) - HALF_PI;
- lp.lam = Math.atan2(r, q);
- if (this.face === FACE_ENUM.RIGHT) {
- lp.lam = qsc_shift_lon_origin(lp.lam, -HALF_PI);
- } else if (this.face === FACE_ENUM.BACK) {
- lp.lam = qsc_shift_lon_origin(lp.lam, -SPI);
- } else if (this.face === FACE_ENUM.LEFT) {
- lp.lam = qsc_shift_lon_origin(lp.lam, +HALF_PI);
- }
- }
- /* Apply the shift from the sphere to the ellipsoid as described
- * in [LK12]. */
- if (this.es !== 0) {
- var invert_sign;
- var tanphi, xa;
- invert_sign = (lp.phi < 0 ? 1 : 0);
- tanphi = Math.tan(lp.phi);
- xa = this.b / Math.sqrt(tanphi * tanphi + this.one_minus_f_squared);
- lp.phi = Math.atan(Math.sqrt(this.a * this.a - xa * xa) / (this.one_minus_f * xa));
- if (invert_sign) {
- lp.phi = -lp.phi;
- }
- }
- lp.lam += this.long0;
- p.x = lp.lam;
- p.y = lp.phi;
- return p;
- }
- /* Helper function for forward projection: compute the theta angle
- * and determine the area number. */
- function qsc_fwd_equat_face_theta(phi, y, x, area) {
- var theta;
- if (phi < EPSLN) {
- area.value = AREA_ENUM.AREA_0;
- theta = 0.0;
- } else {
- theta = Math.atan2(y, x);
- if (Math.abs(theta) <= FORTPI) {
- area.value = AREA_ENUM.AREA_0;
- } else if (theta > FORTPI && theta <= HALF_PI + FORTPI) {
- area.value = AREA_ENUM.AREA_1;
- theta -= HALF_PI;
- } else if (theta > HALF_PI + FORTPI || theta <= -(HALF_PI + FORTPI)) {
- area.value = AREA_ENUM.AREA_2;
- theta = (theta >= 0.0 ? theta - SPI : theta + SPI);
- } else {
- area.value = AREA_ENUM.AREA_3;
- theta += HALF_PI;
- }
- }
- return theta;
- }
- /* Helper function: shift the longitude. */
- function qsc_shift_lon_origin(lon, offset) {
- var slon = lon + offset;
- if (slon < -SPI) {
- slon += TWO_PI;
- } else if (slon > +SPI) {
- slon -= TWO_PI;
- }
- return slon;
- }
- var names$28 = ["Quadrilateralized Spherical Cube", "Quadrilateralized_Spherical_Cube", "qsc"];
- var qsc = {
- init: init$27,
- forward: forward$26,
- inverse: inverse$26,
- names: names$28
- };
- // Robinson projection
- // Based on https://github.com/OSGeo/proj.4/blob/master/src/PJ_robin.c
- // Polynomial coeficients from http://article.gmane.org/gmane.comp.gis.proj-4.devel/6039
- var COEFS_X = [
- [1.0000, 2.2199e-17, -7.15515e-05, 3.1103e-06],
- [0.9986, -0.000482243, -2.4897e-05, -1.3309e-06],
- [0.9954, -0.00083103, -4.48605e-05, -9.86701e-07],
- [0.9900, -0.00135364, -5.9661e-05, 3.6777e-06],
- [0.9822, -0.00167442, -4.49547e-06, -5.72411e-06],
- [0.9730, -0.00214868, -9.03571e-05, 1.8736e-08],
- [0.9600, -0.00305085, -9.00761e-05, 1.64917e-06],
- [0.9427, -0.00382792, -6.53386e-05, -2.6154e-06],
- [0.9216, -0.00467746, -0.00010457, 4.81243e-06],
- [0.8962, -0.00536223, -3.23831e-05, -5.43432e-06],
- [0.8679, -0.00609363, -0.000113898, 3.32484e-06],
- [0.8350, -0.00698325, -6.40253e-05, 9.34959e-07],
- [0.7986, -0.00755338, -5.00009e-05, 9.35324e-07],
- [0.7597, -0.00798324, -3.5971e-05, -2.27626e-06],
- [0.7186, -0.00851367, -7.01149e-05, -8.6303e-06],
- [0.6732, -0.00986209, -0.000199569, 1.91974e-05],
- [0.6213, -0.010418, 8.83923e-05, 6.24051e-06],
- [0.5722, -0.00906601, 0.000182, 6.24051e-06],
- [0.5322, -0.00677797, 0.000275608, 6.24051e-06]
- ];
- var COEFS_Y = [
- [-5.20417e-18, 0.0124, 1.21431e-18, -8.45284e-11],
- [0.0620, 0.0124, -1.26793e-09, 4.22642e-10],
- [0.1240, 0.0124, 5.07171e-09, -1.60604e-09],
- [0.1860, 0.0123999, -1.90189e-08, 6.00152e-09],
- [0.2480, 0.0124002, 7.10039e-08, -2.24e-08],
- [0.3100, 0.0123992, -2.64997e-07, 8.35986e-08],
- [0.3720, 0.0124029, 9.88983e-07, -3.11994e-07],
- [0.4340, 0.0123893, -3.69093e-06, -4.35621e-07],
- [0.4958, 0.0123198, -1.02252e-05, -3.45523e-07],
- [0.5571, 0.0121916, -1.54081e-05, -5.82288e-07],
- [0.6176, 0.0119938, -2.41424e-05, -5.25327e-07],
- [0.6769, 0.011713, -3.20223e-05, -5.16405e-07],
- [0.7346, 0.0113541, -3.97684e-05, -6.09052e-07],
- [0.7903, 0.0109107, -4.89042e-05, -1.04739e-06],
- [0.8435, 0.0103431, -6.4615e-05, -1.40374e-09],
- [0.8936, 0.00969686, -6.4636e-05, -8.547e-06],
- [0.9394, 0.00840947, -0.000192841, -4.2106e-06],
- [0.9761, 0.00616527, -0.000256, -4.2106e-06],
- [1.0000, 0.00328947, -0.000319159, -4.2106e-06]
- ];
- var FXC = 0.8487;
- var FYC = 1.3523;
- var C1 = R2D/5; // rad to 5-degree interval
- var RC1 = 1/C1;
- var NODES = 18;
- var poly3_val = function(coefs, x) {
- return coefs[0] + x * (coefs[1] + x * (coefs[2] + x * coefs[3]));
- };
- var poly3_der = function(coefs, x) {
- return coefs[1] + x * (2 * coefs[2] + x * 3 * coefs[3]);
- };
- function newton_rapshon(f_df, start, max_err, iters) {
- var x = start;
- for (; iters; --iters) {
- var upd = f_df(x);
- x -= upd;
- if (Math.abs(upd) < max_err) {
- break;
- }
- }
- return x;
- }
- function init$28() {
- this.x0 = this.x0 || 0;
- this.y0 = this.y0 || 0;
- this.long0 = this.long0 || 0;
- this.es = 0;
- this.title = this.title || "Robinson";
- }
- function forward$27(ll) {
- var lon = adjust_lon(ll.x - this.long0);
- var dphi = Math.abs(ll.y);
- var i = Math.floor(dphi * C1);
- if (i < 0) {
- i = 0;
- } else if (i >= NODES) {
- i = NODES - 1;
- }
- dphi = R2D * (dphi - RC1 * i);
- var xy = {
- x: poly3_val(COEFS_X[i], dphi) * lon,
- y: poly3_val(COEFS_Y[i], dphi)
- };
- if (ll.y < 0) {
- xy.y = -xy.y;
- }
- xy.x = xy.x * this.a * FXC + this.x0;
- xy.y = xy.y * this.a * FYC + this.y0;
- return xy;
- }
- function inverse$27(xy) {
- var ll = {
- x: (xy.x - this.x0) / (this.a * FXC),
- y: Math.abs(xy.y - this.y0) / (this.a * FYC)
- };
- if (ll.y >= 1) { // pathologic case
- ll.x /= COEFS_X[NODES][0];
- ll.y = xy.y < 0 ? -HALF_PI : HALF_PI;
- } else {
- // find table interval
- var i = Math.floor(ll.y * NODES);
- if (i < 0) {
- i = 0;
- } else if (i >= NODES) {
- i = NODES - 1;
- }
- for (;;) {
- if (COEFS_Y[i][0] > ll.y) {
- --i;
- } else if (COEFS_Y[i+1][0] <= ll.y) {
- ++i;
- } else {
- break;
- }
- }
- // linear interpolation in 5 degree interval
- var coefs = COEFS_Y[i];
- var t = 5 * (ll.y - coefs[0]) / (COEFS_Y[i+1][0] - coefs[0]);
- // find t so that poly3_val(coefs, t) = ll.y
- t = newton_rapshon(function(x) {
- return (poly3_val(coefs, x) - ll.y) / poly3_der(coefs, x);
- }, t, EPSLN, 100);
- ll.x /= poly3_val(COEFS_X[i], t);
- ll.y = (5 * i + t) * D2R;
- if (xy.y < 0) {
- ll.y = -ll.y;
- }
- }
- ll.x = adjust_lon(ll.x + this.long0);
- return ll;
- }
- var names$29 = ["Robinson", "robin"];
- var robin = {
- init: init$28,
- forward: forward$27,
- inverse: inverse$27,
- names: names$29
- };
- function init$29() {
- this.name = 'geocent';
- }
- function forward$28(p) {
- var point = geodeticToGeocentric(p, this.es, this.a);
- return point;
- }
- function inverse$28(p) {
- var point = geocentricToGeodetic(p, this.es, this.a, this.b);
- return point;
- }
- var names$30 = ["Geocentric", 'geocentric', "geocent", "Geocent"];
- var geocent = {
- init: init$29,
- forward: forward$28,
- inverse: inverse$28,
- names: names$30
- };
- var includedProjections = function(proj4){
- proj4.Proj.projections.add(tmerc);
- proj4.Proj.projections.add(etmerc);
- proj4.Proj.projections.add(utm);
- proj4.Proj.projections.add(sterea);
- proj4.Proj.projections.add(stere);
- proj4.Proj.projections.add(somerc);
- proj4.Proj.projections.add(omerc);
- proj4.Proj.projections.add(lcc);
- proj4.Proj.projections.add(krovak);
- proj4.Proj.projections.add(cass);
- proj4.Proj.projections.add(laea);
- proj4.Proj.projections.add(aea);
- proj4.Proj.projections.add(gnom);
- proj4.Proj.projections.add(cea);
- proj4.Proj.projections.add(eqc);
- proj4.Proj.projections.add(poly);
- proj4.Proj.projections.add(nzmg);
- proj4.Proj.projections.add(mill);
- proj4.Proj.projections.add(sinu);
- proj4.Proj.projections.add(moll);
- proj4.Proj.projections.add(eqdc);
- proj4.Proj.projections.add(vandg);
- proj4.Proj.projections.add(aeqd);
- proj4.Proj.projections.add(ortho);
- proj4.Proj.projections.add(qsc);
- proj4.Proj.projections.add(robin);
- proj4.Proj.projections.add(geocent);
- };
- proj4$1.defaultDatum = 'WGS84'; //default datum
- proj4$1.Proj = Projection;
- proj4$1.WGS84 = new proj4$1.Proj('WGS84');
- proj4$1.Point = Point;
- proj4$1.toPoint = toPoint;
- proj4$1.defs = defs;
- proj4$1.transform = transform;
- proj4$1.mgrs = mgrs;
- proj4$1.version = '2.6.2';
- includedProjections(proj4$1);
- return proj4$1;
- })));
|