12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631 |
- /* This file is automatically rebuilt by the Cesium build process. */
- define(['exports', './defined-26bd4a03', './Check-da037458', './defaultValue-f2e68450', './Math-fa6e45cb', './Cartesian2-2a723276', './Transforms-65aba0a4'], function (exports, defined, Check, defaultValue, _Math, Cartesian2, Transforms) { 'use strict';
- /**
- * Defines functions for 2nd order polynomial functions of one variable with only real coefficients.
- *
- * @exports QuadraticRealPolynomial
- */
- var QuadraticRealPolynomial = {};
- /**
- * Provides the discriminant of the quadratic equation from the supplied coefficients.
- *
- * @param {Number} a The coefficient of the 2nd order monomial.
- * @param {Number} b The coefficient of the 1st order monomial.
- * @param {Number} c The coefficient of the 0th order monomial.
- * @returns {Number} The value of the discriminant.
- */
- QuadraticRealPolynomial.computeDiscriminant = function(a, b, c) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new Check.DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new Check.DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new Check.DeveloperError('c is a required number.');
- }
- //>>includeEnd('debug');
- var discriminant = b * b - 4.0 * a * c;
- return discriminant;
- };
- function addWithCancellationCheck(left, right, tolerance) {
- var difference = left + right;
- if ((_Math.CesiumMath.sign(left) !== _Math.CesiumMath.sign(right)) &&
- Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) {
- return 0.0;
- }
- return difference;
- }
- /**
- * Provides the real valued roots of the quadratic polynomial with the provided coefficients.
- *
- * @param {Number} a The coefficient of the 2nd order monomial.
- * @param {Number} b The coefficient of the 1st order monomial.
- * @param {Number} c The coefficient of the 0th order monomial.
- * @returns {Number[]} The real valued roots.
- */
- QuadraticRealPolynomial.computeRealRoots = function(a, b, c) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new Check.DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new Check.DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new Check.DeveloperError('c is a required number.');
- }
- //>>includeEnd('debug');
- var ratio;
- if (a === 0.0) {
- if (b === 0.0) {
- // Constant function: c = 0.
- return [];
- }
- // Linear function: b * x + c = 0.
- return [-c / b];
- } else if (b === 0.0) {
- if (c === 0.0) {
- // 2nd order monomial: a * x^2 = 0.
- return [0.0, 0.0];
- }
- var cMagnitude = Math.abs(c);
- var aMagnitude = Math.abs(a);
- if ((cMagnitude < aMagnitude) && (cMagnitude / aMagnitude < _Math.CesiumMath.EPSILON14)) { // c ~= 0.0.
- // 2nd order monomial: a * x^2 = 0.
- return [0.0, 0.0];
- } else if ((cMagnitude > aMagnitude) && (aMagnitude / cMagnitude < _Math.CesiumMath.EPSILON14)) { // a ~= 0.0.
- // Constant function: c = 0.
- return [];
- }
- // a * x^2 + c = 0
- ratio = -c / a;
- if (ratio < 0.0) {
- // Both roots are complex.
- return [];
- }
- // Both roots are real.
- var root = Math.sqrt(ratio);
- return [-root, root];
- } else if (c === 0.0) {
- // a * x^2 + b * x = 0
- ratio = -b / a;
- if (ratio < 0.0) {
- return [ratio, 0.0];
- }
- return [0.0, ratio];
- }
- // a * x^2 + b * x + c = 0
- var b2 = b * b;
- var four_ac = 4.0 * a * c;
- var radicand = addWithCancellationCheck(b2, -four_ac, _Math.CesiumMath.EPSILON14);
- if (radicand < 0.0) {
- // Both roots are complex.
- return [];
- }
- var q = -0.5 * addWithCancellationCheck(b, _Math.CesiumMath.sign(b) * Math.sqrt(radicand), _Math.CesiumMath.EPSILON14);
- if (b > 0.0) {
- return [q / a, c / q];
- }
- return [c / q, q / a];
- };
- /**
- * Defines functions for 3rd order polynomial functions of one variable with only real coefficients.
- *
- * @exports CubicRealPolynomial
- */
- var CubicRealPolynomial = {};
- /**
- * Provides the discriminant of the cubic equation from the supplied coefficients.
- *
- * @param {Number} a The coefficient of the 3rd order monomial.
- * @param {Number} b The coefficient of the 2nd order monomial.
- * @param {Number} c The coefficient of the 1st order monomial.
- * @param {Number} d The coefficient of the 0th order monomial.
- * @returns {Number} The value of the discriminant.
- */
- CubicRealPolynomial.computeDiscriminant = function(a, b, c, d) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new Check.DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new Check.DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new Check.DeveloperError('c is a required number.');
- }
- if (typeof d !== 'number') {
- throw new Check.DeveloperError('d is a required number.');
- }
- //>>includeEnd('debug');
- var a2 = a * a;
- var b2 = b * b;
- var c2 = c * c;
- var d2 = d * d;
- var discriminant = 18.0 * a * b * c * d + b2 * c2 - 27.0 * a2 * d2 - 4.0 * (a * c2 * c + b2 * b * d);
- return discriminant;
- };
- function computeRealRoots(a, b, c, d) {
- var A = a;
- var B = b / 3.0;
- var C = c / 3.0;
- var D = d;
- var AC = A * C;
- var BD = B * D;
- var B2 = B * B;
- var C2 = C * C;
- var delta1 = A * C - B2;
- var delta2 = A * D - B * C;
- var delta3 = B * D - C2;
- var discriminant = 4.0 * delta1 * delta3 - delta2 * delta2;
- var temp;
- var temp1;
- if (discriminant < 0.0) {
- var ABar;
- var CBar;
- var DBar;
- if (B2 * BD >= AC * C2) {
- ABar = A;
- CBar = delta1;
- DBar = -2.0 * B * delta1 + A * delta2;
- } else {
- ABar = D;
- CBar = delta3;
- DBar = -D * delta2 + 2.0 * C * delta3;
- }
- var s = (DBar < 0.0) ? -1.0 : 1.0; // This is not Math.Sign()!
- var temp0 = -s * Math.abs(ABar) * Math.sqrt(-discriminant);
- temp1 = -DBar + temp0;
- var x = temp1 / 2.0;
- var p = x < 0.0 ? -Math.pow(-x, 1.0 / 3.0) : Math.pow(x, 1.0 / 3.0);
- var q = (temp1 === temp0) ? -p : -CBar / p;
- temp = (CBar <= 0.0) ? p + q : -DBar / (p * p + q * q + CBar);
- if (B2 * BD >= AC * C2) {
- return [(temp - B) / A];
- }
- return [-D / (temp + C)];
- }
- var CBarA = delta1;
- var DBarA = -2.0 * B * delta1 + A * delta2;
- var CBarD = delta3;
- var DBarD = -D * delta2 + 2.0 * C * delta3;
- var squareRootOfDiscriminant = Math.sqrt(discriminant);
- var halfSquareRootOf3 = Math.sqrt(3.0) / 2.0;
- var theta = Math.abs(Math.atan2(A * squareRootOfDiscriminant, -DBarA) / 3.0);
- temp = 2.0 * Math.sqrt(-CBarA);
- var cosine = Math.cos(theta);
- temp1 = temp * cosine;
- var temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));
- var numeratorLarge = (temp1 + temp3 > 2.0 * B) ? temp1 - B : temp3 - B;
- var denominatorLarge = A;
- var root1 = numeratorLarge / denominatorLarge;
- theta = Math.abs(Math.atan2(D * squareRootOfDiscriminant, -DBarD) / 3.0);
- temp = 2.0 * Math.sqrt(-CBarD);
- cosine = Math.cos(theta);
- temp1 = temp * cosine;
- temp3 = temp * (-cosine / 2.0 - halfSquareRootOf3 * Math.sin(theta));
- var numeratorSmall = -D;
- var denominatorSmall = (temp1 + temp3 < 2.0 * C) ? temp1 + C : temp3 + C;
- var root3 = numeratorSmall / denominatorSmall;
- var E = denominatorLarge * denominatorSmall;
- var F = -numeratorLarge * denominatorSmall - denominatorLarge * numeratorSmall;
- var G = numeratorLarge * numeratorSmall;
- var root2 = (C * F - B * G) / (-B * F + C * E);
- if (root1 <= root2) {
- if (root1 <= root3) {
- if (root2 <= root3) {
- return [root1, root2, root3];
- }
- return [root1, root3, root2];
- }
- return [root3, root1, root2];
- }
- if (root1 <= root3) {
- return [root2, root1, root3];
- }
- if (root2 <= root3) {
- return [root2, root3, root1];
- }
- return [root3, root2, root1];
- }
- /**
- * Provides the real valued roots of the cubic polynomial with the provided coefficients.
- *
- * @param {Number} a The coefficient of the 3rd order monomial.
- * @param {Number} b The coefficient of the 2nd order monomial.
- * @param {Number} c The coefficient of the 1st order monomial.
- * @param {Number} d The coefficient of the 0th order monomial.
- * @returns {Number[]} The real valued roots.
- */
- CubicRealPolynomial.computeRealRoots = function(a, b, c, d) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new Check.DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new Check.DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new Check.DeveloperError('c is a required number.');
- }
- if (typeof d !== 'number') {
- throw new Check.DeveloperError('d is a required number.');
- }
- //>>includeEnd('debug');
- var roots;
- var ratio;
- if (a === 0.0) {
- // Quadratic function: b * x^2 + c * x + d = 0.
- return QuadraticRealPolynomial.computeRealRoots(b, c, d);
- } else if (b === 0.0) {
- if (c === 0.0) {
- if (d === 0.0) {
- // 3rd order monomial: a * x^3 = 0.
- return [0.0, 0.0, 0.0];
- }
- // a * x^3 + d = 0
- ratio = -d / a;
- var root = (ratio < 0.0) ? -Math.pow(-ratio, 1.0 / 3.0) : Math.pow(ratio, 1.0 / 3.0);
- return [root, root, root];
- } else if (d === 0.0) {
- // x * (a * x^2 + c) = 0.
- roots = QuadraticRealPolynomial.computeRealRoots(a, 0, c);
- // Return the roots in ascending order.
- if (roots.Length === 0) {
- return [0.0];
- }
- return [roots[0], 0.0, roots[1]];
- }
- // Deflated cubic polynomial: a * x^3 + c * x + d= 0.
- return computeRealRoots(a, 0, c, d);
- } else if (c === 0.0) {
- if (d === 0.0) {
- // x^2 * (a * x + b) = 0.
- ratio = -b / a;
- if (ratio < 0.0) {
- return [ratio, 0.0, 0.0];
- }
- return [0.0, 0.0, ratio];
- }
- // a * x^3 + b * x^2 + d = 0.
- return computeRealRoots(a, b, 0, d);
- } else if (d === 0.0) {
- // x * (a * x^2 + b * x + c) = 0
- roots = QuadraticRealPolynomial.computeRealRoots(a, b, c);
- // Return the roots in ascending order.
- if (roots.length === 0) {
- return [0.0];
- } else if (roots[1] <= 0.0) {
- return [roots[0], roots[1], 0.0];
- } else if (roots[0] >= 0.0) {
- return [0.0, roots[0], roots[1]];
- }
- return [roots[0], 0.0, roots[1]];
- }
- return computeRealRoots(a, b, c, d);
- };
- /**
- * Defines functions for 4th order polynomial functions of one variable with only real coefficients.
- *
- * @exports QuarticRealPolynomial
- */
- var QuarticRealPolynomial = {};
- /**
- * Provides the discriminant of the quartic equation from the supplied coefficients.
- *
- * @param {Number} a The coefficient of the 4th order monomial.
- * @param {Number} b The coefficient of the 3rd order monomial.
- * @param {Number} c The coefficient of the 2nd order monomial.
- * @param {Number} d The coefficient of the 1st order monomial.
- * @param {Number} e The coefficient of the 0th order monomial.
- * @returns {Number} The value of the discriminant.
- */
- QuarticRealPolynomial.computeDiscriminant = function(a, b, c, d, e) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new Check.DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new Check.DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new Check.DeveloperError('c is a required number.');
- }
- if (typeof d !== 'number') {
- throw new Check.DeveloperError('d is a required number.');
- }
- if (typeof e !== 'number') {
- throw new Check.DeveloperError('e is a required number.');
- }
- //>>includeEnd('debug');
- var a2 = a * a;
- var a3 = a2 * a;
- var b2 = b * b;
- var b3 = b2 * b;
- var c2 = c * c;
- var c3 = c2 * c;
- var d2 = d * d;
- var d3 = d2 * d;
- var e2 = e * e;
- var e3 = e2 * e;
- var discriminant = (b2 * c2 * d2 - 4.0 * b3 * d3 - 4.0 * a * c3 * d2 + 18 * a * b * c * d3 - 27.0 * a2 * d2 * d2 + 256.0 * a3 * e3) +
- e * (18.0 * b3 * c * d - 4.0 * b2 * c3 + 16.0 * a * c2 * c2 - 80.0 * a * b * c2 * d - 6.0 * a * b2 * d2 + 144.0 * a2 * c * d2) +
- e2 * (144.0 * a * b2 * c - 27.0 * b2 * b2 - 128.0 * a2 * c2 - 192.0 * a2 * b * d);
- return discriminant;
- };
- function original(a3, a2, a1, a0) {
- var a3Squared = a3 * a3;
- var p = a2 - 3.0 * a3Squared / 8.0;
- var q = a1 - a2 * a3 / 2.0 + a3Squared * a3 / 8.0;
- var r = a0 - a1 * a3 / 4.0 + a2 * a3Squared / 16.0 - 3.0 * a3Squared * a3Squared / 256.0;
- // Find the roots of the cubic equations: h^6 + 2 p h^4 + (p^2 - 4 r) h^2 - q^2 = 0.
- var cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, 2.0 * p, p * p - 4.0 * r, -q * q);
- if (cubicRoots.length > 0) {
- var temp = -a3 / 4.0;
- // Use the largest positive root.
- var hSquared = cubicRoots[cubicRoots.length - 1];
- if (Math.abs(hSquared) < _Math.CesiumMath.EPSILON14) {
- // y^4 + p y^2 + r = 0.
- var roots = QuadraticRealPolynomial.computeRealRoots(1.0, p, r);
- if (roots.length === 2) {
- var root0 = roots[0];
- var root1 = roots[1];
- var y;
- if (root0 >= 0.0 && root1 >= 0.0) {
- var y0 = Math.sqrt(root0);
- var y1 = Math.sqrt(root1);
- return [temp - y1, temp - y0, temp + y0, temp + y1];
- } else if (root0 >= 0.0 && root1 < 0.0) {
- y = Math.sqrt(root0);
- return [temp - y, temp + y];
- } else if (root0 < 0.0 && root1 >= 0.0) {
- y = Math.sqrt(root1);
- return [temp - y, temp + y];
- }
- }
- return [];
- } else if (hSquared > 0.0) {
- var h = Math.sqrt(hSquared);
- var m = (p + hSquared - q / h) / 2.0;
- var n = (p + hSquared + q / h) / 2.0;
- // Now solve the two quadratic factors: (y^2 + h y + m)(y^2 - h y + n);
- var roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, h, m);
- var roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, -h, n);
- if (roots1.length !== 0) {
- roots1[0] += temp;
- roots1[1] += temp;
- if (roots2.length !== 0) {
- roots2[0] += temp;
- roots2[1] += temp;
- if (roots1[1] <= roots2[0]) {
- return [roots1[0], roots1[1], roots2[0], roots2[1]];
- } else if (roots2[1] <= roots1[0]) {
- return [roots2[0], roots2[1], roots1[0], roots1[1]];
- } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
- return [roots2[0], roots1[0], roots1[1], roots2[1]];
- } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
- return [roots1[0], roots2[0], roots2[1], roots1[1]];
- } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
- return [roots2[0], roots1[0], roots2[1], roots1[1]];
- }
- return [roots1[0], roots2[0], roots1[1], roots2[1]];
- }
- return roots1;
- }
- if (roots2.length !== 0) {
- roots2[0] += temp;
- roots2[1] += temp;
- return roots2;
- }
- return [];
- }
- }
- return [];
- }
- function neumark(a3, a2, a1, a0) {
- var a1Squared = a1 * a1;
- var a2Squared = a2 * a2;
- var a3Squared = a3 * a3;
- var p = -2.0 * a2;
- var q = a1 * a3 + a2Squared - 4.0 * a0;
- var r = a3Squared * a0 - a1 * a2 * a3 + a1Squared;
- var cubicRoots = CubicRealPolynomial.computeRealRoots(1.0, p, q, r);
- if (cubicRoots.length > 0) {
- // Use the most positive root
- var y = cubicRoots[0];
- var temp = (a2 - y);
- var tempSquared = temp * temp;
- var g1 = a3 / 2.0;
- var h1 = temp / 2.0;
- var m = tempSquared - 4.0 * a0;
- var mError = tempSquared + 4.0 * Math.abs(a0);
- var n = a3Squared - 4.0 * y;
- var nError = a3Squared + 4.0 * Math.abs(y);
- var g2;
- var h2;
- if (y < 0.0 || (m * nError < n * mError)) {
- var squareRootOfN = Math.sqrt(n);
- g2 = squareRootOfN / 2.0;
- h2 = squareRootOfN === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfN;
- } else {
- var squareRootOfM = Math.sqrt(m);
- g2 = squareRootOfM === 0.0 ? 0.0 : (a3 * h1 - a1) / squareRootOfM;
- h2 = squareRootOfM / 2.0;
- }
- var G;
- var g;
- if (g1 === 0.0 && g2 === 0.0) {
- G = 0.0;
- g = 0.0;
- } else if (_Math.CesiumMath.sign(g1) === _Math.CesiumMath.sign(g2)) {
- G = g1 + g2;
- g = y / G;
- } else {
- g = g1 - g2;
- G = y / g;
- }
- var H;
- var h;
- if (h1 === 0.0 && h2 === 0.0) {
- H = 0.0;
- h = 0.0;
- } else if (_Math.CesiumMath.sign(h1) === _Math.CesiumMath.sign(h2)) {
- H = h1 + h2;
- h = a0 / H;
- } else {
- h = h1 - h2;
- H = a0 / h;
- }
- // Now solve the two quadratic factors: (y^2 + G y + H)(y^2 + g y + h);
- var roots1 = QuadraticRealPolynomial.computeRealRoots(1.0, G, H);
- var roots2 = QuadraticRealPolynomial.computeRealRoots(1.0, g, h);
- if (roots1.length !== 0) {
- if (roots2.length !== 0) {
- if (roots1[1] <= roots2[0]) {
- return [roots1[0], roots1[1], roots2[0], roots2[1]];
- } else if (roots2[1] <= roots1[0]) {
- return [roots2[0], roots2[1], roots1[0], roots1[1]];
- } else if (roots1[0] >= roots2[0] && roots1[1] <= roots2[1]) {
- return [roots2[0], roots1[0], roots1[1], roots2[1]];
- } else if (roots2[0] >= roots1[0] && roots2[1] <= roots1[1]) {
- return [roots1[0], roots2[0], roots2[1], roots1[1]];
- } else if (roots1[0] > roots2[0] && roots1[0] < roots2[1]) {
- return [roots2[0], roots1[0], roots2[1], roots1[1]];
- }
- return [roots1[0], roots2[0], roots1[1], roots2[1]];
- }
- return roots1;
- }
- if (roots2.length !== 0) {
- return roots2;
- }
- }
- return [];
- }
- /**
- * Provides the real valued roots of the quartic polynomial with the provided coefficients.
- *
- * @param {Number} a The coefficient of the 4th order monomial.
- * @param {Number} b The coefficient of the 3rd order monomial.
- * @param {Number} c The coefficient of the 2nd order monomial.
- * @param {Number} d The coefficient of the 1st order monomial.
- * @param {Number} e The coefficient of the 0th order monomial.
- * @returns {Number[]} The real valued roots.
- */
- QuarticRealPolynomial.computeRealRoots = function(a, b, c, d, e) {
- //>>includeStart('debug', pragmas.debug);
- if (typeof a !== 'number') {
- throw new Check.DeveloperError('a is a required number.');
- }
- if (typeof b !== 'number') {
- throw new Check.DeveloperError('b is a required number.');
- }
- if (typeof c !== 'number') {
- throw new Check.DeveloperError('c is a required number.');
- }
- if (typeof d !== 'number') {
- throw new Check.DeveloperError('d is a required number.');
- }
- if (typeof e !== 'number') {
- throw new Check.DeveloperError('e is a required number.');
- }
- //>>includeEnd('debug');
- if (Math.abs(a) < _Math.CesiumMath.EPSILON15) {
- return CubicRealPolynomial.computeRealRoots(b, c, d, e);
- }
- var a3 = b / a;
- var a2 = c / a;
- var a1 = d / a;
- var a0 = e / a;
- var k = (a3 < 0.0) ? 1 : 0;
- k += (a2 < 0.0) ? k + 1 : k;
- k += (a1 < 0.0) ? k + 1 : k;
- k += (a0 < 0.0) ? k + 1 : k;
- switch (k) {
- case 0:
- return original(a3, a2, a1, a0);
- case 1:
- return neumark(a3, a2, a1, a0);
- case 2:
- return neumark(a3, a2, a1, a0);
- case 3:
- return original(a3, a2, a1, a0);
- case 4:
- return original(a3, a2, a1, a0);
- case 5:
- return neumark(a3, a2, a1, a0);
- case 6:
- return original(a3, a2, a1, a0);
- case 7:
- return original(a3, a2, a1, a0);
- case 8:
- return neumark(a3, a2, a1, a0);
- case 9:
- return original(a3, a2, a1, a0);
- case 10:
- return original(a3, a2, a1, a0);
- case 11:
- return neumark(a3, a2, a1, a0);
- case 12:
- return original(a3, a2, a1, a0);
- case 13:
- return original(a3, a2, a1, a0);
- case 14:
- return original(a3, a2, a1, a0);
- case 15:
- return original(a3, a2, a1, a0);
- default:
- return undefined;
- }
- };
- /**
- * Represents a ray that extends infinitely from the provided origin in the provided direction.
- * @alias Ray
- * @constructor
- *
- * @param {Cartesian3} [origin=Cartesian3.ZERO] The origin of the ray.
- * @param {Cartesian3} [direction=Cartesian3.ZERO] The direction of the ray.
- */
- function Ray(origin, direction) {
- direction = Cartesian2.Cartesian3.clone(defaultValue.defaultValue(direction, Cartesian2.Cartesian3.ZERO));
- if (!Cartesian2.Cartesian3.equals(direction, Cartesian2.Cartesian3.ZERO)) {
- Cartesian2.Cartesian3.normalize(direction, direction);
- }
- /**
- * The origin of the ray.
- * @type {Cartesian3}
- * @default {@link Cartesian3.ZERO}
- */
- this.origin = Cartesian2.Cartesian3.clone(defaultValue.defaultValue(origin, Cartesian2.Cartesian3.ZERO));
- /**
- * The direction of the ray.
- * @type {Cartesian3}
- */
- this.direction = direction;
- }
- /**
- * Duplicates a Ray instance.
- *
- * @param {Ray} ray The ray to duplicate.
- * @param {Ray} [result] The object onto which to store the result.
- * @returns {Ray} The modified result parameter or a new Ray instance if one was not provided. (Returns undefined if ray is undefined)
- */
- Ray.clone = function(ray, result) {
- if (!defined.defined(ray)) {
- return undefined;
- }
- if (!defined.defined(result)) {
- return new Ray(ray.origin, ray.direction);
- }
- result.origin = Cartesian2.Cartesian3.clone(ray.origin);
- result.direction = Cartesian2.Cartesian3.clone(ray.direction);
- return result;
- };
- /**
- * Computes the point along the ray given by r(t) = o + t*d,
- * where o is the origin of the ray and d is the direction.
- *
- * @param {Ray} ray The ray.
- * @param {Number} t A scalar value.
- * @param {Cartesian3} [result] The object in which the result will be stored.
- * @returns {Cartesian3} The modified result parameter, or a new instance if none was provided.
- *
- * @example
- * //Get the first intersection point of a ray and an ellipsoid.
- * var intersection = Cesium.IntersectionTests.rayEllipsoid(ray, ellipsoid);
- * var point = Cesium.Ray.getPoint(ray, intersection.start);
- */
- Ray.getPoint = function(ray, t, result) {
- //>>includeStart('debug', pragmas.debug);
- Check.Check.typeOf.object('ray', ray);
- Check.Check.typeOf.number('t', t);
- //>>includeEnd('debug');
- if (!defined.defined(result)) {
- result = new Cartesian2.Cartesian3();
- }
- result = Cartesian2.Cartesian3.multiplyByScalar(ray.direction, t, result);
- return Cartesian2.Cartesian3.add(ray.origin, result, result);
- };
- /**
- * Functions for computing the intersection between geometries such as rays, planes, triangles, and ellipsoids.
- *
- * @exports IntersectionTests
- * @namespace
- */
- var IntersectionTests = {};
- /**
- * Computes the intersection of a ray and a plane.
- *
- * @param {Ray} ray The ray.
- * @param {Plane} plane The plane.
- * @param {Cartesian3} [result] The object onto which to store the result.
- * @returns {Cartesian3} The intersection point or undefined if there is no intersections.
- */
- IntersectionTests.rayPlane = function(ray, plane, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(ray)) {
- throw new Check.DeveloperError('ray is required.');
- }
- if (!defined.defined(plane)) {
- throw new Check.DeveloperError('plane is required.');
- }
- //>>includeEnd('debug');
- if (!defined.defined(result)) {
- result = new Cartesian2.Cartesian3();
- }
- var origin = ray.origin;
- var direction = ray.direction;
- var normal = plane.normal;
- var denominator = Cartesian2.Cartesian3.dot(normal, direction);
- if (Math.abs(denominator) < _Math.CesiumMath.EPSILON15) {
- // Ray is parallel to plane. The ray may be in the polygon's plane.
- return undefined;
- }
- var t = (-plane.distance - Cartesian2.Cartesian3.dot(normal, origin)) / denominator;
- if (t < 0) {
- return undefined;
- }
- result = Cartesian2.Cartesian3.multiplyByScalar(direction, t, result);
- return Cartesian2.Cartesian3.add(origin, result, result);
- };
- var scratchEdge0 = new Cartesian2.Cartesian3();
- var scratchEdge1 = new Cartesian2.Cartesian3();
- var scratchPVec = new Cartesian2.Cartesian3();
- var scratchTVec = new Cartesian2.Cartesian3();
- var scratchQVec = new Cartesian2.Cartesian3();
- /**
- * Computes the intersection of a ray and a triangle as a parametric distance along the input ray.
- *
- * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf|
- * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore.
- *
- * @memberof IntersectionTests
- *
- * @param {Ray} ray The ray.
- * @param {Cartesian3} p0 The first vertex of the triangle.
- * @param {Cartesian3} p1 The second vertex of the triangle.
- * @param {Cartesian3} p2 The third vertex of the triangle.
- * @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle
- * and return undefined for intersections with the back face.
- * @returns {Number} The intersection as a parametric distance along the ray, or undefined if there is no intersection.
- */
- IntersectionTests.rayTriangleParametric = function(ray, p0, p1, p2, cullBackFaces) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(ray)) {
- throw new Check.DeveloperError('ray is required.');
- }
- if (!defined.defined(p0)) {
- throw new Check.DeveloperError('p0 is required.');
- }
- if (!defined.defined(p1)) {
- throw new Check.DeveloperError('p1 is required.');
- }
- if (!defined.defined(p2)) {
- throw new Check.DeveloperError('p2 is required.');
- }
- //>>includeEnd('debug');
- cullBackFaces = defaultValue.defaultValue(cullBackFaces, false);
- var origin = ray.origin;
- var direction = ray.direction;
- var edge0 = Cartesian2.Cartesian3.subtract(p1, p0, scratchEdge0);
- var edge1 = Cartesian2.Cartesian3.subtract(p2, p0, scratchEdge1);
- var p = Cartesian2.Cartesian3.cross(direction, edge1, scratchPVec);
- var det = Cartesian2.Cartesian3.dot(edge0, p);
- var tvec;
- var q;
- var u;
- var v;
- var t;
- if (cullBackFaces) {
- if (det < _Math.CesiumMath.EPSILON6) {
- return undefined;
- }
- tvec = Cartesian2.Cartesian3.subtract(origin, p0, scratchTVec);
- u = Cartesian2.Cartesian3.dot(tvec, p);
- if (u < 0.0 || u > det) {
- return undefined;
- }
- q = Cartesian2.Cartesian3.cross(tvec, edge0, scratchQVec);
- v = Cartesian2.Cartesian3.dot(direction, q);
- if (v < 0.0 || u + v > det) {
- return undefined;
- }
- t = Cartesian2.Cartesian3.dot(edge1, q) / det;
- } else {
- if (Math.abs(det) < _Math.CesiumMath.EPSILON6) {
- return undefined;
- }
- var invDet = 1.0 / det;
- tvec = Cartesian2.Cartesian3.subtract(origin, p0, scratchTVec);
- u = Cartesian2.Cartesian3.dot(tvec, p) * invDet;
- if (u < 0.0 || u > 1.0) {
- return undefined;
- }
- q = Cartesian2.Cartesian3.cross(tvec, edge0, scratchQVec);
- v = Cartesian2.Cartesian3.dot(direction, q) * invDet;
- if (v < 0.0 || u + v > 1.0) {
- return undefined;
- }
- t = Cartesian2.Cartesian3.dot(edge1, q) * invDet;
- }
- return t;
- };
- /**
- * Computes the intersection of a ray and a triangle as a Cartesian3 coordinate.
- *
- * Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf|
- * Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore.
- *
- * @memberof IntersectionTests
- *
- * @param {Ray} ray The ray.
- * @param {Cartesian3} p0 The first vertex of the triangle.
- * @param {Cartesian3} p1 The second vertex of the triangle.
- * @param {Cartesian3} p2 The third vertex of the triangle.
- * @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle
- * and return undefined for intersections with the back face.
- * @param {Cartesian3} [result] The <code>Cartesian3</code> onto which to store the result.
- * @returns {Cartesian3} The intersection point or undefined if there is no intersections.
- */
- IntersectionTests.rayTriangle = function(ray, p0, p1, p2, cullBackFaces, result) {
- var t = IntersectionTests.rayTriangleParametric(ray, p0, p1, p2, cullBackFaces);
- if (!defined.defined(t) || t < 0.0) {
- return undefined;
- }
- if (!defined.defined(result)) {
- result = new Cartesian2.Cartesian3();
- }
- Cartesian2.Cartesian3.multiplyByScalar(ray.direction, t, result);
- return Cartesian2.Cartesian3.add(ray.origin, result, result);
- };
- var scratchLineSegmentTriangleRay = new Ray();
- /**
- * Computes the intersection of a line segment and a triangle.
- * @memberof IntersectionTests
- *
- * @param {Cartesian3} v0 The an end point of the line segment.
- * @param {Cartesian3} v1 The other end point of the line segment.
- * @param {Cartesian3} p0 The first vertex of the triangle.
- * @param {Cartesian3} p1 The second vertex of the triangle.
- * @param {Cartesian3} p2 The third vertex of the triangle.
- * @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle
- * and return undefined for intersections with the back face.
- * @param {Cartesian3} [result] The <code>Cartesian3</code> onto which to store the result.
- * @returns {Cartesian3} The intersection point or undefined if there is no intersections.
- */
- IntersectionTests.lineSegmentTriangle = function(v0, v1, p0, p1, p2, cullBackFaces, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(v0)) {
- throw new Check.DeveloperError('v0 is required.');
- }
- if (!defined.defined(v1)) {
- throw new Check.DeveloperError('v1 is required.');
- }
- if (!defined.defined(p0)) {
- throw new Check.DeveloperError('p0 is required.');
- }
- if (!defined.defined(p1)) {
- throw new Check.DeveloperError('p1 is required.');
- }
- if (!defined.defined(p2)) {
- throw new Check.DeveloperError('p2 is required.');
- }
- //>>includeEnd('debug');
- var ray = scratchLineSegmentTriangleRay;
- Cartesian2.Cartesian3.clone(v0, ray.origin);
- Cartesian2.Cartesian3.subtract(v1, v0, ray.direction);
- Cartesian2.Cartesian3.normalize(ray.direction, ray.direction);
- var t = IntersectionTests.rayTriangleParametric(ray, p0, p1, p2, cullBackFaces);
- if (!defined.defined(t) || t < 0.0 || t > Cartesian2.Cartesian3.distance(v0, v1)) {
- return undefined;
- }
- if (!defined.defined(result)) {
- result = new Cartesian2.Cartesian3();
- }
- Cartesian2.Cartesian3.multiplyByScalar(ray.direction, t, result);
- return Cartesian2.Cartesian3.add(ray.origin, result, result);
- };
- function solveQuadratic(a, b, c, result) {
- var det = b * b - 4.0 * a * c;
- if (det < 0.0) {
- return undefined;
- } else if (det > 0.0) {
- var denom = 1.0 / (2.0 * a);
- var disc = Math.sqrt(det);
- var root0 = (-b + disc) * denom;
- var root1 = (-b - disc) * denom;
- if (root0 < root1) {
- result.root0 = root0;
- result.root1 = root1;
- } else {
- result.root0 = root1;
- result.root1 = root0;
- }
- return result;
- }
- var root = -b / (2.0 * a);
- if (root === 0.0) {
- return undefined;
- }
- result.root0 = result.root1 = root;
- return result;
- }
- var raySphereRoots = {
- root0 : 0.0,
- root1 : 0.0
- };
- function raySphere(ray, sphere, result) {
- if (!defined.defined(result)) {
- result = new Transforms.Interval();
- }
- var origin = ray.origin;
- var direction = ray.direction;
- var center = sphere.center;
- var radiusSquared = sphere.radius * sphere.radius;
- var diff = Cartesian2.Cartesian3.subtract(origin, center, scratchPVec);
- var a = Cartesian2.Cartesian3.dot(direction, direction);
- var b = 2.0 * Cartesian2.Cartesian3.dot(direction, diff);
- var c = Cartesian2.Cartesian3.magnitudeSquared(diff) - radiusSquared;
- var roots = solveQuadratic(a, b, c, raySphereRoots);
- if (!defined.defined(roots)) {
- return undefined;
- }
- result.start = roots.root0;
- result.stop = roots.root1;
- return result;
- }
- /**
- * Computes the intersection points of a ray with a sphere.
- * @memberof IntersectionTests
- *
- * @param {Ray} ray The ray.
- * @param {BoundingSphere} sphere The sphere.
- * @param {Interval} [result] The result onto which to store the result.
- * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections.
- */
- IntersectionTests.raySphere = function(ray, sphere, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(ray)) {
- throw new Check.DeveloperError('ray is required.');
- }
- if (!defined.defined(sphere)) {
- throw new Check.DeveloperError('sphere is required.');
- }
- //>>includeEnd('debug');
- result = raySphere(ray, sphere, result);
- if (!defined.defined(result) || result.stop < 0.0) {
- return undefined;
- }
- result.start = Math.max(result.start, 0.0);
- return result;
- };
- var scratchLineSegmentRay = new Ray();
- /**
- * Computes the intersection points of a line segment with a sphere.
- * @memberof IntersectionTests
- *
- * @param {Cartesian3} p0 An end point of the line segment.
- * @param {Cartesian3} p1 The other end point of the line segment.
- * @param {BoundingSphere} sphere The sphere.
- * @param {Interval} [result] The result onto which to store the result.
- * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections.
- */
- IntersectionTests.lineSegmentSphere = function(p0, p1, sphere, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(p0)) {
- throw new Check.DeveloperError('p0 is required.');
- }
- if (!defined.defined(p1)) {
- throw new Check.DeveloperError('p1 is required.');
- }
- if (!defined.defined(sphere)) {
- throw new Check.DeveloperError('sphere is required.');
- }
- //>>includeEnd('debug');
- var ray = scratchLineSegmentRay;
- Cartesian2.Cartesian3.clone(p0, ray.origin);
- var direction = Cartesian2.Cartesian3.subtract(p1, p0, ray.direction);
- var maxT = Cartesian2.Cartesian3.magnitude(direction);
- Cartesian2.Cartesian3.normalize(direction, direction);
- result = raySphere(ray, sphere, result);
- if (!defined.defined(result) || result.stop < 0.0 || result.start > maxT) {
- return undefined;
- }
- result.start = Math.max(result.start, 0.0);
- result.stop = Math.min(result.stop, maxT);
- return result;
- };
- var scratchQ = new Cartesian2.Cartesian3();
- var scratchW = new Cartesian2.Cartesian3();
- /**
- * Computes the intersection points of a ray with an ellipsoid.
- *
- * @param {Ray} ray The ray.
- * @param {Ellipsoid} ellipsoid The ellipsoid.
- * @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections.
- */
- IntersectionTests.rayEllipsoid = function(ray, ellipsoid) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(ray)) {
- throw new Check.DeveloperError('ray is required.');
- }
- if (!defined.defined(ellipsoid)) {
- throw new Check.DeveloperError('ellipsoid is required.');
- }
- //>>includeEnd('debug');
- var inverseRadii = ellipsoid.oneOverRadii;
- var q = Cartesian2.Cartesian3.multiplyComponents(inverseRadii, ray.origin, scratchQ);
- var w = Cartesian2.Cartesian3.multiplyComponents(inverseRadii, ray.direction, scratchW);
- var q2 = Cartesian2.Cartesian3.magnitudeSquared(q);
- var qw = Cartesian2.Cartesian3.dot(q, w);
- var difference, w2, product, discriminant, temp;
- if (q2 > 1.0) {
- // Outside ellipsoid.
- if (qw >= 0.0) {
- // Looking outward or tangent (0 intersections).
- return undefined;
- }
- // qw < 0.0.
- var qw2 = qw * qw;
- difference = q2 - 1.0; // Positively valued.
- w2 = Cartesian2.Cartesian3.magnitudeSquared(w);
- product = w2 * difference;
- if (qw2 < product) {
- // Imaginary roots (0 intersections).
- return undefined;
- } else if (qw2 > product) {
- // Distinct roots (2 intersections).
- discriminant = qw * qw - product;
- temp = -qw + Math.sqrt(discriminant); // Avoid cancellation.
- var root0 = temp / w2;
- var root1 = difference / temp;
- if (root0 < root1) {
- return new Transforms.Interval(root0, root1);
- }
- return {
- start : root1,
- stop : root0
- };
- }
- // qw2 == product. Repeated roots (2 intersections).
- var root = Math.sqrt(difference / w2);
- return new Transforms.Interval(root, root);
- } else if (q2 < 1.0) {
- // Inside ellipsoid (2 intersections).
- difference = q2 - 1.0; // Negatively valued.
- w2 = Cartesian2.Cartesian3.magnitudeSquared(w);
- product = w2 * difference; // Negatively valued.
- discriminant = qw * qw - product;
- temp = -qw + Math.sqrt(discriminant); // Positively valued.
- return new Transforms.Interval(0.0, temp / w2);
- }
- // q2 == 1.0. On ellipsoid.
- if (qw < 0.0) {
- // Looking inward.
- w2 = Cartesian2.Cartesian3.magnitudeSquared(w);
- return new Transforms.Interval(0.0, -qw / w2);
- }
- // qw >= 0.0. Looking outward or tangent.
- return undefined;
- };
- function addWithCancellationCheck$1(left, right, tolerance) {
- var difference = left + right;
- if ((_Math.CesiumMath.sign(left) !== _Math.CesiumMath.sign(right)) &&
- Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance) {
- return 0.0;
- }
- return difference;
- }
- function quadraticVectorExpression(A, b, c, x, w) {
- var xSquared = x * x;
- var wSquared = w * w;
- var l2 = (A[Transforms.Matrix3.COLUMN1ROW1] - A[Transforms.Matrix3.COLUMN2ROW2]) * wSquared;
- var l1 = w * (x * addWithCancellationCheck$1(A[Transforms.Matrix3.COLUMN1ROW0], A[Transforms.Matrix3.COLUMN0ROW1], _Math.CesiumMath.EPSILON15) + b.y);
- var l0 = (A[Transforms.Matrix3.COLUMN0ROW0] * xSquared + A[Transforms.Matrix3.COLUMN2ROW2] * wSquared) + x * b.x + c;
- var r1 = wSquared * addWithCancellationCheck$1(A[Transforms.Matrix3.COLUMN2ROW1], A[Transforms.Matrix3.COLUMN1ROW2], _Math.CesiumMath.EPSILON15);
- var r0 = w * (x * addWithCancellationCheck$1(A[Transforms.Matrix3.COLUMN2ROW0], A[Transforms.Matrix3.COLUMN0ROW2]) + b.z);
- var cosines;
- var solutions = [];
- if (r0 === 0.0 && r1 === 0.0) {
- cosines = QuadraticRealPolynomial.computeRealRoots(l2, l1, l0);
- if (cosines.length === 0) {
- return solutions;
- }
- var cosine0 = cosines[0];
- var sine0 = Math.sqrt(Math.max(1.0 - cosine0 * cosine0, 0.0));
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine0, w * -sine0));
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine0, w * sine0));
- if (cosines.length === 2) {
- var cosine1 = cosines[1];
- var sine1 = Math.sqrt(Math.max(1.0 - cosine1 * cosine1, 0.0));
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine1, w * -sine1));
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine1, w * sine1));
- }
- return solutions;
- }
- var r0Squared = r0 * r0;
- var r1Squared = r1 * r1;
- var l2Squared = l2 * l2;
- var r0r1 = r0 * r1;
- var c4 = l2Squared + r1Squared;
- var c3 = 2.0 * (l1 * l2 + r0r1);
- var c2 = 2.0 * l0 * l2 + l1 * l1 - r1Squared + r0Squared;
- var c1 = 2.0 * (l0 * l1 - r0r1);
- var c0 = l0 * l0 - r0Squared;
- if (c4 === 0.0 && c3 === 0.0 && c2 === 0.0 && c1 === 0.0) {
- return solutions;
- }
- cosines = QuarticRealPolynomial.computeRealRoots(c4, c3, c2, c1, c0);
- var length = cosines.length;
- if (length === 0) {
- return solutions;
- }
- for ( var i = 0; i < length; ++i) {
- var cosine = cosines[i];
- var cosineSquared = cosine * cosine;
- var sineSquared = Math.max(1.0 - cosineSquared, 0.0);
- var sine = Math.sqrt(sineSquared);
- //var left = l2 * cosineSquared + l1 * cosine + l0;
- var left;
- if (_Math.CesiumMath.sign(l2) === _Math.CesiumMath.sign(l0)) {
- left = addWithCancellationCheck$1(l2 * cosineSquared + l0, l1 * cosine, _Math.CesiumMath.EPSILON12);
- } else if (_Math.CesiumMath.sign(l0) === _Math.CesiumMath.sign(l1 * cosine)) {
- left = addWithCancellationCheck$1(l2 * cosineSquared, l1 * cosine + l0, _Math.CesiumMath.EPSILON12);
- } else {
- left = addWithCancellationCheck$1(l2 * cosineSquared + l1 * cosine, l0, _Math.CesiumMath.EPSILON12);
- }
- var right = addWithCancellationCheck$1(r1 * cosine, r0, _Math.CesiumMath.EPSILON15);
- var product = left * right;
- if (product < 0.0) {
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine, w * sine));
- } else if (product > 0.0) {
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine, w * -sine));
- } else if (sine !== 0.0) {
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine, w * -sine));
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine, w * sine));
- ++i;
- } else {
- solutions.push(new Cartesian2.Cartesian3(x, w * cosine, w * sine));
- }
- }
- return solutions;
- }
- var firstAxisScratch = new Cartesian2.Cartesian3();
- var secondAxisScratch = new Cartesian2.Cartesian3();
- var thirdAxisScratch = new Cartesian2.Cartesian3();
- var referenceScratch = new Cartesian2.Cartesian3();
- var bCart = new Cartesian2.Cartesian3();
- var bScratch = new Transforms.Matrix3();
- var btScratch = new Transforms.Matrix3();
- var diScratch = new Transforms.Matrix3();
- var dScratch = new Transforms.Matrix3();
- var cScratch = new Transforms.Matrix3();
- var tempMatrix = new Transforms.Matrix3();
- var aScratch = new Transforms.Matrix3();
- var sScratch = new Cartesian2.Cartesian3();
- var closestScratch = new Cartesian2.Cartesian3();
- var surfPointScratch = new Cartesian2.Cartographic();
- /**
- * Provides the point along the ray which is nearest to the ellipsoid.
- *
- * @param {Ray} ray The ray.
- * @param {Ellipsoid} ellipsoid The ellipsoid.
- * @returns {Cartesian3} The nearest planetodetic point on the ray.
- */
- IntersectionTests.grazingAltitudeLocation = function(ray, ellipsoid) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(ray)) {
- throw new Check.DeveloperError('ray is required.');
- }
- if (!defined.defined(ellipsoid)) {
- throw new Check.DeveloperError('ellipsoid is required.');
- }
- //>>includeEnd('debug');
- var position = ray.origin;
- var direction = ray.direction;
- if (!Cartesian2.Cartesian3.equals(position, Cartesian2.Cartesian3.ZERO)) {
- var normal = ellipsoid.geodeticSurfaceNormal(position, firstAxisScratch);
- if (Cartesian2.Cartesian3.dot(direction, normal) >= 0.0) { // The location provided is the closest point in altitude
- return position;
- }
- }
- var intersects = defined.defined(this.rayEllipsoid(ray, ellipsoid));
- // Compute the scaled direction vector.
- var f = ellipsoid.transformPositionToScaledSpace(direction, firstAxisScratch);
- // Constructs a basis from the unit scaled direction vector. Construct its rotation and transpose.
- var firstAxis = Cartesian2.Cartesian3.normalize(f, f);
- var reference = Cartesian2.Cartesian3.mostOrthogonalAxis(f, referenceScratch);
- var secondAxis = Cartesian2.Cartesian3.normalize(Cartesian2.Cartesian3.cross(reference, firstAxis, secondAxisScratch), secondAxisScratch);
- var thirdAxis = Cartesian2.Cartesian3.normalize(Cartesian2.Cartesian3.cross(firstAxis, secondAxis, thirdAxisScratch), thirdAxisScratch);
- var B = bScratch;
- B[0] = firstAxis.x;
- B[1] = firstAxis.y;
- B[2] = firstAxis.z;
- B[3] = secondAxis.x;
- B[4] = secondAxis.y;
- B[5] = secondAxis.z;
- B[6] = thirdAxis.x;
- B[7] = thirdAxis.y;
- B[8] = thirdAxis.z;
- var B_T = Transforms.Matrix3.transpose(B, btScratch);
- // Get the scaling matrix and its inverse.
- var D_I = Transforms.Matrix3.fromScale(ellipsoid.radii, diScratch);
- var D = Transforms.Matrix3.fromScale(ellipsoid.oneOverRadii, dScratch);
- var C = cScratch;
- C[0] = 0.0;
- C[1] = -direction.z;
- C[2] = direction.y;
- C[3] = direction.z;
- C[4] = 0.0;
- C[5] = -direction.x;
- C[6] = -direction.y;
- C[7] = direction.x;
- C[8] = 0.0;
- var temp = Transforms.Matrix3.multiply(Transforms.Matrix3.multiply(B_T, D, tempMatrix), C, tempMatrix);
- var A = Transforms.Matrix3.multiply(Transforms.Matrix3.multiply(temp, D_I, aScratch), B, aScratch);
- var b = Transforms.Matrix3.multiplyByVector(temp, position, bCart);
- // Solve for the solutions to the expression in standard form:
- var solutions = quadraticVectorExpression(A, Cartesian2.Cartesian3.negate(b, firstAxisScratch), 0.0, 0.0, 1.0);
- var s;
- var altitude;
- var length = solutions.length;
- if (length > 0) {
- var closest = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, closestScratch);
- var maximumValue = Number.NEGATIVE_INFINITY;
- for ( var i = 0; i < length; ++i) {
- s = Transforms.Matrix3.multiplyByVector(D_I, Transforms.Matrix3.multiplyByVector(B, solutions[i], sScratch), sScratch);
- var v = Cartesian2.Cartesian3.normalize(Cartesian2.Cartesian3.subtract(s, position, referenceScratch), referenceScratch);
- var dotProduct = Cartesian2.Cartesian3.dot(v, direction);
- if (dotProduct > maximumValue) {
- maximumValue = dotProduct;
- closest = Cartesian2.Cartesian3.clone(s, closest);
- }
- }
- var surfacePoint = ellipsoid.cartesianToCartographic(closest, surfPointScratch);
- maximumValue = _Math.CesiumMath.clamp(maximumValue, 0.0, 1.0);
- altitude = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.subtract(closest, position, referenceScratch)) * Math.sqrt(1.0 - maximumValue * maximumValue);
- altitude = intersects ? -altitude : altitude;
- surfacePoint.height = altitude;
- return ellipsoid.cartographicToCartesian(surfacePoint, new Cartesian2.Cartesian3());
- }
- return undefined;
- };
- var lineSegmentPlaneDifference = new Cartesian2.Cartesian3();
- /**
- * Computes the intersection of a line segment and a plane.
- *
- * @param {Cartesian3} endPoint0 An end point of the line segment.
- * @param {Cartesian3} endPoint1 The other end point of the line segment.
- * @param {Plane} plane The plane.
- * @param {Cartesian3} [result] The object onto which to store the result.
- * @returns {Cartesian3} The intersection point or undefined if there is no intersection.
- *
- * @example
- * var origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883);
- * var normal = ellipsoid.geodeticSurfaceNormal(origin);
- * var plane = Cesium.Plane.fromPointNormal(origin, normal);
- *
- * var p0 = new Cesium.Cartesian3(...);
- * var p1 = new Cesium.Cartesian3(...);
- *
- * // find the intersection of the line segment from p0 to p1 and the tangent plane at origin.
- * var intersection = Cesium.IntersectionTests.lineSegmentPlane(p0, p1, plane);
- */
- IntersectionTests.lineSegmentPlane = function(endPoint0, endPoint1, plane, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defined.defined(endPoint0)) {
- throw new Check.DeveloperError('endPoint0 is required.');
- }
- if (!defined.defined(endPoint1)) {
- throw new Check.DeveloperError('endPoint1 is required.');
- }
- if (!defined.defined(plane)) {
- throw new Check.DeveloperError('plane is required.');
- }
- //>>includeEnd('debug');
- if (!defined.defined(result)) {
- result = new Cartesian2.Cartesian3();
- }
- var difference = Cartesian2.Cartesian3.subtract(endPoint1, endPoint0, lineSegmentPlaneDifference);
- var normal = plane.normal;
- var nDotDiff = Cartesian2.Cartesian3.dot(normal, difference);
- // check if the segment and plane are parallel
- if (Math.abs(nDotDiff) < _Math.CesiumMath.EPSILON6) {
- return undefined;
- }
- var nDotP0 = Cartesian2.Cartesian3.dot(normal, endPoint0);
- var t = -(plane.distance + nDotP0) / nDotDiff;
- // intersection only if t is in [0, 1]
- if (t < 0.0 || t > 1.0) {
- return undefined;
- }
- // intersection is endPoint0 + t * (endPoint1 - endPoint0)
- Cartesian2.Cartesian3.multiplyByScalar(difference, t, result);
- Cartesian2.Cartesian3.add(endPoint0, result, result);
- return result;
- };
- /**
- * Computes the intersection of a triangle and a plane
- *
- * @param {Cartesian3} p0 First point of the triangle
- * @param {Cartesian3} p1 Second point of the triangle
- * @param {Cartesian3} p2 Third point of the triangle
- * @param {Plane} plane Intersection plane
- * @returns {Object} An object with properties <code>positions</code> and <code>indices</code>, which are arrays that represent three triangles that do not cross the plane. (Undefined if no intersection exists)
- *
- * @example
- * var origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883);
- * var normal = ellipsoid.geodeticSurfaceNormal(origin);
- * var plane = Cesium.Plane.fromPointNormal(origin, normal);
- *
- * var p0 = new Cesium.Cartesian3(...);
- * var p1 = new Cesium.Cartesian3(...);
- * var p2 = new Cesium.Cartesian3(...);
- *
- * // convert the triangle composed of points (p0, p1, p2) to three triangles that don't cross the plane
- * var triangles = Cesium.IntersectionTests.trianglePlaneIntersection(p0, p1, p2, plane);
- */
- IntersectionTests.trianglePlaneIntersection = function(p0, p1, p2, plane) {
- //>>includeStart('debug', pragmas.debug);
- if ((!defined.defined(p0)) ||
- (!defined.defined(p1)) ||
- (!defined.defined(p2)) ||
- (!defined.defined(plane))) {
- throw new Check.DeveloperError('p0, p1, p2, and plane are required.');
- }
- //>>includeEnd('debug');
- var planeNormal = plane.normal;
- var planeD = plane.distance;
- var p0Behind = (Cartesian2.Cartesian3.dot(planeNormal, p0) + planeD) < 0.0;
- var p1Behind = (Cartesian2.Cartesian3.dot(planeNormal, p1) + planeD) < 0.0;
- var p2Behind = (Cartesian2.Cartesian3.dot(planeNormal, p2) + planeD) < 0.0;
- // Given these dots products, the calls to lineSegmentPlaneIntersection
- // always have defined results.
- var numBehind = 0;
- numBehind += p0Behind ? 1 : 0;
- numBehind += p1Behind ? 1 : 0;
- numBehind += p2Behind ? 1 : 0;
- var u1, u2;
- if (numBehind === 1 || numBehind === 2) {
- u1 = new Cartesian2.Cartesian3();
- u2 = new Cartesian2.Cartesian3();
- }
- if (numBehind === 1) {
- if (p0Behind) {
- IntersectionTests.lineSegmentPlane(p0, p1, plane, u1);
- IntersectionTests.lineSegmentPlane(p0, p2, plane, u2);
- return {
- positions : [p0, p1, p2, u1, u2 ],
- indices : [
- // Behind
- 0, 3, 4,
- // In front
- 1, 2, 4,
- 1, 4, 3
- ]
- };
- } else if (p1Behind) {
- IntersectionTests.lineSegmentPlane(p1, p2, plane, u1);
- IntersectionTests.lineSegmentPlane(p1, p0, plane, u2);
- return {
- positions : [p0, p1, p2, u1, u2 ],
- indices : [
- // Behind
- 1, 3, 4,
- // In front
- 2, 0, 4,
- 2, 4, 3
- ]
- };
- } else if (p2Behind) {
- IntersectionTests.lineSegmentPlane(p2, p0, plane, u1);
- IntersectionTests.lineSegmentPlane(p2, p1, plane, u2);
- return {
- positions : [p0, p1, p2, u1, u2 ],
- indices : [
- // Behind
- 2, 3, 4,
- // In front
- 0, 1, 4,
- 0, 4, 3
- ]
- };
- }
- } else if (numBehind === 2) {
- if (!p0Behind) {
- IntersectionTests.lineSegmentPlane(p1, p0, plane, u1);
- IntersectionTests.lineSegmentPlane(p2, p0, plane, u2);
- return {
- positions : [p0, p1, p2, u1, u2 ],
- indices : [
- // Behind
- 1, 2, 4,
- 1, 4, 3,
- // In front
- 0, 3, 4
- ]
- };
- } else if (!p1Behind) {
- IntersectionTests.lineSegmentPlane(p2, p1, plane, u1);
- IntersectionTests.lineSegmentPlane(p0, p1, plane, u2);
- return {
- positions : [p0, p1, p2, u1, u2 ],
- indices : [
- // Behind
- 2, 0, 4,
- 2, 4, 3,
- // In front
- 1, 3, 4
- ]
- };
- } else if (!p2Behind) {
- IntersectionTests.lineSegmentPlane(p0, p2, plane, u1);
- IntersectionTests.lineSegmentPlane(p1, p2, plane, u2);
- return {
- positions : [p0, p1, p2, u1, u2 ],
- indices : [
- // Behind
- 0, 1, 4,
- 0, 4, 3,
- // In front
- 2, 3, 4
- ]
- };
- }
- }
- // if numBehind is 3, the triangle is completely behind the plane;
- // otherwise, it is completely in front (numBehind is 0).
- return undefined;
- };
- exports.IntersectionTests = IntersectionTests;
- exports.Ray = Ray;
- });
|