/* This file is automatically rebuilt by the Cesium build process. */ define(['exports', './defined-26bd4a03', './Check-da037458', './freezeObject-2d83f591', './defaultValue-f2e68450', './Math-fa6e45cb', './Cartesian2-2a723276', './defineProperties-6f7a50f2', './RuntimeError-ad75c885', './when-ee12a2cb'], function (exports, defined, Check, freezeObject, defaultValue, _Math, Cartesian2, defineProperties, RuntimeError, when) { 'use strict'; /** * A simple map projection where longitude and latitude are linearly mapped to X and Y by multiplying * them by the {@link Ellipsoid#maximumRadius}. This projection * is commonly known as geographic, equirectangular, equidistant cylindrical, or plate carrée. It * is also known as EPSG:4326. * * @alias GeographicProjection * @constructor * * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid. * * @see WebMercatorProjection */ function GeographicProjection(ellipsoid) { this._ellipsoid = defaultValue.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84); this._semimajorAxis = this._ellipsoid.maximumRadius; this._oneOverSemimajorAxis = 1.0 / this._semimajorAxis; } defineProperties.defineProperties(GeographicProjection.prototype, { /** * Gets the {@link Ellipsoid}. * * @memberof GeographicProjection.prototype * * @type {Ellipsoid} * @readonly */ ellipsoid : { get : function() { return this._ellipsoid; } } }); /** * Projects a set of {@link Cartographic} coordinates, in radians, to map coordinates, in meters. * X and Y are the longitude and latitude, respectively, multiplied by the maximum radius of the * ellipsoid. Z is the unmodified height. * * @param {Cartographic} cartographic The coordinates to project. * @param {Cartesian3} [result] An instance into which to copy the result. If this parameter is * undefined, a new instance is created and returned. * @returns {Cartesian3} The projected coordinates. If the result parameter is not undefined, the * coordinates are copied there and that instance is returned. Otherwise, a new instance is * created and returned. */ GeographicProjection.prototype.project = function(cartographic, result) { // Actually this is the special case of equidistant cylindrical called the plate carree var semimajorAxis = this._semimajorAxis; var x = cartographic.longitude * semimajorAxis; var y = cartographic.latitude * semimajorAxis; var z = cartographic.height; if (!defined.defined(result)) { return new Cartesian2.Cartesian3(x, y, z); } result.x = x; result.y = y; result.z = z; return result; }; /** * Unprojects a set of projected {@link Cartesian3} coordinates, in meters, to {@link Cartographic} * coordinates, in radians. Longitude and Latitude are the X and Y coordinates, respectively, * divided by the maximum radius of the ellipsoid. Height is the unmodified Z coordinate. * * @param {Cartesian3} cartesian The Cartesian position to unproject with height (z) in meters. * @param {Cartographic} [result] An instance into which to copy the result. If this parameter is * undefined, a new instance is created and returned. * @returns {Cartographic} The unprojected coordinates. If the result parameter is not undefined, the * coordinates are copied there and that instance is returned. Otherwise, a new instance is * created and returned. */ GeographicProjection.prototype.unproject = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); if (!defined.defined(cartesian)) { throw new Check.DeveloperError('cartesian is required'); } //>>includeEnd('debug'); var oneOverEarthSemimajorAxis = this._oneOverSemimajorAxis; var longitude = cartesian.x * oneOverEarthSemimajorAxis; var latitude = cartesian.y * oneOverEarthSemimajorAxis; var height = cartesian.z; if (!defined.defined(result)) { return new Cartesian2.Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * This enumerated type is used in determining where, relative to the frustum, an * object is located. The object can either be fully contained within the frustum (INSIDE), * partially inside the frustum and partially outside (INTERSECTING), or somwhere entirely * outside of the frustum's 6 planes (OUTSIDE). * * @exports Intersect */ var Intersect = { /** * Represents that an object is not contained within the frustum. * * @type {Number} * @constant */ OUTSIDE : -1, /** * Represents that an object intersects one of the frustum's planes. * * @type {Number} * @constant */ INTERSECTING : 0, /** * Represents that an object is fully within the frustum. * * @type {Number} * @constant */ INSIDE : 1 }; var Intersect$1 = freezeObject.freezeObject(Intersect); /** * Represents the closed interval [start, stop]. * @alias Interval * @constructor * * @param {Number} [start=0.0] The beginning of the interval. * @param {Number} [stop=0.0] The end of the interval. */ function Interval(start, stop) { /** * The beginning of the interval. * @type {Number} * @default 0.0 */ this.start = defaultValue.defaultValue(start, 0.0); /** * The end of the interval. * @type {Number} * @default 0.0 */ this.stop = defaultValue.defaultValue(stop, 0.0); } /** * A 3x3 matrix, indexable as a column-major order array. * Constructor parameters are in row-major order for code readability. * @alias Matrix3 * @constructor * * @param {Number} [column0Row0=0.0] The value for column 0, row 0. * @param {Number} [column1Row0=0.0] The value for column 1, row 0. * @param {Number} [column2Row0=0.0] The value for column 2, row 0. * @param {Number} [column0Row1=0.0] The value for column 0, row 1. * @param {Number} [column1Row1=0.0] The value for column 1, row 1. * @param {Number} [column2Row1=0.0] The value for column 2, row 1. * @param {Number} [column0Row2=0.0] The value for column 0, row 2. * @param {Number} [column1Row2=0.0] The value for column 1, row 2. * @param {Number} [column2Row2=0.0] The value for column 2, row 2. * * @see Matrix3.fromColumnMajorArray * @see Matrix3.fromRowMajorArray * @see Matrix3.fromQuaternion * @see Matrix3.fromScale * @see Matrix3.fromUniformScale * @see Matrix2 * @see Matrix4 */ function Matrix3(column0Row0, column1Row0, column2Row0, column0Row1, column1Row1, column2Row1, column0Row2, column1Row2, column2Row2) { this[0] = defaultValue.defaultValue(column0Row0, 0.0); this[1] = defaultValue.defaultValue(column0Row1, 0.0); this[2] = defaultValue.defaultValue(column0Row2, 0.0); this[3] = defaultValue.defaultValue(column1Row0, 0.0); this[4] = defaultValue.defaultValue(column1Row1, 0.0); this[5] = defaultValue.defaultValue(column1Row2, 0.0); this[6] = defaultValue.defaultValue(column2Row0, 0.0); this[7] = defaultValue.defaultValue(column2Row1, 0.0); this[8] = defaultValue.defaultValue(column2Row2, 0.0); } /** * The number of elements used to pack the object into an array. * @type {Number} */ Matrix3.packedLength = 9; /** * Stores the provided instance into the provided array. * * @param {Matrix3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Matrix3.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); array[startingIndex++] = value[0]; array[startingIndex++] = value[1]; array[startingIndex++] = value[2]; array[startingIndex++] = value[3]; array[startingIndex++] = value[4]; array[startingIndex++] = value[5]; array[startingIndex++] = value[6]; array[startingIndex++] = value[7]; array[startingIndex++] = value[8]; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Matrix3} [result] The object into which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. */ Matrix3.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); if (!defined.defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex++]; result[1] = array[startingIndex++]; result[2] = array[startingIndex++]; result[3] = array[startingIndex++]; result[4] = array[startingIndex++]; result[5] = array[startingIndex++]; result[6] = array[startingIndex++]; result[7] = array[startingIndex++]; result[8] = array[startingIndex++]; return result; }; /** * Duplicates a Matrix3 instance. * * @param {Matrix3} matrix The matrix to duplicate. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. (Returns undefined if matrix is undefined) */ Matrix3.clone = function(matrix, result) { if (!defined.defined(matrix)) { return undefined; } if (!defined.defined(result)) { return new Matrix3(matrix[0], matrix[3], matrix[6], matrix[1], matrix[4], matrix[7], matrix[2], matrix[5], matrix[8]); } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Creates a Matrix3 from 9 consecutive elements in an array. * * @param {Number[]} array The array whose 9 consecutive elements correspond to the positions of the matrix. Assumes column-major order. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix. * @param {Matrix3} [result] The object onto which to store the result. * @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided. * * @example * // Create the Matrix3: * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * // [1.0, 2.0, 3.0] * * var v = [1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * var m = Cesium.Matrix3.fromArray(v); * * // Create same Matrix3 with using an offset into an array * var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0]; * var m2 = Cesium.Matrix3.fromArray(v2, 2); */ Matrix3.fromArray = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = defaultValue.defaultValue(startingIndex, 0); if (!defined.defined(result)) { result = new Matrix3(); } result[0] = array[startingIndex]; result[1] = array[startingIndex + 1]; result[2] = array[startingIndex + 2]; result[3] = array[startingIndex + 3]; result[4] = array[startingIndex + 4]; result[5] = array[startingIndex + 5]; result[6] = array[startingIndex + 6]; result[7] = array[startingIndex + 7]; result[8] = array[startingIndex + 8]; return result; }; /** * Creates a Matrix3 instance from a column-major order array. * * @param {Number[]} values The column-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromColumnMajorArray = function(values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('values', values); //>>includeEnd('debug'); return Matrix3.clone(values, result); }; /** * Creates a Matrix3 instance from a row-major order array. * The resulting matrix will be in column-major order. * * @param {Number[]} values The row-major order array. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. */ Matrix3.fromRowMajorArray = function(values, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('values', values); //>>includeEnd('debug'); if (!defined.defined(result)) { return new Matrix3(values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], values[8]); } result[0] = values[0]; result[1] = values[3]; result[2] = values[6]; result[3] = values[1]; result[4] = values[4]; result[5] = values[7]; result[6] = values[2]; result[7] = values[5]; result[8] = values[8]; return result; }; /** * Computes a 3x3 rotation matrix from the provided quaternion. * * @param {Quaternion} quaternion the quaternion to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this quaternion. */ Matrix3.fromQuaternion = function(quaternion, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('quaternion', quaternion); //>>includeEnd('debug'); var x2 = quaternion.x * quaternion.x; var xy = quaternion.x * quaternion.y; var xz = quaternion.x * quaternion.z; var xw = quaternion.x * quaternion.w; var y2 = quaternion.y * quaternion.y; var yz = quaternion.y * quaternion.z; var yw = quaternion.y * quaternion.w; var z2 = quaternion.z * quaternion.z; var zw = quaternion.z * quaternion.w; var w2 = quaternion.w * quaternion.w; var m00 = x2 - y2 - z2 + w2; var m01 = 2.0 * (xy - zw); var m02 = 2.0 * (xz + yw); var m10 = 2.0 * (xy + zw); var m11 = -x2 + y2 - z2 + w2; var m12 = 2.0 * (yz - xw); var m20 = 2.0 * (xz - yw); var m21 = 2.0 * (yz + xw); var m22 = -x2 - y2 + z2 + w2; if (!defined.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a 3x3 rotation matrix from the provided headingPitchRoll. (see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles ) * * @param {HeadingPitchRoll} headingPitchRoll the headingPitchRoll to use. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The 3x3 rotation matrix from this headingPitchRoll. */ Matrix3.fromHeadingPitchRoll = function(headingPitchRoll, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('headingPitchRoll', headingPitchRoll); //>>includeEnd('debug'); var cosTheta = Math.cos(-headingPitchRoll.pitch); var cosPsi = Math.cos(-headingPitchRoll.heading); var cosPhi = Math.cos(headingPitchRoll.roll); var sinTheta = Math.sin(-headingPitchRoll.pitch); var sinPsi = Math.sin(-headingPitchRoll.heading); var sinPhi = Math.sin(headingPitchRoll.roll); var m00 = cosTheta * cosPsi; var m01 = -cosPhi * sinPsi + sinPhi * sinTheta * cosPsi; var m02 = sinPhi * sinPsi + cosPhi * sinTheta * cosPsi; var m10 = cosTheta * sinPsi; var m11 = cosPhi * cosPsi + sinPhi * sinTheta * sinPsi; var m12 = -sinPhi * cosPsi + cosPhi * sinTheta * sinPsi; var m20 = -sinTheta; var m21 = sinPhi * cosTheta; var m22 = cosPhi * cosTheta; if (!defined.defined(result)) { return new Matrix3(m00, m01, m02, m10, m11, m12, m20, m21, m22); } result[0] = m00; result[1] = m10; result[2] = m20; result[3] = m01; result[4] = m11; result[5] = m21; result[6] = m02; result[7] = m12; result[8] = m22; return result; }; /** * Computes a Matrix3 instance representing a non-uniform scale. * * @param {Cartesian3} scale The x, y, and z scale factors. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [7.0, 0.0, 0.0] * // [0.0, 8.0, 0.0] * // [0.0, 0.0, 9.0] * var m = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromScale = function(scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('scale', scale); //>>includeEnd('debug'); if (!defined.defined(result)) { return new Matrix3( scale.x, 0.0, 0.0, 0.0, scale.y, 0.0, 0.0, 0.0, scale.z); } result[0] = scale.x; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale.y; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale.z; return result; }; /** * Computes a Matrix3 instance representing a uniform scale. * * @param {Number} scale The uniform scale factor. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [2.0, 0.0, 0.0] * // [0.0, 2.0, 0.0] * // [0.0, 0.0, 2.0] * var m = Cesium.Matrix3.fromUniformScale(2.0); */ Matrix3.fromUniformScale = function(scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('scale', scale); //>>includeEnd('debug'); if (!defined.defined(result)) { return new Matrix3( scale, 0.0, 0.0, 0.0, scale, 0.0, 0.0, 0.0, scale); } result[0] = scale; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = scale; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = scale; return result; }; /** * Computes a Matrix3 instance representing the cross product equivalent matrix of a Cartesian3 vector. * * @param {Cartesian3} vector the vector on the left hand side of the cross product operation. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Creates * // [0.0, -9.0, 8.0] * // [9.0, 0.0, -7.0] * // [-8.0, 7.0, 0.0] * var m = Cesium.Matrix3.fromCrossProduct(new Cesium.Cartesian3(7.0, 8.0, 9.0)); */ Matrix3.fromCrossProduct = function(vector, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('vector', vector); //>>includeEnd('debug'); if (!defined.defined(result)) { return new Matrix3( 0.0, -vector.z, vector.y, vector.z, 0.0, -vector.x, -vector.y, vector.x, 0.0); } result[0] = 0.0; result[1] = vector.z; result[2] = -vector.y; result[3] = -vector.z; result[4] = 0.0; result[5] = vector.x; result[6] = vector.y; result[7] = -vector.x; result[8] = 0.0; return result; }; /** * Creates a rotation matrix around the x-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the x-axis. * var p = new Cesium.Cartesian3(5, 6, 7); * var m = Cesium.Matrix3.fromRotationX(Cesium.Math.toRadians(45.0)); * var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationX = function(angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('angle', angle); //>>includeEnd('debug'); var cosAngle = Math.cos(angle); var sinAngle = Math.sin(angle); if (!defined.defined(result)) { return new Matrix3( 1.0, 0.0, 0.0, 0.0, cosAngle, -sinAngle, 0.0, sinAngle, cosAngle); } result[0] = 1.0; result[1] = 0.0; result[2] = 0.0; result[3] = 0.0; result[4] = cosAngle; result[5] = sinAngle; result[6] = 0.0; result[7] = -sinAngle; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the y-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the y-axis. * var p = new Cesium.Cartesian3(5, 6, 7); * var m = Cesium.Matrix3.fromRotationY(Cesium.Math.toRadians(45.0)); * var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationY = function(angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('angle', angle); //>>includeEnd('debug'); var cosAngle = Math.cos(angle); var sinAngle = Math.sin(angle); if (!defined.defined(result)) { return new Matrix3( cosAngle, 0.0, sinAngle, 0.0, 1.0, 0.0, -sinAngle, 0.0, cosAngle); } result[0] = cosAngle; result[1] = 0.0; result[2] = -sinAngle; result[3] = 0.0; result[4] = 1.0; result[5] = 0.0; result[6] = sinAngle; result[7] = 0.0; result[8] = cosAngle; return result; }; /** * Creates a rotation matrix around the z-axis. * * @param {Number} angle The angle, in radians, of the rotation. Positive angles are counterclockwise. * @param {Matrix3} [result] The object in which the result will be stored, if undefined a new instance will be created. * @returns {Matrix3} The modified result parameter, or a new Matrix3 instance if one was not provided. * * @example * // Rotate a point 45 degrees counterclockwise around the z-axis. * var p = new Cesium.Cartesian3(5, 6, 7); * var m = Cesium.Matrix3.fromRotationZ(Cesium.Math.toRadians(45.0)); * var rotated = Cesium.Matrix3.multiplyByVector(m, p, new Cesium.Cartesian3()); */ Matrix3.fromRotationZ = function(angle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('angle', angle); //>>includeEnd('debug'); var cosAngle = Math.cos(angle); var sinAngle = Math.sin(angle); if (!defined.defined(result)) { return new Matrix3( cosAngle, -sinAngle, 0.0, sinAngle, cosAngle, 0.0, 0.0, 0.0, 1.0); } result[0] = cosAngle; result[1] = sinAngle; result[2] = 0.0; result[3] = -sinAngle; result[4] = cosAngle; result[5] = 0.0; result[6] = 0.0; result[7] = 0.0; result[8] = 1.0; return result; }; /** * Creates an Array from the provided Matrix3 instance. * The array will be in column-major order. * * @param {Matrix3} matrix The matrix to use.. * @param {Number[]} [result] The Array onto which to store the result. * @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided. */ Matrix3.toArray = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); if (!defined.defined(result)) { return [matrix[0], matrix[1], matrix[2], matrix[3], matrix[4], matrix[5], matrix[6], matrix[7], matrix[8]]; } result[0] = matrix[0]; result[1] = matrix[1]; result[2] = matrix[2]; result[3] = matrix[3]; result[4] = matrix[4]; result[5] = matrix[5]; result[6] = matrix[6]; result[7] = matrix[7]; result[8] = matrix[8]; return result; }; /** * Computes the array index of the element at the provided row and column. * * @param {Number} row The zero-based index of the row. * @param {Number} column The zero-based index of the column. * @returns {Number} The index of the element at the provided row and column. * * @exception {DeveloperError} row must be 0, 1, or 2. * @exception {DeveloperError} column must be 0, 1, or 2. * * @example * var myMatrix = new Cesium.Matrix3(); * var column1Row0Index = Cesium.Matrix3.getElementIndex(1, 0); * var column1Row0 = myMatrix[column1Row0Index] * myMatrix[column1Row0Index] = 10.0; */ Matrix3.getElementIndex = function(column, row) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals('row', row, 0); Check.Check.typeOf.number.lessThanOrEquals('row', row, 2); Check.Check.typeOf.number.greaterThanOrEquals('column', column, 0); Check.Check.typeOf.number.lessThanOrEquals('column', column, 2); //>>includeEnd('debug'); return column * 3 + row; }; /** * Retrieves a copy of the matrix column at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getColumn = function(matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var startIndex = index * 3; var x = matrix[startIndex]; var y = matrix[startIndex + 1]; var z = matrix[startIndex + 2]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the column to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified column. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setColumn = function(matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); var startIndex = index * 3; result[startIndex] = cartesian.x; result[startIndex + 1] = cartesian.y; result[startIndex + 2] = cartesian.z; return result; }; /** * Retrieves a copy of the matrix row at the provided index as a Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to retrieve. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.getRow = function(matrix, index, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var x = matrix[index]; var y = matrix[index + 3]; var z = matrix[index + 6]; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian3 instance. * * @param {Matrix3} matrix The matrix to use. * @param {Number} index The zero-based index of the row to set. * @param {Cartesian3} cartesian The Cartesian whose values will be assigned to the specified row. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} index must be 0, 1, or 2. */ Matrix3.setRow = function(matrix, index, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0); Check.Check.typeOf.number.lessThanOrEquals('index', index, 2); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result = Matrix3.clone(matrix, result); result[index] = cartesian.x; result[index + 3] = cartesian.y; result[index + 6] = cartesian.z; return result; }; var scratchColumn = new Cartesian2.Cartesian3(); /** * Extracts the non-uniform scale assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.getScale = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn)); result.y = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.fromElements(matrix[3], matrix[4], matrix[5], scratchColumn)); result.z = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.fromElements(matrix[6], matrix[7], matrix[8], scratchColumn)); return result; }; var scratchScale = new Cartesian2.Cartesian3(); /** * Computes the maximum scale assuming the matrix is an affine transformation. * The maximum scale is the maximum length of the column vectors. * * @param {Matrix3} matrix The matrix. * @returns {Number} The maximum scale. */ Matrix3.getMaximumScale = function(matrix) { Matrix3.getScale(matrix, scratchScale); return Cartesian2.Cartesian3.maximumComponent(scratchScale); }; /** * Computes the product of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiply = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var column0Row0 = left[0] * right[0] + left[3] * right[1] + left[6] * right[2]; var column0Row1 = left[1] * right[0] + left[4] * right[1] + left[7] * right[2]; var column0Row2 = left[2] * right[0] + left[5] * right[1] + left[8] * right[2]; var column1Row0 = left[0] * right[3] + left[3] * right[4] + left[6] * right[5]; var column1Row1 = left[1] * right[3] + left[4] * right[4] + left[7] * right[5]; var column1Row2 = left[2] * right[3] + left[5] * right[4] + left[8] * right[5]; var column2Row0 = left[0] * right[6] + left[3] * right[7] + left[6] * right[8]; var column2Row1 = left[1] * right[6] + left[4] * right[7] + left[7] * right[8]; var column2Row2 = left[2] * right[6] + left[5] * right[7] + left[8] * right[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; /** * Computes the sum of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.add = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = left[0] + right[0]; result[1] = left[1] + right[1]; result[2] = left[2] + right[2]; result[3] = left[3] + right[3]; result[4] = left[4] + right[4]; result[5] = left[5] + right[5]; result[6] = left[6] + right[6]; result[7] = left[7] + right[7]; result[8] = left[8] + right[8]; return result; }; /** * Computes the difference of two matrices. * * @param {Matrix3} left The first matrix. * @param {Matrix3} right The second matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.subtract = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = left[0] - right[0]; result[1] = left[1] - right[1]; result[2] = left[2] - right[2]; result[3] = left[3] - right[3]; result[4] = left[4] - right[4]; result[5] = left[5] - right[5]; result[6] = left[6] - right[6]; result[7] = left[7] - right[7]; result[8] = left[8] - right[8]; return result; }; /** * Computes the product of a matrix and a column vector. * * @param {Matrix3} matrix The matrix. * @param {Cartesian3} cartesian The column. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Matrix3.multiplyByVector = function(matrix, cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var vX = cartesian.x; var vY = cartesian.y; var vZ = cartesian.z; var x = matrix[0] * vX + matrix[3] * vY + matrix[6] * vZ; var y = matrix[1] * vX + matrix[4] * vY + matrix[7] * vZ; var z = matrix[2] * vX + matrix[5] * vY + matrix[8] * vZ; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the product of a matrix and a scalar. * * @param {Matrix3} matrix The matrix. * @param {Number} scalar The number to multiply by. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.multiplyByScalar = function(matrix, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0] * scalar; result[1] = matrix[1] * scalar; result[2] = matrix[2] * scalar; result[3] = matrix[3] * scalar; result[4] = matrix[4] * scalar; result[5] = matrix[5] * scalar; result[6] = matrix[6] * scalar; result[7] = matrix[7] * scalar; result[8] = matrix[8] * scalar; return result; }; /** * Computes the product of a matrix times a (non-uniform) scale, as if the scale were a scale matrix. * * @param {Matrix3} matrix The matrix on the left-hand side. * @param {Cartesian3} scale The non-uniform scale on the right-hand side. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * * @example * // Instead of Cesium.Matrix3.multiply(m, Cesium.Matrix3.fromScale(scale), m); * Cesium.Matrix3.multiplyByScale(m, scale, m); * * @see Matrix3.fromScale * @see Matrix3.multiplyByUniformScale */ Matrix3.multiplyByScale = function(matrix, scale, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('scale', scale); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = matrix[0] * scale.x; result[1] = matrix[1] * scale.x; result[2] = matrix[2] * scale.x; result[3] = matrix[3] * scale.y; result[4] = matrix[4] * scale.y; result[5] = matrix[5] * scale.y; result[6] = matrix[6] * scale.z; result[7] = matrix[7] * scale.z; result[8] = matrix[8] * scale.z; return result; }; /** * Creates a negated copy of the provided matrix. * * @param {Matrix3} matrix The matrix to negate. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.negate = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = -matrix[0]; result[1] = -matrix[1]; result[2] = -matrix[2]; result[3] = -matrix[3]; result[4] = -matrix[4]; result[5] = -matrix[5]; result[6] = -matrix[6]; result[7] = -matrix[7]; result[8] = -matrix[8]; return result; }; /** * Computes the transpose of the provided matrix. * * @param {Matrix3} matrix The matrix to transpose. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.transpose = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var column0Row0 = matrix[0]; var column0Row1 = matrix[3]; var column0Row2 = matrix[6]; var column1Row0 = matrix[1]; var column1Row1 = matrix[4]; var column1Row2 = matrix[7]; var column2Row0 = matrix[2]; var column2Row1 = matrix[5]; var column2Row2 = matrix[8]; result[0] = column0Row0; result[1] = column0Row1; result[2] = column0Row2; result[3] = column1Row0; result[4] = column1Row1; result[5] = column1Row2; result[6] = column2Row0; result[7] = column2Row1; result[8] = column2Row2; return result; }; var UNIT = new Cartesian2.Cartesian3(1, 1, 1); /** * Extracts the rotation assuming the matrix is an affine transformation. * * @param {Matrix3} matrix The matrix. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter */ Matrix3.getRotation = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var inverseScale = Cartesian2.Cartesian3.divideComponents(UNIT, Matrix3.getScale(matrix, scratchScale), scratchScale); result = Matrix3.multiplyByScale(matrix, inverseScale, result); return result; }; function computeFrobeniusNorm(matrix) { var norm = 0.0; for (var i = 0; i < 9; ++i) { var temp = matrix[i]; norm += temp * temp; } return Math.sqrt(norm); } var rowVal = [1, 0, 0]; var colVal = [2, 2, 1]; function offDiagonalFrobeniusNorm(matrix) { // Computes the "off-diagonal" Frobenius norm. // Assumes matrix is symmetric. var norm = 0.0; for (var i = 0; i < 3; ++i) { var temp = matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]; norm += 2.0 * temp * temp; } return Math.sqrt(norm); } function shurDecomposition(matrix, result) { // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.2 The 2by2 Symmetric Schur Decomposition. // // The routine takes a matrix, which is assumed to be symmetric, and // finds the largest off-diagonal term, and then creates // a matrix (result) which can be used to help reduce it var tolerance = _Math.CesiumMath.EPSILON15; var maxDiagonal = 0.0; var rotAxis = 1; // find pivot (rotAxis) based on max diagonal of matrix for (var i = 0; i < 3; ++i) { var temp = Math.abs(matrix[Matrix3.getElementIndex(colVal[i], rowVal[i])]); if (temp > maxDiagonal) { rotAxis = i; maxDiagonal = temp; } } var c = 1.0; var s = 0.0; var p = rowVal[rotAxis]; var q = colVal[rotAxis]; if (Math.abs(matrix[Matrix3.getElementIndex(q, p)]) > tolerance) { var qq = matrix[Matrix3.getElementIndex(q, q)]; var pp = matrix[Matrix3.getElementIndex(p, p)]; var qp = matrix[Matrix3.getElementIndex(q, p)]; var tau = (qq - pp) / 2.0 / qp; var t; if (tau < 0.0) { t = -1.0 / (-tau + Math.sqrt(1.0 + tau * tau)); } else { t = 1.0 / (tau + Math.sqrt(1.0 + tau * tau)); } c = 1.0 / Math.sqrt(1.0 + t * t); s = t * c; } result = Matrix3.clone(Matrix3.IDENTITY, result); result[Matrix3.getElementIndex(p, p)] = result[Matrix3.getElementIndex(q, q)] = c; result[Matrix3.getElementIndex(q, p)] = s; result[Matrix3.getElementIndex(p, q)] = -s; return result; } var jMatrix = new Matrix3(); var jMatrixTranspose = new Matrix3(); /** * Computes the eigenvectors and eigenvalues of a symmetric matrix. *
* Returns a diagonal matrix and unitary matrix such that:
* matrix = unitary matrix * diagonal matrix * transpose(unitary matrix)
*
* The values along the diagonal of the diagonal matrix are the eigenvalues. The columns * of the unitary matrix are the corresponding eigenvectors. *
* * @param {Matrix3} matrix The matrix to decompose into diagonal and unitary matrix. Expected to be symmetric. * @param {Object} [result] An object with unitary and diagonal properties which are matrices onto which to store the result. * @returns {Object} An object with unitary and diagonal properties which are the unitary and diagonal matrices, respectively. * * @example * var a = //... symetric matrix * var result = { * unitary : new Cesium.Matrix3(), * diagonal : new Cesium.Matrix3() * }; * Cesium.Matrix3.computeEigenDecomposition(a, result); * * var unitaryTranspose = Cesium.Matrix3.transpose(result.unitary, new Cesium.Matrix3()); * var b = Cesium.Matrix3.multiply(result.unitary, result.diagonal, new Cesium.Matrix3()); * Cesium.Matrix3.multiply(b, unitaryTranspose, b); // b is now equal to a * * var lambda = Cesium.Matrix3.getColumn(result.diagonal, 0, new Cesium.Cartesian3()).x; // first eigenvalue * var v = Cesium.Matrix3.getColumn(result.unitary, 0, new Cesium.Cartesian3()); // first eigenvector * var c = Cesium.Cartesian3.multiplyByScalar(v, lambda, new Cesium.Cartesian3()); // equal to Cesium.Matrix3.multiplyByVector(a, v) */ Matrix3.computeEigenDecomposition = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); // This routine was created based upon Matrix Computations, 3rd ed., by Golub and Van Loan, // section 8.4.3 The Classical Jacobi Algorithm var tolerance = _Math.CesiumMath.EPSILON20; var maxSweeps = 10; var count = 0; var sweep = 0; if (!defined.defined(result)) { result = {}; } var unitaryMatrix = result.unitary = Matrix3.clone(Matrix3.IDENTITY, result.unitary); var diagMatrix = result.diagonal = Matrix3.clone(matrix, result.diagonal); var epsilon = tolerance * computeFrobeniusNorm(diagMatrix); while (sweep < maxSweeps && offDiagonalFrobeniusNorm(diagMatrix) > epsilon) { shurDecomposition(diagMatrix, jMatrix); Matrix3.transpose(jMatrix, jMatrixTranspose); Matrix3.multiply(diagMatrix, jMatrix, diagMatrix); Matrix3.multiply(jMatrixTranspose, diagMatrix, diagMatrix); Matrix3.multiply(unitaryMatrix, jMatrix, unitaryMatrix); if (++count > 2) { ++sweep; count = 0; } } return result; }; /** * Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements. * * @param {Matrix3} matrix The matrix with signed elements. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. */ Matrix3.abs = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result[0] = Math.abs(matrix[0]); result[1] = Math.abs(matrix[1]); result[2] = Math.abs(matrix[2]); result[3] = Math.abs(matrix[3]); result[4] = Math.abs(matrix[4]); result[5] = Math.abs(matrix[5]); result[6] = Math.abs(matrix[6]); result[7] = Math.abs(matrix[7]); result[8] = Math.abs(matrix[8]); return result; }; /** * Computes the determinant of the provided matrix. * * @param {Matrix3} matrix The matrix to use. * @returns {Number} The value of the determinant of the matrix. */ Matrix3.determinant = function(matrix) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); //>>includeEnd('debug'); var m11 = matrix[0]; var m21 = matrix[3]; var m31 = matrix[6]; var m12 = matrix[1]; var m22 = matrix[4]; var m32 = matrix[7]; var m13 = matrix[2]; var m23 = matrix[5]; var m33 = matrix[8]; return m11 * (m22 * m33 - m23 * m32) + m12 * (m23 * m31 - m21 * m33) + m13 * (m21 * m32 - m22 * m31); }; /** * Computes the inverse of the provided matrix. * * @param {Matrix3} matrix The matrix to invert. * @param {Matrix3} result The object onto which to store the result. * @returns {Matrix3} The modified result parameter. * * @exception {DeveloperError} matrix is not invertible. */ Matrix3.inverse = function(matrix, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('matrix', matrix); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var m11 = matrix[0]; var m21 = matrix[1]; var m31 = matrix[2]; var m12 = matrix[3]; var m22 = matrix[4]; var m32 = matrix[5]; var m13 = matrix[6]; var m23 = matrix[7]; var m33 = matrix[8]; var determinant = Matrix3.determinant(matrix); //>>includeStart('debug', pragmas.debug); if (Math.abs(determinant) <= _Math.CesiumMath.EPSILON15) { throw new Check.DeveloperError('matrix is not invertible'); } //>>includeEnd('debug'); result[0] = m22 * m33 - m23 * m32; result[1] = m23 * m31 - m21 * m33; result[2] = m21 * m32 - m22 * m31; result[3] = m13 * m32 - m12 * m33; result[4] = m11 * m33 - m13 * m31; result[5] = m12 * m31 - m11 * m32; result[6] = m12 * m23 - m13 * m22; result[7] = m13 * m21 - m11 * m23; result[8] = m11 * m22 - m12 * m21; var scale = 1.0 / determinant; return Matrix3.multiplyByScalar(result, scale, result); }; /** * Compares the provided matrices componentwise and returns *true
if they are equal, false
otherwise.
*
* @param {Matrix3} [left] The first matrix.
* @param {Matrix3} [right] The second matrix.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
Matrix3.equals = function(left, right) {
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
left[0] === right[0] &&
left[1] === right[1] &&
left[2] === right[2] &&
left[3] === right[3] &&
left[4] === right[4] &&
left[5] === right[5] &&
left[6] === right[6] &&
left[7] === right[7] &&
left[8] === right[8]);
};
/**
* Compares the provided matrices componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Matrix3} [left] The first matrix.
* @param {Matrix3} [right] The second matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*/
Matrix3.equalsEpsilon = function(left, right, epsilon) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('epsilon', epsilon);
//>>includeEnd('debug');
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
Math.abs(left[0] - right[0]) <= epsilon &&
Math.abs(left[1] - right[1]) <= epsilon &&
Math.abs(left[2] - right[2]) <= epsilon &&
Math.abs(left[3] - right[3]) <= epsilon &&
Math.abs(left[4] - right[4]) <= epsilon &&
Math.abs(left[5] - right[5]) <= epsilon &&
Math.abs(left[6] - right[6]) <= epsilon &&
Math.abs(left[7] - right[7]) <= epsilon &&
Math.abs(left[8] - right[8]) <= epsilon);
};
/**
* An immutable Matrix3 instance initialized to the identity matrix.
*
* @type {Matrix3}
* @constant
*/
Matrix3.IDENTITY = freezeObject.freezeObject(new Matrix3(1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0));
/**
* An immutable Matrix3 instance initialized to the zero matrix.
*
* @type {Matrix3}
* @constant
*/
Matrix3.ZERO = freezeObject.freezeObject(new Matrix3(0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 0.0));
/**
* The index into Matrix3 for column 0, row 0.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN0ROW0 = 0;
/**
* The index into Matrix3 for column 0, row 1.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN0ROW1 = 1;
/**
* The index into Matrix3 for column 0, row 2.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN0ROW2 = 2;
/**
* The index into Matrix3 for column 1, row 0.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN1ROW0 = 3;
/**
* The index into Matrix3 for column 1, row 1.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN1ROW1 = 4;
/**
* The index into Matrix3 for column 1, row 2.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN1ROW2 = 5;
/**
* The index into Matrix3 for column 2, row 0.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN2ROW0 = 6;
/**
* The index into Matrix3 for column 2, row 1.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN2ROW1 = 7;
/**
* The index into Matrix3 for column 2, row 2.
*
* @type {Number}
* @constant
*/
Matrix3.COLUMN2ROW2 = 8;
defineProperties.defineProperties(Matrix3.prototype, {
/**
* Gets the number of items in the collection.
* @memberof Matrix3.prototype
*
* @type {Number}
*/
length : {
get : function() {
return Matrix3.packedLength;
}
}
});
/**
* Duplicates the provided Matrix3 instance.
*
* @param {Matrix3} [result] The object onto which to store the result.
* @returns {Matrix3} The modified result parameter or a new Matrix3 instance if one was not provided.
*/
Matrix3.prototype.clone = function(result) {
return Matrix3.clone(this, result);
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Matrix3} [right] The right hand side matrix.
* @returns {Boolean} true
if they are equal, false
otherwise.
*/
Matrix3.prototype.equals = function(right) {
return Matrix3.equals(this, right);
};
/**
* @private
*/
Matrix3.equalsArray = function(matrix, array, offset) {
return matrix[0] === array[offset] &&
matrix[1] === array[offset + 1] &&
matrix[2] === array[offset + 2] &&
matrix[3] === array[offset + 3] &&
matrix[4] === array[offset + 4] &&
matrix[5] === array[offset + 5] &&
matrix[6] === array[offset + 6] &&
matrix[7] === array[offset + 7] &&
matrix[8] === array[offset + 8];
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Matrix3} [right] The right hand side matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} true
if they are within the provided epsilon, false
otherwise.
*/
Matrix3.prototype.equalsEpsilon = function(right, epsilon) {
return Matrix3.equalsEpsilon(this, right, epsilon);
};
/**
* Creates a string representing this Matrix with each row being
* on a separate line and in the format '(column0, column1, column2)'.
*
* @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2)'.
*/
Matrix3.prototype.toString = function() {
return '(' + this[0] + ', ' + this[3] + ', ' + this[6] + ')\n' +
'(' + this[1] + ', ' + this[4] + ', ' + this[7] + ')\n' +
'(' + this[2] + ', ' + this[5] + ', ' + this[8] + ')';
};
/**
* A 4D Cartesian point.
* @alias Cartesian4
* @constructor
*
* @param {Number} [x=0.0] The X component.
* @param {Number} [y=0.0] The Y component.
* @param {Number} [z=0.0] The Z component.
* @param {Number} [w=0.0] The W component.
*
* @see Cartesian2
* @see Cartesian3
* @see Packable
*/
function Cartesian4(x, y, z, w) {
/**
* The X component.
* @type {Number}
* @default 0.0
*/
this.x = defaultValue.defaultValue(x, 0.0);
/**
* The Y component.
* @type {Number}
* @default 0.0
*/
this.y = defaultValue.defaultValue(y, 0.0);
/**
* The Z component.
* @type {Number}
* @default 0.0
*/
this.z = defaultValue.defaultValue(z, 0.0);
/**
* The W component.
* @type {Number}
* @default 0.0
*/
this.w = defaultValue.defaultValue(w, 0.0);
}
/**
* Creates a Cartesian4 instance from x, y, z and w coordinates.
*
* @param {Number} x The x coordinate.
* @param {Number} y The y coordinate.
* @param {Number} z The z coordinate.
* @param {Number} w The w coordinate.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.fromElements = function(x, y, z, w, result) {
if (!defined.defined(result)) {
return new Cartesian4(x, y, z, w);
}
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Creates a Cartesian4 instance from a {@link Color}. red
, green
, blue
,
* and alpha
map to x
, y
, z
, and w
, respectively.
*
* @param {Color} color The source color.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.fromColor = function(color, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('color', color);
//>>includeEnd('debug');
if (!defined.defined(result)) {
return new Cartesian4(color.red, color.green, color.blue, color.alpha);
}
result.x = color.red;
result.y = color.green;
result.z = color.blue;
result.w = color.alpha;
return result;
};
/**
* Duplicates a Cartesian4 instance.
*
* @param {Cartesian4} cartesian The Cartesian to duplicate.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined)
*/
Cartesian4.clone = function(cartesian, result) {
if (!defined.defined(cartesian)) {
return undefined;
}
if (!defined.defined(result)) {
return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
}
result.x = cartesian.x;
result.y = cartesian.y;
result.z = cartesian.z;
result.w = cartesian.w;
return result;
};
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Cartesian4.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {Cartesian4} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Cartesian4.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
array[startingIndex++] = value.x;
array[startingIndex++] = value.y;
array[startingIndex++] = value.z;
array[startingIndex] = value.w;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Cartesian4} [result] The object into which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
if (!defined.defined(result)) {
result = new Cartesian4();
}
result.x = array[startingIndex++];
result.y = array[startingIndex++];
result.z = array[startingIndex++];
result.w = array[startingIndex];
return result;
};
/**
* Flattens an array of Cartesian4s into and array of components.
*
* @param {Cartesian4[]} array The array of cartesians to pack.
* @param {Number[]} [result] The array onto which to store the result.
* @returns {Number[]} The packed array.
*/
Cartesian4.packArray = function(array, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
var length = array.length;
if (!defined.defined(result)) {
result = new Array(length * 4);
} else {
result.length = length * 4;
}
for (var i = 0; i < length; ++i) {
Cartesian4.pack(array[i], result, i * 4);
}
return result;
};
/**
* Unpacks an array of cartesian components into and array of Cartesian4s.
*
* @param {Number[]} array The array of components to unpack.
* @param {Cartesian4[]} [result] The array onto which to store the result.
* @returns {Cartesian4[]} The unpacked array.
*/
Cartesian4.unpackArray = function(array, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
var length = array.length;
if (!defined.defined(result)) {
result = new Array(length / 4);
} else {
result.length = length / 4;
}
for (var i = 0; i < length; i += 4) {
var index = i / 4;
result[index] = Cartesian4.unpack(array, i, result[index]);
}
return result;
};
/**
* Creates a Cartesian4 from four consecutive elements in an array.
* @function
*
* @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively.
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*
* @example
* // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0)
* var v = [1.0, 2.0, 3.0, 4.0];
* var p = Cesium.Cartesian4.fromArray(v);
*
* // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array
* var v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0];
* var p2 = Cesium.Cartesian4.fromArray(v2, 2);
*/
Cartesian4.fromArray = Cartesian4.unpack;
/**
* Computes the value of the maximum component for the supplied Cartesian.
*
* @param {Cartesian4} cartesian The cartesian to use.
* @returns {Number} The value of the maximum component.
*/
Cartesian4.maximumComponent = function(cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
};
/**
* Computes the value of the minimum component for the supplied Cartesian.
*
* @param {Cartesian4} cartesian The cartesian to use.
* @returns {Number} The value of the minimum component.
*/
Cartesian4.minimumComponent = function(cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w);
};
/**
* Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
*
* @param {Cartesian4} first A cartesian to compare.
* @param {Cartesian4} second A cartesian to compare.
* @param {Cartesian4} result The object into which to store the result.
* @returns {Cartesian4} A cartesian with the minimum components.
*/
Cartesian4.minimumByComponent = function(first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('first', first);
Check.Check.typeOf.object('second', second);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Math.min(first.x, second.x);
result.y = Math.min(first.y, second.y);
result.z = Math.min(first.z, second.z);
result.w = Math.min(first.w, second.w);
return result;
};
/**
* Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
*
* @param {Cartesian4} first A cartesian to compare.
* @param {Cartesian4} second A cartesian to compare.
* @param {Cartesian4} result The object into which to store the result.
* @returns {Cartesian4} A cartesian with the maximum components.
*/
Cartesian4.maximumByComponent = function(first, second, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('first', first);
Check.Check.typeOf.object('second', second);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Math.max(first.x, second.x);
result.y = Math.max(first.y, second.y);
result.z = Math.max(first.z, second.z);
result.w = Math.max(first.w, second.w);
return result;
};
/**
* Computes the provided Cartesian's squared magnitude.
*
* @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed.
* @returns {Number} The squared magnitude.
*/
Cartesian4.magnitudeSquared = function(cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
return cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z + cartesian.w * cartesian.w;
};
/**
* Computes the Cartesian's magnitude (length).
*
* @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed.
* @returns {Number} The magnitude.
*/
Cartesian4.magnitude = function(cartesian) {
return Math.sqrt(Cartesian4.magnitudeSquared(cartesian));
};
var distanceScratch = new Cartesian4();
/**
* Computes the 4-space distance between two points.
*
* @param {Cartesian4} left The first point to compute the distance from.
* @param {Cartesian4} right The second point to compute the distance to.
* @returns {Number} The distance between two points.
*
* @example
* // Returns 1.0
* var d = Cesium.Cartesian4.distance(
* new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
* new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0));
*/
Cartesian4.distance = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
Cartesian4.subtract(left, right, distanceScratch);
return Cartesian4.magnitude(distanceScratch);
};
/**
* Computes the squared distance between two points. Comparing squared distances
* using this function is more efficient than comparing distances using {@link Cartesian4#distance}.
*
* @param {Cartesian4} left The first point to compute the distance from.
* @param {Cartesian4} right The second point to compute the distance to.
* @returns {Number} The distance between two points.
*
* @example
* // Returns 4.0, not 2.0
* var d = Cesium.Cartesian4.distance(
* new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0),
* new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0));
*/
Cartesian4.distanceSquared = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
Cartesian4.subtract(left, right, distanceScratch);
return Cartesian4.magnitudeSquared(distanceScratch);
};
/**
* Computes the normalized form of the supplied Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian to be normalized.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.normalize = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var magnitude = Cartesian4.magnitude(cartesian);
result.x = cartesian.x / magnitude;
result.y = cartesian.y / magnitude;
result.z = cartesian.z / magnitude;
result.w = cartesian.w / magnitude;
//>>includeStart('debug', pragmas.debug);
if (isNaN(result.x) || isNaN(result.y) || isNaN(result.z) || isNaN(result.w)) {
throw new Check.DeveloperError('normalized result is not a number');
}
//>>includeEnd('debug');
return result;
};
/**
* Computes the dot (scalar) product of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @returns {Number} The dot product.
*/
Cartesian4.dot = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
return left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w;
};
/**
* Computes the componentwise product of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.multiplyComponents = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x * right.x;
result.y = left.y * right.y;
result.z = left.z * right.z;
result.w = left.w * right.w;
return result;
};
/**
* Computes the componentwise quotient of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.divideComponents = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x / right.x;
result.y = left.y / right.y;
result.z = left.z / right.z;
result.w = left.w / right.w;
return result;
};
/**
* Computes the componentwise sum of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.add = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x + right.x;
result.y = left.y + right.y;
result.z = left.z + right.z;
result.w = left.w + right.w;
return result;
};
/**
* Computes the componentwise difference of two Cartesians.
*
* @param {Cartesian4} left The first Cartesian.
* @param {Cartesian4} right The second Cartesian.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.subtract = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x - right.x;
result.y = left.y - right.y;
result.z = left.z - right.z;
result.w = left.w - right.w;
return result;
};
/**
* Multiplies the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian4} cartesian The Cartesian to be scaled.
* @param {Number} scalar The scalar to multiply with.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.multiplyByScalar = function(cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = cartesian.x * scalar;
result.y = cartesian.y * scalar;
result.z = cartesian.z * scalar;
result.w = cartesian.w * scalar;
return result;
};
/**
* Divides the provided Cartesian componentwise by the provided scalar.
*
* @param {Cartesian4} cartesian The Cartesian to be divided.
* @param {Number} scalar The scalar to divide by.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.divideByScalar = function(cartesian, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = cartesian.x / scalar;
result.y = cartesian.y / scalar;
result.z = cartesian.z / scalar;
result.w = cartesian.w / scalar;
return result;
};
/**
* Negates the provided Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian to be negated.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.negate = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = -cartesian.x;
result.y = -cartesian.y;
result.z = -cartesian.z;
result.w = -cartesian.w;
return result;
};
/**
* Computes the absolute value of the provided Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.abs = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Math.abs(cartesian.x);
result.y = Math.abs(cartesian.y);
result.z = Math.abs(cartesian.z);
result.w = Math.abs(cartesian.w);
return result;
};
var lerpScratch = new Cartesian4();
/**
* Computes the linear interpolation or extrapolation at t using the provided cartesians.
*
* @param {Cartesian4} start The value corresponding to t at 0.0.
* @param {Cartesian4}end The value corresponding to t at 1.0.
* @param {Number} t The point along t at which to interpolate.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Cartesian4.lerp = function(start, end, t, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('start', start);
Check.Check.typeOf.object('end', end);
Check.Check.typeOf.number('t', t);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
Cartesian4.multiplyByScalar(end, t, lerpScratch);
result = Cartesian4.multiplyByScalar(start, 1.0 - t, result);
return Cartesian4.add(lerpScratch, result, result);
};
var mostOrthogonalAxisScratch = new Cartesian4();
/**
* Returns the axis that is most orthogonal to the provided Cartesian.
*
* @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The most orthogonal axis.
*/
Cartesian4.mostOrthogonalAxis = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch);
Cartesian4.abs(f, f);
if (f.x <= f.y) {
if (f.x <= f.z) {
if (f.x <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_X, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
} else if (f.z <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
} else if (f.y <= f.z) {
if (f.y <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_Y, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
} else if (f.z <= f.w) {
result = Cartesian4.clone(Cartesian4.UNIT_Z, result);
} else {
result = Cartesian4.clone(Cartesian4.UNIT_W, result);
}
return result;
};
/**
* Compares the provided Cartesians componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Cartesian4} [left] The first Cartesian.
* @param {Cartesian4} [right] The second Cartesian.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
Cartesian4.equals = function(left, right) {
return (left === right) ||
((defined.defined(left)) &&
(defined.defined(right)) &&
(left.x === right.x) &&
(left.y === right.y) &&
(left.z === right.z) &&
(left.w === right.w));
};
/**
* @private
*/
Cartesian4.equalsArray = function(cartesian, array, offset) {
return cartesian.x === array[offset] &&
cartesian.y === array[offset + 1] &&
cartesian.z === array[offset + 2] &&
cartesian.w === array[offset + 3];
};
/**
* Compares the provided Cartesians componentwise and returns
* true
if they pass an absolute or relative tolerance test,
* false
otherwise.
*
* @param {Cartesian4} [left] The first Cartesian.
* @param {Cartesian4} [right] The second Cartesian.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*/
Cartesian4.equalsEpsilon = function(left, right, relativeEpsilon, absoluteEpsilon) {
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
_Math.CesiumMath.equalsEpsilon(left.x, right.x, relativeEpsilon, absoluteEpsilon) &&
_Math.CesiumMath.equalsEpsilon(left.y, right.y, relativeEpsilon, absoluteEpsilon) &&
_Math.CesiumMath.equalsEpsilon(left.z, right.z, relativeEpsilon, absoluteEpsilon) &&
_Math.CesiumMath.equalsEpsilon(left.w, right.w, relativeEpsilon, absoluteEpsilon));
};
/**
* An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.ZERO = freezeObject.freezeObject(new Cartesian4(0.0, 0.0, 0.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_X = freezeObject.freezeObject(new Cartesian4(1.0, 0.0, 0.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_Y = freezeObject.freezeObject(new Cartesian4(0.0, 1.0, 0.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_Z = freezeObject.freezeObject(new Cartesian4(0.0, 0.0, 1.0, 0.0));
/**
* An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0).
*
* @type {Cartesian4}
* @constant
*/
Cartesian4.UNIT_W = freezeObject.freezeObject(new Cartesian4(0.0, 0.0, 0.0, 1.0));
/**
* Duplicates this Cartesian4 instance.
*
* @param {Cartesian4} [result] The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided.
*/
Cartesian4.prototype.clone = function(result) {
return Cartesian4.clone(this, result);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Cartesian4} [right] The right hand side Cartesian.
* @returns {Boolean} true
if they are equal, false
otherwise.
*/
Cartesian4.prototype.equals = function(right) {
return Cartesian4.equals(this, right);
};
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* true
if they pass an absolute or relative tolerance test,
* false
otherwise.
*
* @param {Cartesian4} [right] The right hand side Cartesian.
* @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing.
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
* @returns {Boolean} true
if they are within the provided epsilon, false
otherwise.
*/
Cartesian4.prototype.equalsEpsilon = function(right, relativeEpsilon, absoluteEpsilon) {
return Cartesian4.equalsEpsilon(this, right, relativeEpsilon, absoluteEpsilon);
};
/**
* Creates a string representing this Cartesian in the format '(x, y, z, w)'.
*
* @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'.
*/
Cartesian4.prototype.toString = function() {
return '(' + this.x + ', ' + this.y + ', ' + this.z + ', ' + this.w + ')';
};
var scratchFloatArray = new Float32Array(1);
var SHIFT_LEFT_8 = 256.0;
var SHIFT_LEFT_16 = 65536.0;
var SHIFT_LEFT_24 = 16777216.0;
var SHIFT_RIGHT_8 = 1.0 / SHIFT_LEFT_8;
var SHIFT_RIGHT_16 = 1.0 / SHIFT_LEFT_16;
var SHIFT_RIGHT_24 = 1.0 / SHIFT_LEFT_24;
var BIAS = 38.0;
/**
* Packs an arbitrary floating point value to 4 values representable using uint8.
*
* @param {Number} value A floating point number
* @param {Cartesian4} [result] The Cartesian4 that will contain the packed float.
* @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w.
*/
Cartesian4.packFloat = function(value, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('value', value);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new Cartesian4();
}
// Force the value to 32 bit precision
scratchFloatArray[0] = value;
value = scratchFloatArray[0];
if (value === 0.0) {
return Cartesian4.clone(Cartesian4.ZERO, result);
}
var sign = value < 0.0 ? 1.0 : 0.0;
var exponent;
if (!isFinite(value)) {
value = 0.1;
exponent = BIAS;
} else {
value = Math.abs(value);
exponent = Math.floor(_Math.CesiumMath.logBase(value, 10)) + 1.0;
value = value / Math.pow(10.0, exponent);
}
var temp = value * SHIFT_LEFT_8;
result.x = Math.floor(temp);
temp = (temp - result.x) * SHIFT_LEFT_8;
result.y = Math.floor(temp);
temp = (temp - result.y) * SHIFT_LEFT_8;
result.z = Math.floor(temp);
result.w = (exponent + BIAS) * 2.0 + sign;
return result;
};
/**
* Unpacks a float packed using Cartesian4.packFloat.
*
* @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8.
* @returns {Number} The unpacked float.
* @private
*/
Cartesian4.unpackFloat = function(packedFloat) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('packedFloat', packedFloat);
//>>includeEnd('debug');
var temp = packedFloat.w / 2.0;
var exponent = Math.floor(temp);
var sign = (temp - exponent) * 2.0;
exponent = exponent - BIAS;
sign = sign * 2.0 - 1.0;
sign = -sign;
if (exponent >= BIAS) {
return sign < 0.0 ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY;
}
var unpacked = sign * packedFloat.x * SHIFT_RIGHT_8;
unpacked += sign * packedFloat.y * SHIFT_RIGHT_16;
unpacked += sign * packedFloat.z * SHIFT_RIGHT_24;
return unpacked * Math.pow(10.0, exponent);
};
var warnings = {};
/**
* Logs a one time message to the console. Use this function instead of
* console.log
directly since this does not log duplicate messages
* unless it is called from multiple workers.
*
* @exports oneTimeWarning
*
* @param {String} identifier The unique identifier for this warning.
* @param {String} [message=identifier] The message to log to the console.
*
* @example
* for(var i=0;iconsole.log
directly since this does not log duplicate messages
* unless it is called from multiple workers.
*
* @exports deprecationWarning
*
* @param {String} identifier The unique identifier for this deprecated API.
* @param {String} message The message to log to the console.
*
* @example
* // Deprecated function or class
* function Foo() {
* deprecationWarning('Foo', 'Foo was deprecated in Cesium 1.01. It will be removed in 1.03. Use newFoo instead.');
* // ...
* }
*
* // Deprecated function
* Bar.prototype.func = function() {
* deprecationWarning('Bar.func', 'Bar.func() was deprecated in Cesium 1.01. It will be removed in 1.03. Use Bar.newFunc() instead.');
* // ...
* };
*
* // Deprecated property
* defineProperties(Bar.prototype, {
* prop : {
* get : function() {
* deprecationWarning('Bar.prop', 'Bar.prop was deprecated in Cesium 1.01. It will be removed in 1.03. Use Bar.newProp instead.');
* // ...
* },
* set : function(value) {
* deprecationWarning('Bar.prop', 'Bar.prop was deprecated in Cesium 1.01. It will be removed in 1.03. Use Bar.newProp instead.');
* // ...
* }
* }
* });
*
* @private
*/
function deprecationWarning(identifier, message) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(identifier) || !defined.defined(message)) {
throw new Check.DeveloperError('identifier and message are required.');
}
//>>includeEnd('debug');
oneTimeWarning(identifier, message);
}
/**
* A 4x4 matrix, indexable as a column-major order array.
* Constructor parameters are in row-major order for code readability.
* @alias Matrix4
* @constructor
*
* @param {Number} [column0Row0=0.0] The value for column 0, row 0.
* @param {Number} [column1Row0=0.0] The value for column 1, row 0.
* @param {Number} [column2Row0=0.0] The value for column 2, row 0.
* @param {Number} [column3Row0=0.0] The value for column 3, row 0.
* @param {Number} [column0Row1=0.0] The value for column 0, row 1.
* @param {Number} [column1Row1=0.0] The value for column 1, row 1.
* @param {Number} [column2Row1=0.0] The value for column 2, row 1.
* @param {Number} [column3Row1=0.0] The value for column 3, row 1.
* @param {Number} [column0Row2=0.0] The value for column 0, row 2.
* @param {Number} [column1Row2=0.0] The value for column 1, row 2.
* @param {Number} [column2Row2=0.0] The value for column 2, row 2.
* @param {Number} [column3Row2=0.0] The value for column 3, row 2.
* @param {Number} [column0Row3=0.0] The value for column 0, row 3.
* @param {Number} [column1Row3=0.0] The value for column 1, row 3.
* @param {Number} [column2Row3=0.0] The value for column 2, row 3.
* @param {Number} [column3Row3=0.0] The value for column 3, row 3.
*
* @see Matrix4.fromColumnMajorArray
* @see Matrix4.fromRowMajorArray
* @see Matrix4.fromRotationTranslation
* @see Matrix4.fromTranslationRotationScale
* @see Matrix4.fromTranslationQuaternionRotationScale
* @see Matrix4.fromTranslation
* @see Matrix4.fromScale
* @see Matrix4.fromUniformScale
* @see Matrix4.fromCamera
* @see Matrix4.computePerspectiveFieldOfView
* @see Matrix4.computeOrthographicOffCenter
* @see Matrix4.computePerspectiveOffCenter
* @see Matrix4.computeInfinitePerspectiveOffCenter
* @see Matrix4.computeViewportTransformation
* @see Matrix4.computeView
* @see Matrix2
* @see Matrix3
* @see Packable
*/
function Matrix4(column0Row0, column1Row0, column2Row0, column3Row0,
column0Row1, column1Row1, column2Row1, column3Row1,
column0Row2, column1Row2, column2Row2, column3Row2,
column0Row3, column1Row3, column2Row3, column3Row3) {
this[0] = defaultValue.defaultValue(column0Row0, 0.0);
this[1] = defaultValue.defaultValue(column0Row1, 0.0);
this[2] = defaultValue.defaultValue(column0Row2, 0.0);
this[3] = defaultValue.defaultValue(column0Row3, 0.0);
this[4] = defaultValue.defaultValue(column1Row0, 0.0);
this[5] = defaultValue.defaultValue(column1Row1, 0.0);
this[6] = defaultValue.defaultValue(column1Row2, 0.0);
this[7] = defaultValue.defaultValue(column1Row3, 0.0);
this[8] = defaultValue.defaultValue(column2Row0, 0.0);
this[9] = defaultValue.defaultValue(column2Row1, 0.0);
this[10] = defaultValue.defaultValue(column2Row2, 0.0);
this[11] = defaultValue.defaultValue(column2Row3, 0.0);
this[12] = defaultValue.defaultValue(column3Row0, 0.0);
this[13] = defaultValue.defaultValue(column3Row1, 0.0);
this[14] = defaultValue.defaultValue(column3Row2, 0.0);
this[15] = defaultValue.defaultValue(column3Row3, 0.0);
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Matrix4.packedLength = 16;
/**
* Stores the provided instance into the provided array.
*
* @param {Matrix4} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Matrix4.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
array[startingIndex++] = value[0];
array[startingIndex++] = value[1];
array[startingIndex++] = value[2];
array[startingIndex++] = value[3];
array[startingIndex++] = value[4];
array[startingIndex++] = value[5];
array[startingIndex++] = value[6];
array[startingIndex++] = value[7];
array[startingIndex++] = value[8];
array[startingIndex++] = value[9];
array[startingIndex++] = value[10];
array[startingIndex++] = value[11];
array[startingIndex++] = value[12];
array[startingIndex++] = value[13];
array[startingIndex++] = value[14];
array[startingIndex] = value[15];
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Matrix4} [result] The object into which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
*/
Matrix4.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
if (!defined.defined(result)) {
result = new Matrix4();
}
result[0] = array[startingIndex++];
result[1] = array[startingIndex++];
result[2] = array[startingIndex++];
result[3] = array[startingIndex++];
result[4] = array[startingIndex++];
result[5] = array[startingIndex++];
result[6] = array[startingIndex++];
result[7] = array[startingIndex++];
result[8] = array[startingIndex++];
result[9] = array[startingIndex++];
result[10] = array[startingIndex++];
result[11] = array[startingIndex++];
result[12] = array[startingIndex++];
result[13] = array[startingIndex++];
result[14] = array[startingIndex++];
result[15] = array[startingIndex];
return result;
};
/**
* Duplicates a Matrix4 instance.
*
* @param {Matrix4} matrix The matrix to duplicate.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided. (Returns undefined if matrix is undefined)
*/
Matrix4.clone = function(matrix, result) {
if (!defined.defined(matrix)) {
return undefined;
}
if (!defined.defined(result)) {
return new Matrix4(matrix[0], matrix[4], matrix[8], matrix[12],
matrix[1], matrix[5], matrix[9], matrix[13],
matrix[2], matrix[6], matrix[10], matrix[14],
matrix[3], matrix[7], matrix[11], matrix[15]);
}
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
result[4] = matrix[4];
result[5] = matrix[5];
result[6] = matrix[6];
result[7] = matrix[7];
result[8] = matrix[8];
result[9] = matrix[9];
result[10] = matrix[10];
result[11] = matrix[11];
result[12] = matrix[12];
result[13] = matrix[13];
result[14] = matrix[14];
result[15] = matrix[15];
return result;
};
/**
* Creates a Matrix4 from 16 consecutive elements in an array.
* @function
*
* @param {Number[]} array The array whose 16 consecutive elements correspond to the positions of the matrix. Assumes column-major order.
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to first column first row position in the matrix.
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
*
* @example
* // Create the Matrix4:
* // [1.0, 2.0, 3.0, 4.0]
* // [1.0, 2.0, 3.0, 4.0]
* // [1.0, 2.0, 3.0, 4.0]
* // [1.0, 2.0, 3.0, 4.0]
*
* var v = [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0];
* var m = Cesium.Matrix4.fromArray(v);
*
* // Create same Matrix4 with using an offset into an array
* var v2 = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0];
* var m2 = Cesium.Matrix4.fromArray(v2, 2);
*/
Matrix4.fromArray = Matrix4.unpack;
/**
* Computes a Matrix4 instance from a column-major order array.
*
* @param {Number[]} values The column-major order array.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*/
Matrix4.fromColumnMajorArray = function(values, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('values', values);
//>>includeEnd('debug');
return Matrix4.clone(values, result);
};
/**
* Computes a Matrix4 instance from a row-major order array.
* The resulting matrix will be in column-major order.
*
* @param {Number[]} values The row-major order array.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*/
Matrix4.fromRowMajorArray = function(values, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('values', values);
//>>includeEnd('debug');
if (!defined.defined(result)) {
return new Matrix4(values[0], values[1], values[2], values[3],
values[4], values[5], values[6], values[7],
values[8], values[9], values[10], values[11],
values[12], values[13], values[14], values[15]);
}
result[0] = values[0];
result[1] = values[4];
result[2] = values[8];
result[3] = values[12];
result[4] = values[1];
result[5] = values[5];
result[6] = values[9];
result[7] = values[13];
result[8] = values[2];
result[9] = values[6];
result[10] = values[10];
result[11] = values[14];
result[12] = values[3];
result[13] = values[7];
result[14] = values[11];
result[15] = values[15];
return result;
};
/**
* Computes a Matrix4 instance from a Matrix3 representing the rotation
* and a Cartesian3 representing the translation.
*
* @param {Matrix3} rotation The upper left portion of the matrix representing the rotation.
* @param {Cartesian3} [translation=Cartesian3.ZERO] The upper right portion of the matrix representing the translation.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*/
Matrix4.fromRotationTranslation = function(rotation, translation, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('rotation', rotation);
//>>includeEnd('debug');
translation = defaultValue.defaultValue(translation, Cartesian2.Cartesian3.ZERO);
if (!defined.defined(result)) {
return new Matrix4(rotation[0], rotation[3], rotation[6], translation.x,
rotation[1], rotation[4], rotation[7], translation.y,
rotation[2], rotation[5], rotation[8], translation.z,
0.0, 0.0, 0.0, 1.0);
}
result[0] = rotation[0];
result[1] = rotation[1];
result[2] = rotation[2];
result[3] = 0.0;
result[4] = rotation[3];
result[5] = rotation[4];
result[6] = rotation[5];
result[7] = 0.0;
result[8] = rotation[6];
result[9] = rotation[7];
result[10] = rotation[8];
result[11] = 0.0;
result[12] = translation.x;
result[13] = translation.y;
result[14] = translation.z;
result[15] = 1.0;
return result;
};
/**
* Computes a Matrix4 instance from a translation, rotation, and scale (TRS)
* representation with the rotation represented as a quaternion.
*
* @param {Cartesian3} translation The translation transformation.
* @param {Quaternion} rotation The rotation transformation.
* @param {Cartesian3} scale The non-uniform scale transformation.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*
* @example
* var result = Cesium.Matrix4.fromTranslationQuaternionRotationScale(
* new Cesium.Cartesian3(1.0, 2.0, 3.0), // translation
* Cesium.Quaternion.IDENTITY, // rotation
* new Cesium.Cartesian3(7.0, 8.0, 9.0), // scale
* result);
*/
Matrix4.fromTranslationQuaternionRotationScale = function(translation, rotation, scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('translation', translation);
Check.Check.typeOf.object('rotation', rotation);
Check.Check.typeOf.object('scale', scale);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new Matrix4();
}
var scaleX = scale.x;
var scaleY = scale.y;
var scaleZ = scale.z;
var x2 = rotation.x * rotation.x;
var xy = rotation.x * rotation.y;
var xz = rotation.x * rotation.z;
var xw = rotation.x * rotation.w;
var y2 = rotation.y * rotation.y;
var yz = rotation.y * rotation.z;
var yw = rotation.y * rotation.w;
var z2 = rotation.z * rotation.z;
var zw = rotation.z * rotation.w;
var w2 = rotation.w * rotation.w;
var m00 = x2 - y2 - z2 + w2;
var m01 = 2.0 * (xy - zw);
var m02 = 2.0 * (xz + yw);
var m10 = 2.0 * (xy + zw);
var m11 = -x2 + y2 - z2 + w2;
var m12 = 2.0 * (yz - xw);
var m20 = 2.0 * (xz - yw);
var m21 = 2.0 * (yz + xw);
var m22 = -x2 - y2 + z2 + w2;
result[0] = m00 * scaleX;
result[1] = m10 * scaleX;
result[2] = m20 * scaleX;
result[3] = 0.0;
result[4] = m01 * scaleY;
result[5] = m11 * scaleY;
result[6] = m21 * scaleY;
result[7] = 0.0;
result[8] = m02 * scaleZ;
result[9] = m12 * scaleZ;
result[10] = m22 * scaleZ;
result[11] = 0.0;
result[12] = translation.x;
result[13] = translation.y;
result[14] = translation.z;
result[15] = 1.0;
return result;
};
/**
* Creates a Matrix4 instance from a {@link TranslationRotationScale} instance.
*
* @param {TranslationRotationScale} translationRotationScale The instance.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*/
Matrix4.fromTranslationRotationScale = function(translationRotationScale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('translationRotationScale', translationRotationScale);
//>>includeEnd('debug');
return Matrix4.fromTranslationQuaternionRotationScale(translationRotationScale.translation, translationRotationScale.rotation, translationRotationScale.scale, result);
};
/**
* Creates a Matrix4 instance from a Cartesian3 representing the translation.
*
* @param {Cartesian3} translation The upper right portion of the matrix representing the translation.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*
* @see Matrix4.multiplyByTranslation
*/
Matrix4.fromTranslation = function(translation, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('translation', translation);
//>>includeEnd('debug');
return Matrix4.fromRotationTranslation(Matrix3.IDENTITY, translation, result);
};
/**
* Computes a Matrix4 instance representing a non-uniform scale.
*
* @param {Cartesian3} scale The x, y, and z scale factors.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*
* @example
* // Creates
* // [7.0, 0.0, 0.0, 0.0]
* // [0.0, 8.0, 0.0, 0.0]
* // [0.0, 0.0, 9.0, 0.0]
* // [0.0, 0.0, 0.0, 1.0]
* var m = Cesium.Matrix4.fromScale(new Cesium.Cartesian3(7.0, 8.0, 9.0));
*/
Matrix4.fromScale = function(scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('scale', scale);
//>>includeEnd('debug');
if (!defined.defined(result)) {
return new Matrix4(
scale.x, 0.0, 0.0, 0.0,
0.0, scale.y, 0.0, 0.0,
0.0, 0.0, scale.z, 0.0,
0.0, 0.0, 0.0, 1.0);
}
result[0] = scale.x;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = scale.y;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 0.0;
result[9] = 0.0;
result[10] = scale.z;
result[11] = 0.0;
result[12] = 0.0;
result[13] = 0.0;
result[14] = 0.0;
result[15] = 1.0;
return result;
};
/**
* Computes a Matrix4 instance representing a uniform scale.
*
* @param {Number} scale The uniform scale factor.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*
* @example
* // Creates
* // [2.0, 0.0, 0.0, 0.0]
* // [0.0, 2.0, 0.0, 0.0]
* // [0.0, 0.0, 2.0, 0.0]
* // [0.0, 0.0, 0.0, 1.0]
* var m = Cesium.Matrix4.fromUniformScale(2.0);
*/
Matrix4.fromUniformScale = function(scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('scale', scale);
//>>includeEnd('debug');
if (!defined.defined(result)) {
return new Matrix4(scale, 0.0, 0.0, 0.0,
0.0, scale, 0.0, 0.0,
0.0, 0.0, scale, 0.0,
0.0, 0.0, 0.0, 1.0);
}
result[0] = scale;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = scale;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 0.0;
result[9] = 0.0;
result[10] = scale;
result[11] = 0.0;
result[12] = 0.0;
result[13] = 0.0;
result[14] = 0.0;
result[15] = 1.0;
return result;
};
var fromCameraF = new Cartesian2.Cartesian3();
var fromCameraR = new Cartesian2.Cartesian3();
var fromCameraU = new Cartesian2.Cartesian3();
/**
* Computes a Matrix4 instance from a Camera.
*
* @param {Camera} camera The camera to use.
* @param {Matrix4} [result] The object in which the result will be stored, if undefined a new instance will be created.
* @returns {Matrix4} The modified result parameter, or a new Matrix4 instance if one was not provided.
*/
Matrix4.fromCamera = function(camera, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('camera', camera);
//>>includeEnd('debug');
var position = camera.position;
var direction = camera.direction;
var up = camera.up;
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('camera.position', position);
Check.Check.typeOf.object('camera.direction', direction);
Check.Check.typeOf.object('camera.up', up);
//>>includeEnd('debug');
Cartesian2.Cartesian3.normalize(direction, fromCameraF);
Cartesian2.Cartesian3.normalize(Cartesian2.Cartesian3.cross(fromCameraF, up, fromCameraR), fromCameraR);
Cartesian2.Cartesian3.normalize(Cartesian2.Cartesian3.cross(fromCameraR, fromCameraF, fromCameraU), fromCameraU);
var sX = fromCameraR.x;
var sY = fromCameraR.y;
var sZ = fromCameraR.z;
var fX = fromCameraF.x;
var fY = fromCameraF.y;
var fZ = fromCameraF.z;
var uX = fromCameraU.x;
var uY = fromCameraU.y;
var uZ = fromCameraU.z;
var positionX = position.x;
var positionY = position.y;
var positionZ = position.z;
var t0 = sX * -positionX + sY * -positionY + sZ * -positionZ;
var t1 = uX * -positionX + uY * -positionY + uZ * -positionZ;
var t2 = fX * positionX + fY * positionY + fZ * positionZ;
// The code below this comment is an optimized
// version of the commented lines.
// Rather that create two matrices and then multiply,
// we just bake in the multiplcation as part of creation.
// var rotation = new Matrix4(
// sX, sY, sZ, 0.0,
// uX, uY, uZ, 0.0,
// -fX, -fY, -fZ, 0.0,
// 0.0, 0.0, 0.0, 1.0);
// var translation = new Matrix4(
// 1.0, 0.0, 0.0, -position.x,
// 0.0, 1.0, 0.0, -position.y,
// 0.0, 0.0, 1.0, -position.z,
// 0.0, 0.0, 0.0, 1.0);
// return rotation.multiply(translation);
if (!defined.defined(result)) {
return new Matrix4(
sX, sY, sZ, t0,
uX, uY, uZ, t1,
-fX, -fY, -fZ, t2,
0.0, 0.0, 0.0, 1.0);
}
result[0] = sX;
result[1] = uX;
result[2] = -fX;
result[3] = 0.0;
result[4] = sY;
result[5] = uY;
result[6] = -fY;
result[7] = 0.0;
result[8] = sZ;
result[9] = uZ;
result[10] = -fZ;
result[11] = 0.0;
result[12] = t0;
result[13] = t1;
result[14] = t2;
result[15] = 1.0;
return result;
};
/**
* Computes a Matrix4 instance representing a perspective transformation matrix.
*
* @param {Number} fovY The field of view along the Y axis in radians.
* @param {Number} aspectRatio The aspect ratio.
* @param {Number} near The distance to the near plane in meters.
* @param {Number} far The distance to the far plane in meters.
* @param {Matrix4} result The object in which the result will be stored.
* @returns {Matrix4} The modified result parameter.
*
* @exception {DeveloperError} fovY must be in (0, PI].
* @exception {DeveloperError} aspectRatio must be greater than zero.
* @exception {DeveloperError} near must be greater than zero.
* @exception {DeveloperError} far must be greater than zero.
*/
Matrix4.computePerspectiveFieldOfView = function(fovY, aspectRatio, near, far, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number.greaterThan('fovY', fovY, 0.0);
Check.Check.typeOf.number.lessThan('fovY', fovY, Math.PI);
Check.Check.typeOf.number.greaterThan('near', near, 0.0);
Check.Check.typeOf.number.greaterThan('far', far, 0.0);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var bottom = Math.tan(fovY * 0.5);
var column1Row1 = 1.0 / bottom;
var column0Row0 = column1Row1 / aspectRatio;
var column2Row2 = (far + near) / (near - far);
var column3Row2 = (2.0 * far * near) / (near - far);
result[0] = column0Row0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = column1Row1;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 0.0;
result[9] = 0.0;
result[10] = column2Row2;
result[11] = -1.0;
result[12] = 0.0;
result[13] = 0.0;
result[14] = column3Row2;
result[15] = 0.0;
return result;
};
/**
* Computes a Matrix4 instance representing an orthographic transformation matrix.
*
* @param {Number} left The number of meters to the left of the camera that will be in view.
* @param {Number} right The number of meters to the right of the camera that will be in view.
* @param {Number} bottom The number of meters below of the camera that will be in view.
* @param {Number} top The number of meters above of the camera that will be in view.
* @param {Number} near The distance to the near plane in meters.
* @param {Number} far The distance to the far plane in meters.
* @param {Matrix4} result The object in which the result will be stored.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.computeOrthographicOffCenter = function(left, right, bottom, top, near, far, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('left', left);
Check.Check.typeOf.number('right', right);
Check.Check.typeOf.number('bottom', bottom);
Check.Check.typeOf.number('top', top);
Check.Check.typeOf.number('near', near);
Check.Check.typeOf.number('far', far);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var a = 1.0 / (right - left);
var b = 1.0 / (top - bottom);
var c = 1.0 / (far - near);
var tx = -(right + left) * a;
var ty = -(top + bottom) * b;
var tz = -(far + near) * c;
a *= 2.0;
b *= 2.0;
c *= -2.0;
result[0] = a;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = b;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 0.0;
result[9] = 0.0;
result[10] = c;
result[11] = 0.0;
result[12] = tx;
result[13] = ty;
result[14] = tz;
result[15] = 1.0;
return result;
};
/**
* Computes a Matrix4 instance representing an off center perspective transformation.
*
* @param {Number} left The number of meters to the left of the camera that will be in view.
* @param {Number} right The number of meters to the right of the camera that will be in view.
* @param {Number} bottom The number of meters below of the camera that will be in view.
* @param {Number} top The number of meters above of the camera that will be in view.
* @param {Number} near The distance to the near plane in meters.
* @param {Number} far The distance to the far plane in meters.
* @param {Matrix4} result The object in which the result will be stored.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.computePerspectiveOffCenter = function(left, right, bottom, top, near, far, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('left', left);
Check.Check.typeOf.number('right', right);
Check.Check.typeOf.number('bottom', bottom);
Check.Check.typeOf.number('top', top);
Check.Check.typeOf.number('near', near);
Check.Check.typeOf.number('far', far);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var column0Row0 = 2.0 * near / (right - left);
var column1Row1 = 2.0 * near / (top - bottom);
var column2Row0 = (right + left) / (right - left);
var column2Row1 = (top + bottom) / (top - bottom);
var column2Row2 = -(far + near) / (far - near);
var column2Row3 = -1.0;
var column3Row2 = -2.0 * far * near / (far - near);
result[0] = column0Row0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = column1Row1;
result[6] = 0.0;
result[7] = 0.0;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = column2Row3;
result[12] = 0.0;
result[13] = 0.0;
result[14] = column3Row2;
result[15] = 0.0;
return result;
};
/**
* Computes a Matrix4 instance representing an infinite off center perspective transformation.
*
* @param {Number} left The number of meters to the left of the camera that will be in view.
* @param {Number} right The number of meters to the right of the camera that will be in view.
* @param {Number} bottom The number of meters below of the camera that will be in view.
* @param {Number} top The number of meters above of the camera that will be in view.
* @param {Number} near The distance to the near plane in meters.
* @param {Matrix4} result The object in which the result will be stored.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.computeInfinitePerspectiveOffCenter = function(left, right, bottom, top, near, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('left', left);
Check.Check.typeOf.number('right', right);
Check.Check.typeOf.number('bottom', bottom);
Check.Check.typeOf.number('top', top);
Check.Check.typeOf.number('near', near);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var column0Row0 = 2.0 * near / (right - left);
var column1Row1 = 2.0 * near / (top - bottom);
var column2Row0 = (right + left) / (right - left);
var column2Row1 = (top + bottom) / (top - bottom);
var column2Row2 = -1.0;
var column2Row3 = -1.0;
var column3Row2 = -2.0 * near;
result[0] = column0Row0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = column1Row1;
result[6] = 0.0;
result[7] = 0.0;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = column2Row3;
result[12] = 0.0;
result[13] = 0.0;
result[14] = column3Row2;
result[15] = 0.0;
return result;
};
/**
* Computes a Matrix4 instance that transforms from normalized device coordinates to window coordinates.
*
* @param {Object}[viewport = { x : 0.0, y : 0.0, width : 0.0, height : 0.0 }] The viewport's corners as shown in Example 1.
* @param {Number}[nearDepthRange=0.0] The near plane distance in window coordinates.
* @param {Number}[farDepthRange=1.0] The far plane distance in window coordinates.
* @param {Matrix4} result The object in which the result will be stored.
* @returns {Matrix4} The modified result parameter.
*
* @example
* // Create viewport transformation using an explicit viewport and depth range.
* var m = Cesium.Matrix4.computeViewportTransformation({
* x : 0.0,
* y : 0.0,
* width : 1024.0,
* height : 768.0
* }, 0.0, 1.0, new Cesium.Matrix4());
*/
Matrix4.computeViewportTransformation = function(viewport, nearDepthRange, farDepthRange, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
viewport = defaultValue.defaultValue(viewport, defaultValue.defaultValue.EMPTY_OBJECT);
var x = defaultValue.defaultValue(viewport.x, 0.0);
var y = defaultValue.defaultValue(viewport.y, 0.0);
var width = defaultValue.defaultValue(viewport.width, 0.0);
var height = defaultValue.defaultValue(viewport.height, 0.0);
nearDepthRange = defaultValue.defaultValue(nearDepthRange, 0.0);
farDepthRange = defaultValue.defaultValue(farDepthRange, 1.0);
var halfWidth = width * 0.5;
var halfHeight = height * 0.5;
var halfDepth = (farDepthRange - nearDepthRange) * 0.5;
var column0Row0 = halfWidth;
var column1Row1 = halfHeight;
var column2Row2 = halfDepth;
var column3Row0 = x + halfWidth;
var column3Row1 = y + halfHeight;
var column3Row2 = nearDepthRange + halfDepth;
var column3Row3 = 1.0;
result[0] = column0Row0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = column1Row1;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 0.0;
result[9] = 0.0;
result[10] = column2Row2;
result[11] = 0.0;
result[12] = column3Row0;
result[13] = column3Row1;
result[14] = column3Row2;
result[15] = column3Row3;
return result;
};
/**
* Computes a Matrix4 instance that transforms from world space to view space.
*
* @param {Cartesian3} position The position of the camera.
* @param {Cartesian3} direction The forward direction.
* @param {Cartesian3} up The up direction.
* @param {Cartesian3} right The right direction.
* @param {Matrix4} result The object in which the result will be stored.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.computeView = function(position, direction, up, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('position', position);
Check.Check.typeOf.object('direction', direction);
Check.Check.typeOf.object('up', up);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = right.x;
result[1] = up.x;
result[2] = -direction.x;
result[3] = 0.0;
result[4] = right.y;
result[5] = up.y;
result[6] = -direction.y;
result[7] = 0.0;
result[8] = right.z;
result[9] = up.z;
result[10] = -direction.z;
result[11] = 0.0;
result[12] = -Cartesian2.Cartesian3.dot(right, position);
result[13] = -Cartesian2.Cartesian3.dot(up, position);
result[14] = Cartesian2.Cartesian3.dot(direction, position);
result[15] = 1.0;
return result;
};
/**
* Computes an Array from the provided Matrix4 instance.
* The array will be in column-major order.
*
* @param {Matrix4} matrix The matrix to use..
* @param {Number[]} [result] The Array onto which to store the result.
* @returns {Number[]} The modified Array parameter or a new Array instance if one was not provided.
*
* @example
* //create an array from an instance of Matrix4
* // m = [10.0, 14.0, 18.0, 22.0]
* // [11.0, 15.0, 19.0, 23.0]
* // [12.0, 16.0, 20.0, 24.0]
* // [13.0, 17.0, 21.0, 25.0]
* var a = Cesium.Matrix4.toArray(m);
*
* // m remains the same
* //creates a = [10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0]
*/
Matrix4.toArray = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
//>>includeEnd('debug');
if (!defined.defined(result)) {
return [matrix[0], matrix[1], matrix[2], matrix[3],
matrix[4], matrix[5], matrix[6], matrix[7],
matrix[8], matrix[9], matrix[10], matrix[11],
matrix[12], matrix[13], matrix[14], matrix[15]];
}
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
result[4] = matrix[4];
result[5] = matrix[5];
result[6] = matrix[6];
result[7] = matrix[7];
result[8] = matrix[8];
result[9] = matrix[9];
result[10] = matrix[10];
result[11] = matrix[11];
result[12] = matrix[12];
result[13] = matrix[13];
result[14] = matrix[14];
result[15] = matrix[15];
return result;
};
/**
* Computes the array index of the element at the provided row and column.
*
* @param {Number} row The zero-based index of the row.
* @param {Number} column The zero-based index of the column.
* @returns {Number} The index of the element at the provided row and column.
*
* @exception {DeveloperError} row must be 0, 1, 2, or 3.
* @exception {DeveloperError} column must be 0, 1, 2, or 3.
*
* @example
* var myMatrix = new Cesium.Matrix4();
* var column1Row0Index = Cesium.Matrix4.getElementIndex(1, 0);
* var column1Row0 = myMatrix[column1Row0Index];
* myMatrix[column1Row0Index] = 10.0;
*/
Matrix4.getElementIndex = function(column, row) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number.greaterThanOrEquals('row', row, 0);
Check.Check.typeOf.number.lessThanOrEquals('row', row, 3);
Check.Check.typeOf.number.greaterThanOrEquals('column', column, 0);
Check.Check.typeOf.number.lessThanOrEquals('column', column, 3);
//>>includeEnd('debug');
return column * 4 + row;
};
/**
* Retrieves a copy of the matrix column at the provided index as a Cartesian4 instance.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Number} index The zero-based index of the column to retrieve.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, 2, or 3.
*
* @example
* //returns a Cartesian4 instance with values from the specified column
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* //Example 1: Creates an instance of Cartesian
* var a = Cesium.Matrix4.getColumn(m, 2, new Cesium.Cartesian4());
*
* @example
* //Example 2: Sets values for Cartesian instance
* var a = new Cesium.Cartesian4();
* Cesium.Matrix4.getColumn(m, 2, a);
*
* // a.x = 12.0; a.y = 16.0; a.z = 20.0; a.w = 24.0;
*/
Matrix4.getColumn = function(matrix, index, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 3);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var startIndex = index * 4;
var x = matrix[startIndex];
var y = matrix[startIndex + 1];
var z = matrix[startIndex + 2];
var w = matrix[startIndex + 3];
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Computes a new matrix that replaces the specified column in the provided matrix with the provided Cartesian4 instance.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Number} index The zero-based index of the column to set.
* @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified column.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, 2, or 3.
*
* @example
* //creates a new Matrix4 instance with new column values from the Cartesian4 instance
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* var a = Cesium.Matrix4.setColumn(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4());
*
* // m remains the same
* // a = [10.0, 11.0, 99.0, 13.0]
* // [14.0, 15.0, 98.0, 17.0]
* // [18.0, 19.0, 97.0, 21.0]
* // [22.0, 23.0, 96.0, 25.0]
*/
Matrix4.setColumn = function(matrix, index, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 3);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result = Matrix4.clone(matrix, result);
var startIndex = index * 4;
result[startIndex] = cartesian.x;
result[startIndex + 1] = cartesian.y;
result[startIndex + 2] = cartesian.z;
result[startIndex + 3] = cartesian.w;
return result;
};
/**
* Computes a new matrix that replaces the translation in the rightmost column of the provided
* matrix with the provided translation. This assumes the matrix is an affine transformation
*
* @param {Matrix4} matrix The matrix to use.
* @param {Cartesian3} translation The translation that replaces the translation of the provided matrix.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.setTranslation = function(matrix, translation, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('translation', translation);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
result[4] = matrix[4];
result[5] = matrix[5];
result[6] = matrix[6];
result[7] = matrix[7];
result[8] = matrix[8];
result[9] = matrix[9];
result[10] = matrix[10];
result[11] = matrix[11];
result[12] = translation.x;
result[13] = translation.y;
result[14] = translation.z;
result[15] = matrix[15];
return result;
};
var scaleScratch = new Cartesian2.Cartesian3();
/**
* Computes a new matrix that replaces the scale with the provided scale. This assumes the matrix is an affine transformation
*
* @param {Matrix4} matrix The matrix to use.
* @param {Cartesian3} scale The scale that replaces the scale of the provided matrix.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.setScale = function(matrix, scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('scale', scale);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var existingScale = Matrix4.getScale(matrix, scaleScratch);
var newScale = Cartesian2.Cartesian3.divideComponents(scale, existingScale, scaleScratch);
return Matrix4.multiplyByScale(matrix, newScale, result);
};
/**
* Retrieves a copy of the matrix row at the provided index as a Cartesian4 instance.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Number} index The zero-based index of the row to retrieve.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, 2, or 3.
*
* @example
* //returns a Cartesian4 instance with values from the specified column
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* //Example 1: Returns an instance of Cartesian
* var a = Cesium.Matrix4.getRow(m, 2, new Cesium.Cartesian4());
*
* @example
* //Example 2: Sets values for a Cartesian instance
* var a = new Cesium.Cartesian4();
* Cesium.Matrix4.getRow(m, 2, a);
*
* // a.x = 18.0; a.y = 19.0; a.z = 20.0; a.w = 21.0;
*/
Matrix4.getRow = function(matrix, index, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 3);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var x = matrix[index];
var y = matrix[index + 4];
var z = matrix[index + 8];
var w = matrix[index + 12];
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Computes a new matrix that replaces the specified row in the provided matrix with the provided Cartesian4 instance.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Number} index The zero-based index of the row to set.
* @param {Cartesian4} cartesian The Cartesian whose values will be assigned to the specified row.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @exception {DeveloperError} index must be 0, 1, 2, or 3.
*
* @example
* //create a new Matrix4 instance with new row values from the Cartesian4 instance
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* var a = Cesium.Matrix4.setRow(m, 2, new Cesium.Cartesian4(99.0, 98.0, 97.0, 96.0), new Cesium.Matrix4());
*
* // m remains the same
* // a = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [99.0, 98.0, 97.0, 96.0]
* // [22.0, 23.0, 24.0, 25.0]
*/
Matrix4.setRow = function(matrix, index, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number.greaterThanOrEquals('index', index, 0);
Check.Check.typeOf.number.lessThanOrEquals('index', index, 3);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result = Matrix4.clone(matrix, result);
result[index] = cartesian.x;
result[index + 4] = cartesian.y;
result[index + 8] = cartesian.z;
result[index + 12] = cartesian.w;
return result;
};
var scratchColumn$1 = new Cartesian2.Cartesian3();
/**
* Extracts the non-uniform scale assuming the matrix is an affine transformation.
*
* @param {Matrix4} matrix The matrix.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter
*/
Matrix4.getScale = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.fromElements(matrix[0], matrix[1], matrix[2], scratchColumn$1));
result.y = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.fromElements(matrix[4], matrix[5], matrix[6], scratchColumn$1));
result.z = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.fromElements(matrix[8], matrix[9], matrix[10], scratchColumn$1));
return result;
};
var scratchScale$1 = new Cartesian2.Cartesian3();
/**
* Computes the maximum scale assuming the matrix is an affine transformation.
* The maximum scale is the maximum length of the column vectors in the upper-left
* 3x3 matrix.
*
* @param {Matrix4} matrix The matrix.
* @returns {Number} The maximum scale.
*/
Matrix4.getMaximumScale = function(matrix) {
Matrix4.getScale(matrix, scratchScale$1);
return Cartesian2.Cartesian3.maximumComponent(scratchScale$1);
};
/**
* Computes the product of two matrices.
*
* @param {Matrix4} left The first matrix.
* @param {Matrix4} right The second matrix.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.multiply = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var left0 = left[0];
var left1 = left[1];
var left2 = left[2];
var left3 = left[3];
var left4 = left[4];
var left5 = left[5];
var left6 = left[6];
var left7 = left[7];
var left8 = left[8];
var left9 = left[9];
var left10 = left[10];
var left11 = left[11];
var left12 = left[12];
var left13 = left[13];
var left14 = left[14];
var left15 = left[15];
var right0 = right[0];
var right1 = right[1];
var right2 = right[2];
var right3 = right[3];
var right4 = right[4];
var right5 = right[5];
var right6 = right[6];
var right7 = right[7];
var right8 = right[8];
var right9 = right[9];
var right10 = right[10];
var right11 = right[11];
var right12 = right[12];
var right13 = right[13];
var right14 = right[14];
var right15 = right[15];
var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2 + left12 * right3;
var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2 + left13 * right3;
var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2 + left14 * right3;
var column0Row3 = left3 * right0 + left7 * right1 + left11 * right2 + left15 * right3;
var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6 + left12 * right7;
var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6 + left13 * right7;
var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6 + left14 * right7;
var column1Row3 = left3 * right4 + left7 * right5 + left11 * right6 + left15 * right7;
var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10 + left12 * right11;
var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10 + left13 * right11;
var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10 + left14 * right11;
var column2Row3 = left3 * right8 + left7 * right9 + left11 * right10 + left15 * right11;
var column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12 * right15;
var column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13 * right15;
var column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14 * right15;
var column3Row3 = left3 * right12 + left7 * right13 + left11 * right14 + left15 * right15;
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column0Row2;
result[3] = column0Row3;
result[4] = column1Row0;
result[5] = column1Row1;
result[6] = column1Row2;
result[7] = column1Row3;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = column2Row3;
result[12] = column3Row0;
result[13] = column3Row1;
result[14] = column3Row2;
result[15] = column3Row3;
return result;
};
/**
* Computes the sum of two matrices.
*
* @param {Matrix4} left The first matrix.
* @param {Matrix4} right The second matrix.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.add = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = left[0] + right[0];
result[1] = left[1] + right[1];
result[2] = left[2] + right[2];
result[3] = left[3] + right[3];
result[4] = left[4] + right[4];
result[5] = left[5] + right[5];
result[6] = left[6] + right[6];
result[7] = left[7] + right[7];
result[8] = left[8] + right[8];
result[9] = left[9] + right[9];
result[10] = left[10] + right[10];
result[11] = left[11] + right[11];
result[12] = left[12] + right[12];
result[13] = left[13] + right[13];
result[14] = left[14] + right[14];
result[15] = left[15] + right[15];
return result;
};
/**
* Computes the difference of two matrices.
*
* @param {Matrix4} left The first matrix.
* @param {Matrix4} right The second matrix.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.subtract = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = left[0] - right[0];
result[1] = left[1] - right[1];
result[2] = left[2] - right[2];
result[3] = left[3] - right[3];
result[4] = left[4] - right[4];
result[5] = left[5] - right[5];
result[6] = left[6] - right[6];
result[7] = left[7] - right[7];
result[8] = left[8] - right[8];
result[9] = left[9] - right[9];
result[10] = left[10] - right[10];
result[11] = left[11] - right[11];
result[12] = left[12] - right[12];
result[13] = left[13] - right[13];
result[14] = left[14] - right[14];
result[15] = left[15] - right[15];
return result;
};
/**
* Computes the product of two matrices assuming the matrices are
* affine transformation matrices, where the upper left 3x3 elements
* are a rotation matrix, and the upper three elements in the fourth
* column are the translation. The bottom row is assumed to be [0, 0, 0, 1].
* The matrix is not verified to be in the proper form.
* This method is faster than computing the product for general 4x4
* matrices using {@link Matrix4.multiply}.
*
* @param {Matrix4} left The first matrix.
* @param {Matrix4} right The second matrix.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @example
* var m1 = new Cesium.Matrix4(1.0, 6.0, 7.0, 0.0, 2.0, 5.0, 8.0, 0.0, 3.0, 4.0, 9.0, 0.0, 0.0, 0.0, 0.0, 1.0);
* var m2 = Cesium.Transforms.eastNorthUpToFixedFrame(new Cesium.Cartesian3(1.0, 1.0, 1.0));
* var m3 = Cesium.Matrix4.multiplyTransformation(m1, m2, new Cesium.Matrix4());
*/
Matrix4.multiplyTransformation = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var left0 = left[0];
var left1 = left[1];
var left2 = left[2];
var left4 = left[4];
var left5 = left[5];
var left6 = left[6];
var left8 = left[8];
var left9 = left[9];
var left10 = left[10];
var left12 = left[12];
var left13 = left[13];
var left14 = left[14];
var right0 = right[0];
var right1 = right[1];
var right2 = right[2];
var right4 = right[4];
var right5 = right[5];
var right6 = right[6];
var right8 = right[8];
var right9 = right[9];
var right10 = right[10];
var right12 = right[12];
var right13 = right[13];
var right14 = right[14];
var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2;
var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2;
var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2;
var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6;
var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6;
var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6;
var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10;
var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10;
var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10;
var column3Row0 = left0 * right12 + left4 * right13 + left8 * right14 + left12;
var column3Row1 = left1 * right12 + left5 * right13 + left9 * right14 + left13;
var column3Row2 = left2 * right12 + left6 * right13 + left10 * right14 + left14;
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column0Row2;
result[3] = 0.0;
result[4] = column1Row0;
result[5] = column1Row1;
result[6] = column1Row2;
result[7] = 0.0;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = 0.0;
result[12] = column3Row0;
result[13] = column3Row1;
result[14] = column3Row2;
result[15] = 1.0;
return result;
};
/**
* Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]
)
* by a 3x3 rotation matrix. This is an optimization
* for Matrix4.multiply(m, Matrix4.fromRotationTranslation(rotation), m);
with less allocations and arithmetic operations.
*
* @param {Matrix4} matrix The matrix on the left-hand side.
* @param {Matrix3} rotation The 3x3 rotation matrix on the right-hand side.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @example
* // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromRotationTranslation(rotation), m);
* Cesium.Matrix4.multiplyByMatrix3(m, rotation, m);
*/
Matrix4.multiplyByMatrix3 = function(matrix, rotation, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('rotation', rotation);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var left0 = matrix[0];
var left1 = matrix[1];
var left2 = matrix[2];
var left4 = matrix[4];
var left5 = matrix[5];
var left6 = matrix[6];
var left8 = matrix[8];
var left9 = matrix[9];
var left10 = matrix[10];
var right0 = rotation[0];
var right1 = rotation[1];
var right2 = rotation[2];
var right4 = rotation[3];
var right5 = rotation[4];
var right6 = rotation[5];
var right8 = rotation[6];
var right9 = rotation[7];
var right10 = rotation[8];
var column0Row0 = left0 * right0 + left4 * right1 + left8 * right2;
var column0Row1 = left1 * right0 + left5 * right1 + left9 * right2;
var column0Row2 = left2 * right0 + left6 * right1 + left10 * right2;
var column1Row0 = left0 * right4 + left4 * right5 + left8 * right6;
var column1Row1 = left1 * right4 + left5 * right5 + left9 * right6;
var column1Row2 = left2 * right4 + left6 * right5 + left10 * right6;
var column2Row0 = left0 * right8 + left4 * right9 + left8 * right10;
var column2Row1 = left1 * right8 + left5 * right9 + left9 * right10;
var column2Row2 = left2 * right8 + left6 * right9 + left10 * right10;
result[0] = column0Row0;
result[1] = column0Row1;
result[2] = column0Row2;
result[3] = 0.0;
result[4] = column1Row0;
result[5] = column1Row1;
result[6] = column1Row2;
result[7] = 0.0;
result[8] = column2Row0;
result[9] = column2Row1;
result[10] = column2Row2;
result[11] = 0.0;
result[12] = matrix[12];
result[13] = matrix[13];
result[14] = matrix[14];
result[15] = matrix[15];
return result;
};
/**
* Multiplies a transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]
)
* by an implicit translation matrix defined by a {@link Cartesian3}. This is an optimization
* for Matrix4.multiply(m, Matrix4.fromTranslation(position), m);
with less allocations and arithmetic operations.
*
* @param {Matrix4} matrix The matrix on the left-hand side.
* @param {Cartesian3} translation The translation on the right-hand side.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @example
* // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromTranslation(position), m);
* Cesium.Matrix4.multiplyByTranslation(m, position, m);
*/
Matrix4.multiplyByTranslation = function(matrix, translation, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('translation', translation);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var x = translation.x;
var y = translation.y;
var z = translation.z;
var tx = (x * matrix[0]) + (y * matrix[4]) + (z * matrix[8]) + matrix[12];
var ty = (x * matrix[1]) + (y * matrix[5]) + (z * matrix[9]) + matrix[13];
var tz = (x * matrix[2]) + (y * matrix[6]) + (z * matrix[10]) + matrix[14];
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[3];
result[4] = matrix[4];
result[5] = matrix[5];
result[6] = matrix[6];
result[7] = matrix[7];
result[8] = matrix[8];
result[9] = matrix[9];
result[10] = matrix[10];
result[11] = matrix[11];
result[12] = tx;
result[13] = ty;
result[14] = tz;
result[15] = matrix[15];
return result;
};
var uniformScaleScratch = new Cartesian2.Cartesian3();
/**
* Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]
)
* by an implicit uniform scale matrix. This is an optimization
* for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);
, where
* m
must be an affine matrix.
* This function performs fewer allocations and arithmetic operations.
*
* @param {Matrix4} matrix The affine matrix on the left-hand side.
* @param {Number} scale The uniform scale on the right-hand side.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
*
* @example
* // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromUniformScale(scale), m);
* Cesium.Matrix4.multiplyByUniformScale(m, scale, m);
*
* @see Matrix4.fromUniformScale
* @see Matrix4.multiplyByScale
*/
Matrix4.multiplyByUniformScale = function(matrix, scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number('scale', scale);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
uniformScaleScratch.x = scale;
uniformScaleScratch.y = scale;
uniformScaleScratch.z = scale;
return Matrix4.multiplyByScale(matrix, uniformScaleScratch, result);
};
/**
* Multiplies an affine transformation matrix (with a bottom row of [0.0, 0.0, 0.0, 1.0]
)
* by an implicit non-uniform scale matrix. This is an optimization
* for Matrix4.multiply(m, Matrix4.fromUniformScale(scale), m);
, where
* m
must be an affine matrix.
* This function performs fewer allocations and arithmetic operations.
*
* @param {Matrix4} matrix The affine matrix on the left-hand side.
* @param {Cartesian3} scale The non-uniform scale on the right-hand side.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
*
* @example
* // Instead of Cesium.Matrix4.multiply(m, Cesium.Matrix4.fromScale(scale), m);
* Cesium.Matrix4.multiplyByScale(m, scale, m);
*
* @see Matrix4.fromScale
* @see Matrix4.multiplyByUniformScale
*/
Matrix4.multiplyByScale = function(matrix, scale, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('scale', scale);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var scaleX = scale.x;
var scaleY = scale.y;
var scaleZ = scale.z;
// Faster than Cartesian3.equals
if ((scaleX === 1.0) && (scaleY === 1.0) && (scaleZ === 1.0)) {
return Matrix4.clone(matrix, result);
}
result[0] = scaleX * matrix[0];
result[1] = scaleX * matrix[1];
result[2] = scaleX * matrix[2];
result[3] = 0.0;
result[4] = scaleY * matrix[4];
result[5] = scaleY * matrix[5];
result[6] = scaleY * matrix[6];
result[7] = 0.0;
result[8] = scaleZ * matrix[8];
result[9] = scaleZ * matrix[9];
result[10] = scaleZ * matrix[10];
result[11] = 0.0;
result[12] = matrix[12];
result[13] = matrix[13];
result[14] = matrix[14];
result[15] = 1.0;
return result;
};
/**
* Computes the product of a matrix and a column vector.
*
* @param {Matrix4} matrix The matrix.
* @param {Cartesian4} cartesian The vector.
* @param {Cartesian4} result The object onto which to store the result.
* @returns {Cartesian4} The modified result parameter.
*/
Matrix4.multiplyByVector = function(matrix, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var vX = cartesian.x;
var vY = cartesian.y;
var vZ = cartesian.z;
var vW = cartesian.w;
var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12] * vW;
var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13] * vW;
var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14] * vW;
var w = matrix[3] * vX + matrix[7] * vY + matrix[11] * vZ + matrix[15] * vW;
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector}
* with a {@link Cartesian4} with a w
component of zero.
*
* @param {Matrix4} matrix The matrix.
* @param {Cartesian3} cartesian The point.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*
* @example
* var p = new Cesium.Cartesian3(1.0, 2.0, 3.0);
* var result = Cesium.Matrix4.multiplyByPointAsVector(matrix, p, new Cesium.Cartesian3());
* // A shortcut for
* // Cartesian3 p = ...
* // Cesium.Matrix4.multiplyByVector(matrix, new Cesium.Cartesian4(p.x, p.y, p.z, 0.0), result);
*/
Matrix4.multiplyByPointAsVector = function(matrix, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var vX = cartesian.x;
var vY = cartesian.y;
var vZ = cartesian.z;
var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ;
var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ;
var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ;
result.x = x;
result.y = y;
result.z = z;
return result;
};
/**
* Computes the product of a matrix and a {@link Cartesian3}. This is equivalent to calling {@link Matrix4.multiplyByVector}
* with a {@link Cartesian4} with a w
component of 1, but returns a {@link Cartesian3} instead of a {@link Cartesian4}.
*
* @param {Matrix4} matrix The matrix.
* @param {Cartesian3} cartesian The point.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*
* @example
* var p = new Cesium.Cartesian3(1.0, 2.0, 3.0);
* var result = Cesium.Matrix4.multiplyByPoint(matrix, p, new Cesium.Cartesian3());
*/
Matrix4.multiplyByPoint = function(matrix, cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var vX = cartesian.x;
var vY = cartesian.y;
var vZ = cartesian.z;
var x = matrix[0] * vX + matrix[4] * vY + matrix[8] * vZ + matrix[12];
var y = matrix[1] * vX + matrix[5] * vY + matrix[9] * vZ + matrix[13];
var z = matrix[2] * vX + matrix[6] * vY + matrix[10] * vZ + matrix[14];
result.x = x;
result.y = y;
result.z = z;
return result;
};
/**
* Computes the product of a matrix and a scalar.
*
* @param {Matrix4} matrix The matrix.
* @param {Number} scalar The number to multiply by.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @example
* //create a Matrix4 instance which is a scaled version of the supplied Matrix4
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* var a = Cesium.Matrix4.multiplyByScalar(m, -2, new Cesium.Matrix4());
*
* // m remains the same
* // a = [-20.0, -22.0, -24.0, -26.0]
* // [-28.0, -30.0, -32.0, -34.0]
* // [-36.0, -38.0, -40.0, -42.0]
* // [-44.0, -46.0, -48.0, -50.0]
*/
Matrix4.multiplyByScalar = function(matrix, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = matrix[0] * scalar;
result[1] = matrix[1] * scalar;
result[2] = matrix[2] * scalar;
result[3] = matrix[3] * scalar;
result[4] = matrix[4] * scalar;
result[5] = matrix[5] * scalar;
result[6] = matrix[6] * scalar;
result[7] = matrix[7] * scalar;
result[8] = matrix[8] * scalar;
result[9] = matrix[9] * scalar;
result[10] = matrix[10] * scalar;
result[11] = matrix[11] * scalar;
result[12] = matrix[12] * scalar;
result[13] = matrix[13] * scalar;
result[14] = matrix[14] * scalar;
result[15] = matrix[15] * scalar;
return result;
};
/**
* Computes a negated copy of the provided matrix.
*
* @param {Matrix4} matrix The matrix to negate.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @example
* //create a new Matrix4 instance which is a negation of a Matrix4
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* var a = Cesium.Matrix4.negate(m, new Cesium.Matrix4());
*
* // m remains the same
* // a = [-10.0, -11.0, -12.0, -13.0]
* // [-14.0, -15.0, -16.0, -17.0]
* // [-18.0, -19.0, -20.0, -21.0]
* // [-22.0, -23.0, -24.0, -25.0]
*/
Matrix4.negate = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = -matrix[0];
result[1] = -matrix[1];
result[2] = -matrix[2];
result[3] = -matrix[3];
result[4] = -matrix[4];
result[5] = -matrix[5];
result[6] = -matrix[6];
result[7] = -matrix[7];
result[8] = -matrix[8];
result[9] = -matrix[9];
result[10] = -matrix[10];
result[11] = -matrix[11];
result[12] = -matrix[12];
result[13] = -matrix[13];
result[14] = -matrix[14];
result[15] = -matrix[15];
return result;
};
/**
* Computes the transpose of the provided matrix.
*
* @param {Matrix4} matrix The matrix to transpose.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @example
* //returns transpose of a Matrix4
* // m = [10.0, 11.0, 12.0, 13.0]
* // [14.0, 15.0, 16.0, 17.0]
* // [18.0, 19.0, 20.0, 21.0]
* // [22.0, 23.0, 24.0, 25.0]
*
* var a = Cesium.Matrix4.transpose(m, new Cesium.Matrix4());
*
* // m remains the same
* // a = [10.0, 14.0, 18.0, 22.0]
* // [11.0, 15.0, 19.0, 23.0]
* // [12.0, 16.0, 20.0, 24.0]
* // [13.0, 17.0, 21.0, 25.0]
*/
Matrix4.transpose = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var matrix1 = matrix[1];
var matrix2 = matrix[2];
var matrix3 = matrix[3];
var matrix6 = matrix[6];
var matrix7 = matrix[7];
var matrix11 = matrix[11];
result[0] = matrix[0];
result[1] = matrix[4];
result[2] = matrix[8];
result[3] = matrix[12];
result[4] = matrix1;
result[5] = matrix[5];
result[6] = matrix[9];
result[7] = matrix[13];
result[8] = matrix2;
result[9] = matrix6;
result[10] = matrix[10];
result[11] = matrix[14];
result[12] = matrix3;
result[13] = matrix7;
result[14] = matrix11;
result[15] = matrix[15];
return result;
};
/**
* Computes a matrix, which contains the absolute (unsigned) values of the provided matrix's elements.
*
* @param {Matrix4} matrix The matrix with signed elements.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.abs = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = Math.abs(matrix[0]);
result[1] = Math.abs(matrix[1]);
result[2] = Math.abs(matrix[2]);
result[3] = Math.abs(matrix[3]);
result[4] = Math.abs(matrix[4]);
result[5] = Math.abs(matrix[5]);
result[6] = Math.abs(matrix[6]);
result[7] = Math.abs(matrix[7]);
result[8] = Math.abs(matrix[8]);
result[9] = Math.abs(matrix[9]);
result[10] = Math.abs(matrix[10]);
result[11] = Math.abs(matrix[11]);
result[12] = Math.abs(matrix[12]);
result[13] = Math.abs(matrix[13]);
result[14] = Math.abs(matrix[14]);
result[15] = Math.abs(matrix[15]);
return result;
};
/**
* Compares the provided matrices componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Matrix4} [left] The first matrix.
* @param {Matrix4} [right] The second matrix.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*
* @example
* //compares two Matrix4 instances
*
* // a = [10.0, 14.0, 18.0, 22.0]
* // [11.0, 15.0, 19.0, 23.0]
* // [12.0, 16.0, 20.0, 24.0]
* // [13.0, 17.0, 21.0, 25.0]
*
* // b = [10.0, 14.0, 18.0, 22.0]
* // [11.0, 15.0, 19.0, 23.0]
* // [12.0, 16.0, 20.0, 24.0]
* // [13.0, 17.0, 21.0, 25.0]
*
* if(Cesium.Matrix4.equals(a,b)) {
* console.log("Both matrices are equal");
* } else {
* console.log("They are not equal");
* }
*
* //Prints "Both matrices are equal" on the console
*/
Matrix4.equals = function(left, right) {
// Given that most matrices will be transformation matrices, the elements
// are tested in order such that the test is likely to fail as early
// as possible. I _think_ this is just as friendly to the L1 cache
// as testing in index order. It is certainty faster in practice.
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
// Translation
left[12] === right[12] &&
left[13] === right[13] &&
left[14] === right[14] &&
// Rotation/scale
left[0] === right[0] &&
left[1] === right[1] &&
left[2] === right[2] &&
left[4] === right[4] &&
left[5] === right[5] &&
left[6] === right[6] &&
left[8] === right[8] &&
left[9] === right[9] &&
left[10] === right[10] &&
// Bottom row
left[3] === right[3] &&
left[7] === right[7] &&
left[11] === right[11] &&
left[15] === right[15]);
};
/**
* Compares the provided matrices componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Matrix4} [left] The first matrix.
* @param {Matrix4} [right] The second matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*
* @example
* //compares two Matrix4 instances
*
* // a = [10.5, 14.5, 18.5, 22.5]
* // [11.5, 15.5, 19.5, 23.5]
* // [12.5, 16.5, 20.5, 24.5]
* // [13.5, 17.5, 21.5, 25.5]
*
* // b = [10.0, 14.0, 18.0, 22.0]
* // [11.0, 15.0, 19.0, 23.0]
* // [12.0, 16.0, 20.0, 24.0]
* // [13.0, 17.0, 21.0, 25.0]
*
* if(Cesium.Matrix4.equalsEpsilon(a,b,0.1)){
* console.log("Difference between both the matrices is less than 0.1");
* } else {
* console.log("Difference between both the matrices is not less than 0.1");
* }
*
* //Prints "Difference between both the matrices is not less than 0.1" on the console
*/
Matrix4.equalsEpsilon = function(left, right, epsilon) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('epsilon', epsilon);
//>>includeEnd('debug');
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
Math.abs(left[0] - right[0]) <= epsilon &&
Math.abs(left[1] - right[1]) <= epsilon &&
Math.abs(left[2] - right[2]) <= epsilon &&
Math.abs(left[3] - right[3]) <= epsilon &&
Math.abs(left[4] - right[4]) <= epsilon &&
Math.abs(left[5] - right[5]) <= epsilon &&
Math.abs(left[6] - right[6]) <= epsilon &&
Math.abs(left[7] - right[7]) <= epsilon &&
Math.abs(left[8] - right[8]) <= epsilon &&
Math.abs(left[9] - right[9]) <= epsilon &&
Math.abs(left[10] - right[10]) <= epsilon &&
Math.abs(left[11] - right[11]) <= epsilon &&
Math.abs(left[12] - right[12]) <= epsilon &&
Math.abs(left[13] - right[13]) <= epsilon &&
Math.abs(left[14] - right[14]) <= epsilon &&
Math.abs(left[15] - right[15]) <= epsilon);
};
/**
* Gets the translation portion of the provided matrix, assuming the matrix is a affine transformation matrix.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*/
Matrix4.getTranslation = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = matrix[12];
result.y = matrix[13];
result.z = matrix[14];
return result;
};
/**
* Gets the upper left 3x3 rotation matrix of the provided matrix, assuming the matrix is an affine transformation matrix.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*
* @deprecated moved to Matrix4.getMatrix3
*/
Matrix4.getRotation = function(matrix, result) {
deprecationWarning('Matrix4.getRotation', 'Matrix4.getRotation is deprecated and will be removed in Cesium 1.65. Use Matrix4.getMatrix3 instead.');
return Matrix4.getMatrix3(matrix, result);
};
/**
* Gets the upper left 3x3 rotation matrix of the provided matrix, assuming the matrix is an affine transformation matrix.
*
* @param {Matrix4} matrix The matrix to use.
* @param {Matrix3} result The object onto which to store the result.
* @returns {Matrix3} The modified result parameter.
*
* @example
* // returns a Matrix3 instance from a Matrix4 instance
*
* // m = [10.0, 14.0, 18.0, 22.0]
* // [11.0, 15.0, 19.0, 23.0]
* // [12.0, 16.0, 20.0, 24.0]
* // [13.0, 17.0, 21.0, 25.0]
*
* var b = new Cesium.Matrix3();
* Cesium.Matrix4.getMatrix3(m,b);
*
* // b = [10.0, 14.0, 18.0]
* // [11.0, 15.0, 19.0]
* // [12.0, 16.0, 20.0]
*/
Matrix4.getMatrix3 = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result[0] = matrix[0];
result[1] = matrix[1];
result[2] = matrix[2];
result[3] = matrix[4];
result[4] = matrix[5];
result[5] = matrix[6];
result[6] = matrix[8];
result[7] = matrix[9];
result[8] = matrix[10];
return result;
};
var scratchInverseRotation = new Matrix3();
var scratchMatrix3Zero = new Matrix3();
var scratchBottomRow = new Cartesian4();
var scratchExpectedBottomRow = new Cartesian4(0.0, 0.0, 0.0, 1.0);
/**
* Computes the inverse of the provided matrix using Cramers Rule.
* If the determinant is zero, the matrix can not be inverted, and an exception is thrown.
* If the matrix is an affine transformation matrix, it is more efficient
* to invert it with {@link Matrix4.inverseTransformation}.
*
* @param {Matrix4} matrix The matrix to invert.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*
* @exception {RuntimeError} matrix is not invertible because its determinate is zero.
*/
Matrix4.inverse = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
//
// Ported from:
// ftp://download.intel.com/design/PentiumIII/sml/24504301.pdf
//
var src0 = matrix[0];
var src1 = matrix[4];
var src2 = matrix[8];
var src3 = matrix[12];
var src4 = matrix[1];
var src5 = matrix[5];
var src6 = matrix[9];
var src7 = matrix[13];
var src8 = matrix[2];
var src9 = matrix[6];
var src10 = matrix[10];
var src11 = matrix[14];
var src12 = matrix[3];
var src13 = matrix[7];
var src14 = matrix[11];
var src15 = matrix[15];
// calculate pairs for first 8 elements (cofactors)
var tmp0 = src10 * src15;
var tmp1 = src11 * src14;
var tmp2 = src9 * src15;
var tmp3 = src11 * src13;
var tmp4 = src9 * src14;
var tmp5 = src10 * src13;
var tmp6 = src8 * src15;
var tmp7 = src11 * src12;
var tmp8 = src8 * src14;
var tmp9 = src10 * src12;
var tmp10 = src8 * src13;
var tmp11 = src9 * src12;
// calculate first 8 elements (cofactors)
var dst0 = (tmp0 * src5 + tmp3 * src6 + tmp4 * src7) - (tmp1 * src5 + tmp2 * src6 + tmp5 * src7);
var dst1 = (tmp1 * src4 + tmp6 * src6 + tmp9 * src7) - (tmp0 * src4 + tmp7 * src6 + tmp8 * src7);
var dst2 = (tmp2 * src4 + tmp7 * src5 + tmp10 * src7) - (tmp3 * src4 + tmp6 * src5 + tmp11 * src7);
var dst3 = (tmp5 * src4 + tmp8 * src5 + tmp11 * src6) - (tmp4 * src4 + tmp9 * src5 + tmp10 * src6);
var dst4 = (tmp1 * src1 + tmp2 * src2 + tmp5 * src3) - (tmp0 * src1 + tmp3 * src2 + tmp4 * src3);
var dst5 = (tmp0 * src0 + tmp7 * src2 + tmp8 * src3) - (tmp1 * src0 + tmp6 * src2 + tmp9 * src3);
var dst6 = (tmp3 * src0 + tmp6 * src1 + tmp11 * src3) - (tmp2 * src0 + tmp7 * src1 + tmp10 * src3);
var dst7 = (tmp4 * src0 + tmp9 * src1 + tmp10 * src2) - (tmp5 * src0 + tmp8 * src1 + tmp11 * src2);
// calculate pairs for second 8 elements (cofactors)
tmp0 = src2 * src7;
tmp1 = src3 * src6;
tmp2 = src1 * src7;
tmp3 = src3 * src5;
tmp4 = src1 * src6;
tmp5 = src2 * src5;
tmp6 = src0 * src7;
tmp7 = src3 * src4;
tmp8 = src0 * src6;
tmp9 = src2 * src4;
tmp10 = src0 * src5;
tmp11 = src1 * src4;
// calculate second 8 elements (cofactors)
var dst8 = (tmp0 * src13 + tmp3 * src14 + tmp4 * src15) - (tmp1 * src13 + tmp2 * src14 + tmp5 * src15);
var dst9 = (tmp1 * src12 + tmp6 * src14 + tmp9 * src15) - (tmp0 * src12 + tmp7 * src14 + tmp8 * src15);
var dst10 = (tmp2 * src12 + tmp7 * src13 + tmp10 * src15) - (tmp3 * src12 + tmp6 * src13 + tmp11 * src15);
var dst11 = (tmp5 * src12 + tmp8 * src13 + tmp11 * src14) - (tmp4 * src12 + tmp9 * src13 + tmp10 * src14);
var dst12 = (tmp2 * src10 + tmp5 * src11 + tmp1 * src9) - (tmp4 * src11 + tmp0 * src9 + tmp3 * src10);
var dst13 = (tmp8 * src11 + tmp0 * src8 + tmp7 * src10) - (tmp6 * src10 + tmp9 * src11 + tmp1 * src8);
var dst14 = (tmp6 * src9 + tmp11 * src11 + tmp3 * src8) - (tmp10 * src11 + tmp2 * src8 + tmp7 * src9);
var dst15 = (tmp10 * src10 + tmp4 * src8 + tmp9 * src9) - (tmp8 * src9 + tmp11 * src10 + tmp5 * src8);
// calculate determinant
var det = src0 * dst0 + src1 * dst1 + src2 * dst2 + src3 * dst3;
if (Math.abs(det) < _Math.CesiumMath.EPSILON21) {
// Special case for a zero scale matrix that can occur, for example,
// when a model's node has a [0, 0, 0] scale.
if (Matrix3.equalsEpsilon(Matrix4.getMatrix3(matrix, scratchInverseRotation), scratchMatrix3Zero, _Math.CesiumMath.EPSILON7) &&
Cartesian4.equals(Matrix4.getRow(matrix, 3, scratchBottomRow), scratchExpectedBottomRow)) {
result[0] = 0.0;
result[1] = 0.0;
result[2] = 0.0;
result[3] = 0.0;
result[4] = 0.0;
result[5] = 0.0;
result[6] = 0.0;
result[7] = 0.0;
result[8] = 0.0;
result[9] = 0.0;
result[10] = 0.0;
result[11] = 0.0;
result[12] = -matrix[12];
result[13] = -matrix[13];
result[14] = -matrix[14];
result[15] = 1.0;
return result;
}
throw new RuntimeError.RuntimeError('matrix is not invertible because its determinate is zero.');
}
// calculate matrix inverse
det = 1.0 / det;
result[0] = dst0 * det;
result[1] = dst1 * det;
result[2] = dst2 * det;
result[3] = dst3 * det;
result[4] = dst4 * det;
result[5] = dst5 * det;
result[6] = dst6 * det;
result[7] = dst7 * det;
result[8] = dst8 * det;
result[9] = dst9 * det;
result[10] = dst10 * det;
result[11] = dst11 * det;
result[12] = dst12 * det;
result[13] = dst13 * det;
result[14] = dst14 * det;
result[15] = dst15 * det;
return result;
};
/**
* Computes the inverse of the provided matrix assuming it is
* an affine transformation matrix, where the upper left 3x3 elements
* are a rotation matrix, and the upper three elements in the fourth
* column are the translation. The bottom row is assumed to be [0, 0, 0, 1].
* The matrix is not verified to be in the proper form.
* This method is faster than computing the inverse for a general 4x4
* matrix using {@link Matrix4.inverse}.
*
* @param {Matrix4} matrix The matrix to invert.
* @param {Matrix4} result The object onto which to store the result.
* @returns {Matrix4} The modified result parameter.
*/
Matrix4.inverseTransformation = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
//This function is an optimized version of the below 4 lines.
//var rT = Matrix3.transpose(Matrix4.getMatrix3(matrix));
//var rTN = Matrix3.negate(rT);
//var rTT = Matrix3.multiplyByVector(rTN, Matrix4.getTranslation(matrix));
//return Matrix4.fromRotationTranslation(rT, rTT, result);
var matrix0 = matrix[0];
var matrix1 = matrix[1];
var matrix2 = matrix[2];
var matrix4 = matrix[4];
var matrix5 = matrix[5];
var matrix6 = matrix[6];
var matrix8 = matrix[8];
var matrix9 = matrix[9];
var matrix10 = matrix[10];
var vX = matrix[12];
var vY = matrix[13];
var vZ = matrix[14];
var x = -matrix0 * vX - matrix1 * vY - matrix2 * vZ;
var y = -matrix4 * vX - matrix5 * vY - matrix6 * vZ;
var z = -matrix8 * vX - matrix9 * vY - matrix10 * vZ;
result[0] = matrix0;
result[1] = matrix4;
result[2] = matrix8;
result[3] = 0.0;
result[4] = matrix1;
result[5] = matrix5;
result[6] = matrix9;
result[7] = 0.0;
result[8] = matrix2;
result[9] = matrix6;
result[10] = matrix10;
result[11] = 0.0;
result[12] = x;
result[13] = y;
result[14] = z;
result[15] = 1.0;
return result;
};
/**
* An immutable Matrix4 instance initialized to the identity matrix.
*
* @type {Matrix4}
* @constant
*/
Matrix4.IDENTITY = freezeObject.freezeObject(new Matrix4(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0));
/**
* An immutable Matrix4 instance initialized to the zero matrix.
*
* @type {Matrix4}
* @constant
*/
Matrix4.ZERO = freezeObject.freezeObject(new Matrix4(0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0));
/**
* The index into Matrix4 for column 0, row 0.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN0ROW0 = 0;
/**
* The index into Matrix4 for column 0, row 1.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN0ROW1 = 1;
/**
* The index into Matrix4 for column 0, row 2.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN0ROW2 = 2;
/**
* The index into Matrix4 for column 0, row 3.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN0ROW3 = 3;
/**
* The index into Matrix4 for column 1, row 0.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN1ROW0 = 4;
/**
* The index into Matrix4 for column 1, row 1.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN1ROW1 = 5;
/**
* The index into Matrix4 for column 1, row 2.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN1ROW2 = 6;
/**
* The index into Matrix4 for column 1, row 3.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN1ROW3 = 7;
/**
* The index into Matrix4 for column 2, row 0.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN2ROW0 = 8;
/**
* The index into Matrix4 for column 2, row 1.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN2ROW1 = 9;
/**
* The index into Matrix4 for column 2, row 2.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN2ROW2 = 10;
/**
* The index into Matrix4 for column 2, row 3.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN2ROW3 = 11;
/**
* The index into Matrix4 for column 3, row 0.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN3ROW0 = 12;
/**
* The index into Matrix4 for column 3, row 1.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN3ROW1 = 13;
/**
* The index into Matrix4 for column 3, row 2.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN3ROW2 = 14;
/**
* The index into Matrix4 for column 3, row 3.
*
* @type {Number}
* @constant
*/
Matrix4.COLUMN3ROW3 = 15;
defineProperties.defineProperties(Matrix4.prototype, {
/**
* Gets the number of items in the collection.
* @memberof Matrix4.prototype
*
* @type {Number}
*/
length : {
get : function() {
return Matrix4.packedLength;
}
}
});
/**
* Duplicates the provided Matrix4 instance.
*
* @param {Matrix4} [result] The object onto which to store the result.
* @returns {Matrix4} The modified result parameter or a new Matrix4 instance if one was not provided.
*/
Matrix4.prototype.clone = function(result) {
return Matrix4.clone(this, result);
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Matrix4} [right] The right hand side matrix.
* @returns {Boolean} true
if they are equal, false
otherwise.
*/
Matrix4.prototype.equals = function(right) {
return Matrix4.equals(this, right);
};
/**
* @private
*/
Matrix4.equalsArray = function(matrix, array, offset) {
return matrix[0] === array[offset] &&
matrix[1] === array[offset + 1] &&
matrix[2] === array[offset + 2] &&
matrix[3] === array[offset + 3] &&
matrix[4] === array[offset + 4] &&
matrix[5] === array[offset + 5] &&
matrix[6] === array[offset + 6] &&
matrix[7] === array[offset + 7] &&
matrix[8] === array[offset + 8] &&
matrix[9] === array[offset + 9] &&
matrix[10] === array[offset + 10] &&
matrix[11] === array[offset + 11] &&
matrix[12] === array[offset + 12] &&
matrix[13] === array[offset + 13] &&
matrix[14] === array[offset + 14] &&
matrix[15] === array[offset + 15];
};
/**
* Compares this matrix to the provided matrix componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Matrix4} [right] The right hand side matrix.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} true
if they are within the provided epsilon, false
otherwise.
*/
Matrix4.prototype.equalsEpsilon = function(right, epsilon) {
return Matrix4.equalsEpsilon(this, right, epsilon);
};
/**
* Computes a string representing this Matrix with each row being
* on a separate line and in the format '(column0, column1, column2, column3)'.
*
* @returns {String} A string representing the provided Matrix with each row being on a separate line and in the format '(column0, column1, column2, column3)'.
*/
Matrix4.prototype.toString = function() {
return '(' + this[0] + ', ' + this[4] + ', ' + this[8] + ', ' + this[12] + ')\n' +
'(' + this[1] + ', ' + this[5] + ', ' + this[9] + ', ' + this[13] + ')\n' +
'(' + this[2] + ', ' + this[6] + ', ' + this[10] + ', ' + this[14] + ')\n' +
'(' + this[3] + ', ' + this[7] + ', ' + this[11] + ', ' + this[15] + ')';
};
/**
* A bounding sphere with a center and a radius.
* @alias BoundingSphere
* @constructor
*
* @param {Cartesian3} [center=Cartesian3.ZERO] The center of the bounding sphere.
* @param {Number} [radius=0.0] The radius of the bounding sphere.
*
* @see AxisAlignedBoundingBox
* @see BoundingRectangle
* @see Packable
*/
function BoundingSphere(center, radius) {
/**
* The center point of the sphere.
* @type {Cartesian3}
* @default {@link Cartesian3.ZERO}
*/
this.center = Cartesian2.Cartesian3.clone(defaultValue.defaultValue(center, Cartesian2.Cartesian3.ZERO));
/**
* The radius of the sphere.
* @type {Number}
* @default 0.0
*/
this.radius = defaultValue.defaultValue(radius, 0.0);
}
var fromPointsXMin = new Cartesian2.Cartesian3();
var fromPointsYMin = new Cartesian2.Cartesian3();
var fromPointsZMin = new Cartesian2.Cartesian3();
var fromPointsXMax = new Cartesian2.Cartesian3();
var fromPointsYMax = new Cartesian2.Cartesian3();
var fromPointsZMax = new Cartesian2.Cartesian3();
var fromPointsCurrentPos = new Cartesian2.Cartesian3();
var fromPointsScratch = new Cartesian2.Cartesian3();
var fromPointsRitterCenter = new Cartesian2.Cartesian3();
var fromPointsMinBoxPt = new Cartesian2.Cartesian3();
var fromPointsMaxBoxPt = new Cartesian2.Cartesian3();
var fromPointsNaiveCenterScratch = new Cartesian2.Cartesian3();
var volumeConstant = (4.0 / 3.0) * _Math.CesiumMath.PI;
/**
* Computes a tight-fitting bounding sphere enclosing a list of 3D Cartesian points.
* The bounding sphere is computed by running two algorithms, a naive algorithm and
* Ritter's algorithm. The smaller of the two spheres is used to ensure a tight fit.
*
* @param {Cartesian3[]} [positions] An array of points that the bounding sphere will enclose. Each point must have x
, y
, and z
properties.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @see {@link http://help.agi.com/AGIComponents/html/BlogBoundingSphere.htm|Bounding Sphere computation article}
*/
BoundingSphere.fromPoints = function(positions, result) {
if (!defined.defined(result)) {
result = new BoundingSphere();
}
if (!defined.defined(positions) || positions.length === 0) {
result.center = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
var currentPos = Cartesian2.Cartesian3.clone(positions[0], fromPointsCurrentPos);
var xMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsXMin);
var yMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsYMin);
var zMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsZMin);
var xMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsXMax);
var yMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsYMax);
var zMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsZMax);
var numPositions = positions.length;
var i;
for (i = 1; i < numPositions; i++) {
Cartesian2.Cartesian3.clone(positions[i], currentPos);
var x = currentPos.x;
var y = currentPos.y;
var z = currentPos.z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian2.Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian2.Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian2.Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian2.Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian2.Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian2.Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
var xSpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(xMax, xMin, fromPointsScratch));
var ySpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(yMax, yMin, fromPointsScratch));
var zSpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(zMax, zMin, fromPointsScratch));
// Set the diameter endpoints to the largest span.
var diameter1 = xMin;
var diameter2 = xMax;
var maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
var ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
var radiusSquared = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
var ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
var minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
var maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
var naiveCenter = Cartesian2.Cartesian3.midpoint(minBoxPt, maxBoxPt, fromPointsNaiveCenterScratch);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
var naiveRadius = 0;
for (i = 0; i < numPositions; i++) {
Cartesian2.Cartesian3.clone(positions[i], currentPos);
// Find the furthest point from the naive center to calculate the naive radius.
var r = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
var oldCenterToPointSquared = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
if (oldCenterToPointSquared > radiusSquared) {
var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
var oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian2.Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian2.Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
var defaultProjection = new GeographicProjection();
var fromRectangle2DLowerLeft = new Cartesian2.Cartesian3();
var fromRectangle2DUpperRight = new Cartesian2.Cartesian3();
var fromRectangle2DSouthwest = new Cartesian2.Cartographic();
var fromRectangle2DNortheast = new Cartesian2.Cartographic();
/**
* Computes a bounding sphere from a rectangle projected in 2D.
*
* @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere.
* @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromRectangle2D = function(rectangle, projection, result) {
return BoundingSphere.fromRectangleWithHeights2D(rectangle, projection, 0.0, 0.0, result);
};
/**
* Computes a bounding sphere from a rectangle projected in 2D. The bounding sphere accounts for the
* object's minimum and maximum heights over the rectangle.
*
* @param {Rectangle} [rectangle] The rectangle around which to create a bounding sphere.
* @param {Object} [projection=GeographicProjection] The projection used to project the rectangle into 2D.
* @param {Number} [minimumHeight=0.0] The minimum height over the rectangle.
* @param {Number} [maximumHeight=0.0] The maximum height over the rectangle.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromRectangleWithHeights2D = function(rectangle, projection, minimumHeight, maximumHeight, result) {
if (!defined.defined(result)) {
result = new BoundingSphere();
}
if (!defined.defined(rectangle)) {
result.center = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
projection = defaultValue.defaultValue(projection, defaultProjection);
Cartesian2.Rectangle.southwest(rectangle, fromRectangle2DSouthwest);
fromRectangle2DSouthwest.height = minimumHeight;
Cartesian2.Rectangle.northeast(rectangle, fromRectangle2DNortheast);
fromRectangle2DNortheast.height = maximumHeight;
var lowerLeft = projection.project(fromRectangle2DSouthwest, fromRectangle2DLowerLeft);
var upperRight = projection.project(fromRectangle2DNortheast, fromRectangle2DUpperRight);
var width = upperRight.x - lowerLeft.x;
var height = upperRight.y - lowerLeft.y;
var elevation = upperRight.z - lowerLeft.z;
result.radius = Math.sqrt(width * width + height * height + elevation * elevation) * 0.5;
var center = result.center;
center.x = lowerLeft.x + width * 0.5;
center.y = lowerLeft.y + height * 0.5;
center.z = lowerLeft.z + elevation * 0.5;
return result;
};
var fromRectangle3DScratch = [];
/**
* Computes a bounding sphere from a rectangle in 3D. The bounding sphere is created using a subsample of points
* on the ellipsoid and contained in the rectangle. It may not be accurate for all rectangles on all types of ellipsoids.
*
* @param {Rectangle} [rectangle] The valid rectangle used to create a bounding sphere.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid used to determine positions of the rectangle.
* @param {Number} [surfaceHeight=0.0] The height above the surface of the ellipsoid.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromRectangle3D = function(rectangle, ellipsoid, surfaceHeight, result) {
ellipsoid = defaultValue.defaultValue(ellipsoid, Cartesian2.Ellipsoid.WGS84);
surfaceHeight = defaultValue.defaultValue(surfaceHeight, 0.0);
if (!defined.defined(result)) {
result = new BoundingSphere();
}
if (!defined.defined(rectangle)) {
result.center = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
var positions = Cartesian2.Rectangle.subsample(rectangle, ellipsoid, surfaceHeight, fromRectangle3DScratch);
return BoundingSphere.fromPoints(positions, result);
};
/**
* Computes a tight-fitting bounding sphere enclosing a list of 3D points, where the points are
* stored in a flat array in X, Y, Z, order. The bounding sphere is computed by running two
* algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to
* ensure a tight fit.
*
* @param {Number[]} [positions] An array of points that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {Cartesian3} [center=Cartesian3.ZERO] The position to which the positions are relative, which need not be the
* origin of the coordinate system. This is useful when the positions are to be used for
* relative-to-center (RTC) rendering.
* @param {Number} [stride=3] The number of array elements per vertex. It must be at least 3, but it may
* be higher. Regardless of the value of this parameter, the X coordinate of the first position
* is at array index 0, the Y coordinate is at array index 1, and the Z coordinate is at array index
* 2. When stride is 3, the X coordinate of the next position then begins at array index 3. If
* the stride is 5, however, two array elements are skipped and the next position begins at array
* index 5.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @example
* // Compute the bounding sphere from 3 positions, each specified relative to a center.
* // In addition to the X, Y, and Z coordinates, the points array contains two additional
* // elements per point which are ignored for the purpose of computing the bounding sphere.
* var center = new Cesium.Cartesian3(1.0, 2.0, 3.0);
* var points = [1.0, 2.0, 3.0, 0.1, 0.2,
* 4.0, 5.0, 6.0, 0.1, 0.2,
* 7.0, 8.0, 9.0, 0.1, 0.2];
* var sphere = Cesium.BoundingSphere.fromVertices(points, center, 5);
*
* @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article}
*/
BoundingSphere.fromVertices = function(positions, center, stride, result) {
if (!defined.defined(result)) {
result = new BoundingSphere();
}
if (!defined.defined(positions) || positions.length === 0) {
result.center = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
center = defaultValue.defaultValue(center, Cartesian2.Cartesian3.ZERO);
stride = defaultValue.defaultValue(stride, 3);
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number.greaterThanOrEquals('stride', stride, 3);
//>>includeEnd('debug');
var currentPos = fromPointsCurrentPos;
currentPos.x = positions[0] + center.x;
currentPos.y = positions[1] + center.y;
currentPos.z = positions[2] + center.z;
var xMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsXMin);
var yMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsYMin);
var zMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsZMin);
var xMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsXMax);
var yMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsYMax);
var zMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsZMax);
var numElements = positions.length;
var i;
for (i = 0; i < numElements; i += stride) {
var x = positions[i] + center.x;
var y = positions[i + 1] + center.y;
var z = positions[i + 2] + center.z;
currentPos.x = x;
currentPos.y = y;
currentPos.z = z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian2.Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian2.Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian2.Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian2.Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian2.Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian2.Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
var xSpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(xMax, xMin, fromPointsScratch));
var ySpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(yMax, yMin, fromPointsScratch));
var zSpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(zMax, zMin, fromPointsScratch));
// Set the diameter endpoints to the largest span.
var diameter1 = xMin;
var diameter2 = xMax;
var maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
var ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
var radiusSquared = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
var ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
var minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
var maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
var naiveCenter = Cartesian2.Cartesian3.midpoint(minBoxPt, maxBoxPt, fromPointsNaiveCenterScratch);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
var naiveRadius = 0;
for (i = 0; i < numElements; i += stride) {
currentPos.x = positions[i] + center.x;
currentPos.y = positions[i + 1] + center.y;
currentPos.z = positions[i + 2] + center.z;
// Find the furthest point from the naive center to calculate the naive radius.
var r = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
var oldCenterToPointSquared = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
if (oldCenterToPointSquared > radiusSquared) {
var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
var oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian2.Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian2.Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
/**
* Computes a tight-fitting bounding sphere enclosing a list of EncodedCartesian3s, where the points are
* stored in parallel flat arrays in X, Y, Z, order. The bounding sphere is computed by running two
* algorithms, a naive algorithm and Ritter's algorithm. The smaller of the two spheres is used to
* ensure a tight fit.
*
* @param {Number[]} [positionsHigh] An array of high bits of the encoded cartesians that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {Number[]} [positionsLow] An array of low bits of the encoded cartesians that the bounding sphere will enclose. Each point
* is formed from three elements in the array in the order X, Y, Z.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*
* @see {@link http://blogs.agi.com/insight3d/index.php/2008/02/04/a-bounding/|Bounding Sphere computation article}
*/
BoundingSphere.fromEncodedCartesianVertices = function(positionsHigh, positionsLow, result) {
if (!defined.defined(result)) {
result = new BoundingSphere();
}
if (!defined.defined(positionsHigh) || !defined.defined(positionsLow) || positionsHigh.length !== positionsLow.length || positionsHigh.length === 0) {
result.center = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
var currentPos = fromPointsCurrentPos;
currentPos.x = positionsHigh[0] + positionsLow[0];
currentPos.y = positionsHigh[1] + positionsLow[1];
currentPos.z = positionsHigh[2] + positionsLow[2];
var xMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsXMin);
var yMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsYMin);
var zMin = Cartesian2.Cartesian3.clone(currentPos, fromPointsZMin);
var xMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsXMax);
var yMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsYMax);
var zMax = Cartesian2.Cartesian3.clone(currentPos, fromPointsZMax);
var numElements = positionsHigh.length;
var i;
for (i = 0; i < numElements; i += 3) {
var x = positionsHigh[i] + positionsLow[i];
var y = positionsHigh[i + 1] + positionsLow[i + 1];
var z = positionsHigh[i + 2] + positionsLow[i + 2];
currentPos.x = x;
currentPos.y = y;
currentPos.z = z;
// Store points containing the the smallest and largest components
if (x < xMin.x) {
Cartesian2.Cartesian3.clone(currentPos, xMin);
}
if (x > xMax.x) {
Cartesian2.Cartesian3.clone(currentPos, xMax);
}
if (y < yMin.y) {
Cartesian2.Cartesian3.clone(currentPos, yMin);
}
if (y > yMax.y) {
Cartesian2.Cartesian3.clone(currentPos, yMax);
}
if (z < zMin.z) {
Cartesian2.Cartesian3.clone(currentPos, zMin);
}
if (z > zMax.z) {
Cartesian2.Cartesian3.clone(currentPos, zMax);
}
}
// Compute x-, y-, and z-spans (Squared distances b/n each component's min. and max.).
var xSpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(xMax, xMin, fromPointsScratch));
var ySpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(yMax, yMin, fromPointsScratch));
var zSpan = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(zMax, zMin, fromPointsScratch));
// Set the diameter endpoints to the largest span.
var diameter1 = xMin;
var diameter2 = xMax;
var maxSpan = xSpan;
if (ySpan > maxSpan) {
maxSpan = ySpan;
diameter1 = yMin;
diameter2 = yMax;
}
if (zSpan > maxSpan) {
maxSpan = zSpan;
diameter1 = zMin;
diameter2 = zMax;
}
// Calculate the center of the initial sphere found by Ritter's algorithm
var ritterCenter = fromPointsRitterCenter;
ritterCenter.x = (diameter1.x + diameter2.x) * 0.5;
ritterCenter.y = (diameter1.y + diameter2.y) * 0.5;
ritterCenter.z = (diameter1.z + diameter2.z) * 0.5;
// Calculate the radius of the initial sphere found by Ritter's algorithm
var radiusSquared = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(diameter2, ritterCenter, fromPointsScratch));
var ritterRadius = Math.sqrt(radiusSquared);
// Find the center of the sphere found using the Naive method.
var minBoxPt = fromPointsMinBoxPt;
minBoxPt.x = xMin.x;
minBoxPt.y = yMin.y;
minBoxPt.z = zMin.z;
var maxBoxPt = fromPointsMaxBoxPt;
maxBoxPt.x = xMax.x;
maxBoxPt.y = yMax.y;
maxBoxPt.z = zMax.z;
var naiveCenter = Cartesian2.Cartesian3.midpoint(minBoxPt, maxBoxPt, fromPointsNaiveCenterScratch);
// Begin 2nd pass to find naive radius and modify the ritter sphere.
var naiveRadius = 0;
for (i = 0; i < numElements; i += 3) {
currentPos.x = positionsHigh[i] + positionsLow[i];
currentPos.y = positionsHigh[i + 1] + positionsLow[i + 1];
currentPos.z = positionsHigh[i + 2] + positionsLow[i + 2];
// Find the furthest point from the naive center to calculate the naive radius.
var r = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.subtract(currentPos, naiveCenter, fromPointsScratch));
if (r > naiveRadius) {
naiveRadius = r;
}
// Make adjustments to the Ritter Sphere to include all points.
var oldCenterToPointSquared = Cartesian2.Cartesian3.magnitudeSquared(Cartesian2.Cartesian3.subtract(currentPos, ritterCenter, fromPointsScratch));
if (oldCenterToPointSquared > radiusSquared) {
var oldCenterToPoint = Math.sqrt(oldCenterToPointSquared);
// Calculate new radius to include the point that lies outside
ritterRadius = (ritterRadius + oldCenterToPoint) * 0.5;
radiusSquared = ritterRadius * ritterRadius;
// Calculate center of new Ritter sphere
var oldToNew = oldCenterToPoint - ritterRadius;
ritterCenter.x = (ritterRadius * ritterCenter.x + oldToNew * currentPos.x) / oldCenterToPoint;
ritterCenter.y = (ritterRadius * ritterCenter.y + oldToNew * currentPos.y) / oldCenterToPoint;
ritterCenter.z = (ritterRadius * ritterCenter.z + oldToNew * currentPos.z) / oldCenterToPoint;
}
}
if (ritterRadius < naiveRadius) {
Cartesian2.Cartesian3.clone(ritterCenter, result.center);
result.radius = ritterRadius;
} else {
Cartesian2.Cartesian3.clone(naiveCenter, result.center);
result.radius = naiveRadius;
}
return result;
};
/**
* Computes a bounding sphere from the corner points of an axis-aligned bounding box. The sphere
* tighly and fully encompases the box.
*
* @param {Cartesian3} [corner] The minimum height over the rectangle.
* @param {Cartesian3} [oppositeCorner] The maximum height over the rectangle.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @example
* // Create a bounding sphere around the unit cube
* var sphere = Cesium.BoundingSphere.fromCornerPoints(new Cesium.Cartesian3(-0.5, -0.5, -0.5), new Cesium.Cartesian3(0.5, 0.5, 0.5));
*/
BoundingSphere.fromCornerPoints = function(corner, oppositeCorner, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('corner', corner);
Check.Check.typeOf.object('oppositeCorner', oppositeCorner);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new BoundingSphere();
}
var center = Cartesian2.Cartesian3.midpoint(corner, oppositeCorner, result.center);
result.radius = Cartesian2.Cartesian3.distance(center, oppositeCorner);
return result;
};
/**
* Creates a bounding sphere encompassing an ellipsoid.
*
* @param {Ellipsoid} ellipsoid The ellipsoid around which to create a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @example
* var boundingSphere = Cesium.BoundingSphere.fromEllipsoid(ellipsoid);
*/
BoundingSphere.fromEllipsoid = function(ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('ellipsoid', ellipsoid);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new BoundingSphere();
}
Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = ellipsoid.maximumRadius;
return result;
};
var fromBoundingSpheresScratch = new Cartesian2.Cartesian3();
/**
* Computes a tight-fitting bounding sphere enclosing the provided array of bounding spheres.
*
* @param {BoundingSphere[]} [boundingSpheres] The array of bounding spheres.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromBoundingSpheres = function(boundingSpheres, result) {
if (!defined.defined(result)) {
result = new BoundingSphere();
}
if (!defined.defined(boundingSpheres) || boundingSpheres.length === 0) {
result.center = Cartesian2.Cartesian3.clone(Cartesian2.Cartesian3.ZERO, result.center);
result.radius = 0.0;
return result;
}
var length = boundingSpheres.length;
if (length === 1) {
return BoundingSphere.clone(boundingSpheres[0], result);
}
if (length === 2) {
return BoundingSphere.union(boundingSpheres[0], boundingSpheres[1], result);
}
var positions = [];
var i;
for (i = 0; i < length; i++) {
positions.push(boundingSpheres[i].center);
}
result = BoundingSphere.fromPoints(positions, result);
var center = result.center;
var radius = result.radius;
for (i = 0; i < length; i++) {
var tmp = boundingSpheres[i];
radius = Math.max(radius, Cartesian2.Cartesian3.distance(center, tmp.center, fromBoundingSpheresScratch) + tmp.radius);
}
result.radius = radius;
return result;
};
var fromOrientedBoundingBoxScratchU = new Cartesian2.Cartesian3();
var fromOrientedBoundingBoxScratchV = new Cartesian2.Cartesian3();
var fromOrientedBoundingBoxScratchW = new Cartesian2.Cartesian3();
/**
* Computes a tight-fitting bounding sphere enclosing the provided oriented bounding box.
*
* @param {OrientedBoundingBox} orientedBoundingBox The oriented bounding box.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.fromOrientedBoundingBox = function(orientedBoundingBox, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('orientedBoundingBox', orientedBoundingBox);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new BoundingSphere();
}
var halfAxes = orientedBoundingBox.halfAxes;
var u = Matrix3.getColumn(halfAxes, 0, fromOrientedBoundingBoxScratchU);
var v = Matrix3.getColumn(halfAxes, 1, fromOrientedBoundingBoxScratchV);
var w = Matrix3.getColumn(halfAxes, 2, fromOrientedBoundingBoxScratchW);
Cartesian2.Cartesian3.add(u, v, u);
Cartesian2.Cartesian3.add(u, w, u);
result.center = Cartesian2.Cartesian3.clone(orientedBoundingBox.center, result.center);
result.radius = Cartesian2.Cartesian3.magnitude(u);
return result;
};
/**
* Duplicates a BoundingSphere instance.
*
* @param {BoundingSphere} sphere The bounding sphere to duplicate.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided. (Returns undefined if sphere is undefined)
*/
BoundingSphere.clone = function(sphere, result) {
if (!defined.defined(sphere)) {
return undefined;
}
if (!defined.defined(result)) {
return new BoundingSphere(sphere.center, sphere.radius);
}
result.center = Cartesian2.Cartesian3.clone(sphere.center, result.center);
result.radius = sphere.radius;
return result;
};
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
BoundingSphere.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {BoundingSphere} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
BoundingSphere.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
var center = value.center;
array[startingIndex++] = center.x;
array[startingIndex++] = center.y;
array[startingIndex++] = center.z;
array[startingIndex] = value.radius;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {BoundingSphere} [result] The object into which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if one was not provided.
*/
BoundingSphere.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
if (!defined.defined(result)) {
result = new BoundingSphere();
}
var center = result.center;
center.x = array[startingIndex++];
center.y = array[startingIndex++];
center.z = array[startingIndex++];
result.radius = array[startingIndex];
return result;
};
var unionScratch = new Cartesian2.Cartesian3();
var unionScratchCenter = new Cartesian2.Cartesian3();
/**
* Computes a bounding sphere that contains both the left and right bounding spheres.
*
* @param {BoundingSphere} left A sphere to enclose in a bounding sphere.
* @param {BoundingSphere} right A sphere to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.union = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new BoundingSphere();
}
var leftCenter = left.center;
var leftRadius = left.radius;
var rightCenter = right.center;
var rightRadius = right.radius;
var toRightCenter = Cartesian2.Cartesian3.subtract(rightCenter, leftCenter, unionScratch);
var centerSeparation = Cartesian2.Cartesian3.magnitude(toRightCenter);
if (leftRadius >= (centerSeparation + rightRadius)) {
// Left sphere wins.
left.clone(result);
return result;
}
if (rightRadius >= (centerSeparation + leftRadius)) {
// Right sphere wins.
right.clone(result);
return result;
}
// There are two tangent points, one on far side of each sphere.
var halfDistanceBetweenTangentPoints = (leftRadius + centerSeparation + rightRadius) * 0.5;
// Compute the center point halfway between the two tangent points.
var center = Cartesian2.Cartesian3.multiplyByScalar(toRightCenter,
(-leftRadius + halfDistanceBetweenTangentPoints) / centerSeparation, unionScratchCenter);
Cartesian2.Cartesian3.add(center, leftCenter, center);
Cartesian2.Cartesian3.clone(center, result.center);
result.radius = halfDistanceBetweenTangentPoints;
return result;
};
var expandScratch = new Cartesian2.Cartesian3();
/**
* Computes a bounding sphere by enlarging the provided sphere to contain the provided point.
*
* @param {BoundingSphere} sphere A sphere to expand.
* @param {Cartesian3} point A point to enclose in a bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.expand = function(sphere, point, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('sphere', sphere);
Check.Check.typeOf.object('point', point);
//>>includeEnd('debug');
result = BoundingSphere.clone(sphere, result);
var radius = Cartesian2.Cartesian3.magnitude(Cartesian2.Cartesian3.subtract(point, result.center, expandScratch));
if (radius > result.radius) {
result.radius = radius;
}
return result;
};
/**
* Determines which side of a plane a sphere is located.
*
* @param {BoundingSphere} sphere The bounding sphere to test.
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is
* on the opposite side, and {@link Intersect.INTERSECTING} if the sphere
* intersects the plane.
*/
BoundingSphere.intersectPlane = function(sphere, plane) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('sphere', sphere);
Check.Check.typeOf.object('plane', plane);
//>>includeEnd('debug');
var center = sphere.center;
var radius = sphere.radius;
var normal = plane.normal;
var distanceToPlane = Cartesian2.Cartesian3.dot(normal, center) + plane.distance;
if (distanceToPlane < -radius) {
// The center point is negative side of the plane normal
return Intersect$1.OUTSIDE;
} else if (distanceToPlane < radius) {
// The center point is positive side of the plane, but radius extends beyond it; partial overlap
return Intersect$1.INTERSECTING;
}
return Intersect$1.INSIDE;
};
/**
* Applies a 4x4 affine transformation matrix to a bounding sphere.
*
* @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
* @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.transform = function(sphere, transform, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('sphere', sphere);
Check.Check.typeOf.object('transform', transform);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new BoundingSphere();
}
result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center);
result.radius = Matrix4.getMaximumScale(transform) * sphere.radius;
return result;
};
var distanceSquaredToScratch = new Cartesian2.Cartesian3();
/**
* Computes the estimated distance squared from the closest point on a bounding sphere to a point.
*
* @param {BoundingSphere} sphere The sphere.
* @param {Cartesian3} cartesian The point
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
*
* @example
* // Sort bounding spheres from back to front
* spheres.sort(function(a, b) {
* return Cesium.BoundingSphere.distanceSquaredTo(b, camera.positionWC) - Cesium.BoundingSphere.distanceSquaredTo(a, camera.positionWC);
* });
*/
BoundingSphere.distanceSquaredTo = function(sphere, cartesian) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('sphere', sphere);
Check.Check.typeOf.object('cartesian', cartesian);
//>>includeEnd('debug');
var diff = Cartesian2.Cartesian3.subtract(sphere.center, cartesian, distanceSquaredToScratch);
return Cartesian2.Cartesian3.magnitudeSquared(diff) - sphere.radius * sphere.radius;
};
/**
* Applies a 4x4 affine transformation matrix to a bounding sphere where there is no scale
* The transformation matrix is not verified to have a uniform scale of 1.
* This method is faster than computing the general bounding sphere transform using {@link BoundingSphere.transform}.
*
* @param {BoundingSphere} sphere The bounding sphere to apply the transformation to.
* @param {Matrix4} transform The transformation matrix to apply to the bounding sphere.
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*
* @example
* var modelMatrix = Cesium.Transforms.eastNorthUpToFixedFrame(positionOnEllipsoid);
* var boundingSphere = new Cesium.BoundingSphere();
* var newBoundingSphere = Cesium.BoundingSphere.transformWithoutScale(boundingSphere, modelMatrix);
*/
BoundingSphere.transformWithoutScale = function(sphere, transform, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('sphere', sphere);
Check.Check.typeOf.object('transform', transform);
//>>includeEnd('debug');
if (!defined.defined(result)) {
result = new BoundingSphere();
}
result.center = Matrix4.multiplyByPoint(transform, sphere.center, result.center);
result.radius = sphere.radius;
return result;
};
var scratchCartesian3 = new Cartesian2.Cartesian3();
/**
* The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
* plus/minus the radius of the bounding sphere.
* true
if the sphere is not visible; otherwise false
.
*/
BoundingSphere.isOccluded = function(sphere, occluder) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('sphere', sphere);
Check.Check.typeOf.object('occluder', occluder);
//>>includeEnd('debug');
return !occluder.isBoundingSphereVisible(sphere);
};
/**
* Compares the provided BoundingSphere componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {BoundingSphere} [left] The first BoundingSphere.
* @param {BoundingSphere} [right] The second BoundingSphere.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
BoundingSphere.equals = function(left, right) {
return (left === right) ||
((defined.defined(left)) &&
(defined.defined(right)) &&
Cartesian2.Cartesian3.equals(left.center, right.center) &&
left.radius === right.radius);
};
/**
* Determines which side of a plane the sphere is located.
*
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire sphere is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire sphere is
* on the opposite side, and {@link Intersect.INTERSECTING} if the sphere
* intersects the plane.
*/
BoundingSphere.prototype.intersectPlane = function(plane) {
return BoundingSphere.intersectPlane(this, plane);
};
/**
* Computes the estimated distance squared from the closest point on a bounding sphere to a point.
*
* @param {Cartesian3} cartesian The point
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
*
* @example
* // Sort bounding spheres from back to front
* spheres.sort(function(a, b) {
* return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC);
* });
*/
BoundingSphere.prototype.distanceSquaredTo = function(cartesian) {
return BoundingSphere.distanceSquaredTo(this, cartesian);
};
/**
* The distances calculated by the vector from the center of the bounding sphere to position projected onto direction
* plus/minus the radius of the bounding sphere.
* true
if the sphere is not visible; otherwise false
.
*/
BoundingSphere.prototype.isOccluded = function(occluder) {
return BoundingSphere.isOccluded(this, occluder);
};
/**
* Compares this BoundingSphere against the provided BoundingSphere componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {BoundingSphere} [right] The right hand side BoundingSphere.
* @returns {Boolean} true
if they are equal, false
otherwise.
*/
BoundingSphere.prototype.equals = function(right) {
return BoundingSphere.equals(this, right);
};
/**
* Duplicates this BoundingSphere instance.
*
* @param {BoundingSphere} [result] The object onto which to store the result.
* @returns {BoundingSphere} The modified result parameter or a new BoundingSphere instance if none was provided.
*/
BoundingSphere.prototype.clone = function(result) {
return BoundingSphere.clone(this, result);
};
/**
* Computes the radius of the BoundingSphere.
* @returns {Number} The radius of the BoundingSphere.
*/
BoundingSphere.prototype.volume = function() {
var radius = this.radius;
return volumeConstant * radius * radius * radius;
};
var _supportsFullscreen;
var _names = {
requestFullscreen : undefined,
exitFullscreen : undefined,
fullscreenEnabled : undefined,
fullscreenElement : undefined,
fullscreenchange : undefined,
fullscreenerror : undefined
};
/**
* Browser-independent functions for working with the standard fullscreen API.
*
* @exports Fullscreen
* @namespace
*
* @see {@link http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html|W3C Fullscreen Living Specification}
*/
var Fullscreen = {};
defineProperties.defineProperties(Fullscreen, {
/**
* The element that is currently fullscreen, if any. To simply check if the
* browser is in fullscreen mode or not, use {@link Fullscreen#fullscreen}.
* @memberof Fullscreen
* @type {Object}
* @readonly
*/
element : {
get : function() {
if (!Fullscreen.supportsFullscreen()) {
return undefined;
}
return document[_names.fullscreenElement];
}
},
/**
* The name of the event on the document that is fired when fullscreen is
* entered or exited. This event name is intended for use with addEventListener.
* In your event handler, to determine if the browser is in fullscreen mode or not,
* use {@link Fullscreen#fullscreen}.
* @memberof Fullscreen
* @type {String}
* @readonly
*/
changeEventName : {
get : function() {
if (!Fullscreen.supportsFullscreen()) {
return undefined;
}
return _names.fullscreenchange;
}
},
/**
* The name of the event that is fired when a fullscreen error
* occurs. This event name is intended for use with addEventListener.
* @memberof Fullscreen
* @type {String}
* @readonly
*/
errorEventName : {
get : function() {
if (!Fullscreen.supportsFullscreen()) {
return undefined;
}
return _names.fullscreenerror;
}
},
/**
* Determine whether the browser will allow an element to be made fullscreen, or not.
* For example, by default, iframes cannot go fullscreen unless the containing page
* adds an "allowfullscreen" attribute (or prefixed equivalent).
* @memberof Fullscreen
* @type {Boolean}
* @readonly
*/
enabled : {
get : function() {
if (!Fullscreen.supportsFullscreen()) {
return undefined;
}
return document[_names.fullscreenEnabled];
}
},
/**
* Determines if the browser is currently in fullscreen mode.
* @memberof Fullscreen
* @type {Boolean}
* @readonly
*/
fullscreen : {
get : function() {
if (!Fullscreen.supportsFullscreen()) {
return undefined;
}
return Fullscreen.element !== null;
}
}
});
/**
* Detects whether the browser supports the standard fullscreen API.
*
* @returns {Boolean} true
if the browser supports the standard fullscreen API,
* false
otherwise.
*/
Fullscreen.supportsFullscreen = function() {
if (defined.defined(_supportsFullscreen)) {
return _supportsFullscreen;
}
_supportsFullscreen = false;
var body = document.body;
if (typeof body.requestFullscreen === 'function') {
// go with the unprefixed, standard set of names
_names.requestFullscreen = 'requestFullscreen';
_names.exitFullscreen = 'exitFullscreen';
_names.fullscreenEnabled = 'fullscreenEnabled';
_names.fullscreenElement = 'fullscreenElement';
_names.fullscreenchange = 'fullscreenchange';
_names.fullscreenerror = 'fullscreenerror';
_supportsFullscreen = true;
return _supportsFullscreen;
}
//check for the correct combination of prefix plus the various names that browsers use
var prefixes = ['webkit', 'moz', 'o', 'ms', 'khtml'];
var name;
for (var i = 0, len = prefixes.length; i < len; ++i) {
var prefix = prefixes[i];
// casing of Fullscreen differs across browsers
name = prefix + 'RequestFullscreen';
if (typeof body[name] === 'function') {
_names.requestFullscreen = name;
_supportsFullscreen = true;
} else {
name = prefix + 'RequestFullScreen';
if (typeof body[name] === 'function') {
_names.requestFullscreen = name;
_supportsFullscreen = true;
}
}
// disagreement about whether it's "exit" as per spec, or "cancel"
name = prefix + 'ExitFullscreen';
if (typeof document[name] === 'function') {
_names.exitFullscreen = name;
} else {
name = prefix + 'CancelFullScreen';
if (typeof document[name] === 'function') {
_names.exitFullscreen = name;
}
}
// casing of Fullscreen differs across browsers
name = prefix + 'FullscreenEnabled';
if (document[name] !== undefined) {
_names.fullscreenEnabled = name;
} else {
name = prefix + 'FullScreenEnabled';
if (document[name] !== undefined) {
_names.fullscreenEnabled = name;
}
}
// casing of Fullscreen differs across browsers
name = prefix + 'FullscreenElement';
if (document[name] !== undefined) {
_names.fullscreenElement = name;
} else {
name = prefix + 'FullScreenElement';
if (document[name] !== undefined) {
_names.fullscreenElement = name;
}
}
// thankfully, event names are all lowercase per spec
name = prefix + 'fullscreenchange';
// event names do not have 'on' in the front, but the property on the document does
if (document['on' + name] !== undefined) {
//except on IE
if (prefix === 'ms') {
name = 'MSFullscreenChange';
}
_names.fullscreenchange = name;
}
name = prefix + 'fullscreenerror';
if (document['on' + name] !== undefined) {
//except on IE
if (prefix === 'ms') {
name = 'MSFullscreenError';
}
_names.fullscreenerror = name;
}
}
return _supportsFullscreen;
};
/**
* Asynchronously requests the browser to enter fullscreen mode on the given element.
* If fullscreen mode is not supported by the browser, does nothing.
*
* @param {Object} element The HTML element which will be placed into fullscreen mode.
* @param {HMDVRDevice} [vrDevice] The VR device.
*
* @example
* // Put the entire page into fullscreen.
* Cesium.Fullscreen.requestFullscreen(document.body)
*
* // Place only the Cesium canvas into fullscreen.
* Cesium.Fullscreen.requestFullscreen(scene.canvas)
*/
Fullscreen.requestFullscreen = function(element, vrDevice) {
if (!Fullscreen.supportsFullscreen()) {
return;
}
element[_names.requestFullscreen]({ vrDisplay: vrDevice });
};
/**
* Asynchronously exits fullscreen mode. If the browser is not currently
* in fullscreen, or if fullscreen mode is not supported by the browser, does nothing.
*/
Fullscreen.exitFullscreen = function() {
if (!Fullscreen.supportsFullscreen()) {
return;
}
document[_names.exitFullscreen]();
};
//For unit tests
Fullscreen._names = _names;
/*global CanvasPixelArray*/
var theNavigator;
if (typeof navigator !== 'undefined') {
theNavigator = navigator;
} else {
theNavigator = {};
}
function extractVersion(versionString) {
var parts = versionString.split('.');
for (var i = 0, len = parts.length; i < len; ++i) {
parts[i] = parseInt(parts[i], 10);
}
return parts;
}
var isChromeResult;
var chromeVersionResult;
function isChrome() {
if (!defined.defined(isChromeResult)) {
isChromeResult = false;
// Edge contains Chrome in the user agent too
if (!isEdge()) {
var fields = (/ Chrome\/([\.0-9]+)/).exec(theNavigator.userAgent);
if (fields !== null) {
isChromeResult = true;
chromeVersionResult = extractVersion(fields[1]);
}
}
}
return isChromeResult;
}
function chromeVersion() {
return isChrome() && chromeVersionResult;
}
var isSafariResult;
var safariVersionResult;
function isSafari() {
if (!defined.defined(isSafariResult)) {
isSafariResult = false;
// Chrome and Edge contain Safari in the user agent too
if (!isChrome() && !isEdge() && (/ Safari\/[\.0-9]+/).test(theNavigator.userAgent)) {
var fields = (/ Version\/([\.0-9]+)/).exec(theNavigator.userAgent);
if (fields !== null) {
isSafariResult = true;
safariVersionResult = extractVersion(fields[1]);
}
}
}
return isSafariResult;
}
function safariVersion() {
return isSafari() && safariVersionResult;
}
var isWebkitResult;
var webkitVersionResult;
function isWebkit() {
if (!defined.defined(isWebkitResult)) {
isWebkitResult = false;
var fields = (/ AppleWebKit\/([\.0-9]+)(\+?)/).exec(theNavigator.userAgent);
if (fields !== null) {
isWebkitResult = true;
webkitVersionResult = extractVersion(fields[1]);
webkitVersionResult.isNightly = !!fields[2];
}
}
return isWebkitResult;
}
function webkitVersion() {
return isWebkit() && webkitVersionResult;
}
var isInternetExplorerResult;
var internetExplorerVersionResult;
function isInternetExplorer() {
if (!defined.defined(isInternetExplorerResult)) {
isInternetExplorerResult = false;
var fields;
if (theNavigator.appName === 'Microsoft Internet Explorer') {
fields = /MSIE ([0-9]{1,}[\.0-9]{0,})/.exec(theNavigator.userAgent);
if (fields !== null) {
isInternetExplorerResult = true;
internetExplorerVersionResult = extractVersion(fields[1]);
}
} else if (theNavigator.appName === 'Netscape') {
fields = /Trident\/.*rv:([0-9]{1,}[\.0-9]{0,})/.exec(theNavigator.userAgent);
if (fields !== null) {
isInternetExplorerResult = true;
internetExplorerVersionResult = extractVersion(fields[1]);
}
}
}
return isInternetExplorerResult;
}
function internetExplorerVersion() {
return isInternetExplorer() && internetExplorerVersionResult;
}
var isEdgeResult;
var edgeVersionResult;
function isEdge() {
if (!defined.defined(isEdgeResult)) {
isEdgeResult = false;
var fields = (/ Edge\/([\.0-9]+)/).exec(theNavigator.userAgent);
if (fields !== null) {
isEdgeResult = true;
edgeVersionResult = extractVersion(fields[1]);
}
}
return isEdgeResult;
}
function edgeVersion() {
return isEdge() && edgeVersionResult;
}
var isFirefoxResult;
var firefoxVersionResult;
function isFirefox() {
if (!defined.defined(isFirefoxResult)) {
isFirefoxResult = false;
var fields = /Firefox\/([\.0-9]+)/.exec(theNavigator.userAgent);
if (fields !== null) {
isFirefoxResult = true;
firefoxVersionResult = extractVersion(fields[1]);
}
}
return isFirefoxResult;
}
var isWindowsResult;
function isWindows() {
if (!defined.defined(isWindowsResult)) {
isWindowsResult = /Windows/i.test(theNavigator.appVersion);
}
return isWindowsResult;
}
function firefoxVersion() {
return isFirefox() && firefoxVersionResult;
}
var hasPointerEvents;
function supportsPointerEvents() {
if (!defined.defined(hasPointerEvents)) {
//While navigator.pointerEnabled is deprecated in the W3C specification
//we still need to use it if it exists in order to support browsers
//that rely on it, such as the Windows WebBrowser control which defines
//PointerEvent but sets navigator.pointerEnabled to false.
//Firefox disabled because of https://github.com/AnalyticalGraphicsInc/cesium/issues/6372
hasPointerEvents = !isFirefox() && typeof PointerEvent !== 'undefined' && (!defined.defined(theNavigator.pointerEnabled) || theNavigator.pointerEnabled);
}
return hasPointerEvents;
}
var imageRenderingValueResult;
var supportsImageRenderingPixelatedResult;
function supportsImageRenderingPixelated() {
if (!defined.defined(supportsImageRenderingPixelatedResult)) {
var canvas = document.createElement('canvas');
canvas.setAttribute('style',
'image-rendering: -moz-crisp-edges;' +
'image-rendering: pixelated;');
//canvas.style.imageRendering will be undefined, null or an empty string on unsupported browsers.
var tmp = canvas.style.imageRendering;
supportsImageRenderingPixelatedResult = defined.defined(tmp) && tmp !== '';
if (supportsImageRenderingPixelatedResult) {
imageRenderingValueResult = tmp;
}
}
return supportsImageRenderingPixelatedResult;
}
function imageRenderingValue() {
return supportsImageRenderingPixelated() ? imageRenderingValueResult : undefined;
}
function supportsWebP() {
//>>includeStart('debug', pragmas.debug);
if (!supportsWebP.initialized) {
throw new Check.DeveloperError('You must call FeatureDetection.supportsWebP.initialize and wait for the promise to resolve before calling FeatureDetection.supportsWebP');
}
//>>includeEnd('debug');
return supportsWebP._result;
}
supportsWebP._promise = undefined;
supportsWebP._result = undefined;
supportsWebP.initialize = function() {
// From https://developers.google.com/speed/webp/faq#how_can_i_detect_browser_support_for_webp
if (defined.defined(supportsWebP._promise)) {
return supportsWebP._promise;
}
var supportsWebPDeferred = when.when.defer();
supportsWebP._promise = supportsWebPDeferred.promise;
if (isEdge()) {
// Edge's WebP support with WebGL is incomplete.
// See bug report: https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/19221241/
supportsWebP._result = false;
supportsWebPDeferred.resolve(supportsWebP._result);
return supportsWebPDeferred.promise;
}
var image = new Image();
image.onload = function () {
supportsWebP._result = (image.width > 0) && (image.height > 0);
supportsWebPDeferred.resolve(supportsWebP._result);
};
image.onerror = function () {
supportsWebP._result = false;
supportsWebPDeferred.resolve(supportsWebP._result);
};
image.src = '';
return supportsWebPDeferred.promise;
};
defineProperties.defineProperties(supportsWebP, {
initialized: {
get: function() {
return defined.defined(supportsWebP._result);
}
}
});
var typedArrayTypes = [];
if (typeof ArrayBuffer !== 'undefined') {
typedArrayTypes.push(Int8Array, Uint8Array, Int16Array, Uint16Array, Int32Array, Uint32Array, Float32Array, Float64Array);
if (typeof Uint8ClampedArray !== 'undefined') {
typedArrayTypes.push(Uint8ClampedArray);
}
if (typeof CanvasPixelArray !== 'undefined') {
typedArrayTypes.push(CanvasPixelArray);
}
}
/**
* A set of functions to detect whether the current browser supports
* various features.
*
* @exports FeatureDetection
*/
var FeatureDetection = {
isChrome : isChrome,
chromeVersion : chromeVersion,
isSafari : isSafari,
safariVersion : safariVersion,
isWebkit : isWebkit,
webkitVersion : webkitVersion,
isInternetExplorer : isInternetExplorer,
internetExplorerVersion : internetExplorerVersion,
isEdge : isEdge,
edgeVersion : edgeVersion,
isFirefox : isFirefox,
firefoxVersion : firefoxVersion,
isWindows : isWindows,
hardwareConcurrency : defaultValue.defaultValue(theNavigator.hardwareConcurrency, 3),
supportsPointerEvents : supportsPointerEvents,
supportsImageRenderingPixelated: supportsImageRenderingPixelated,
supportsWebP: supportsWebP,
imageRenderingValue: imageRenderingValue,
typedArrayTypes: typedArrayTypes
};
/**
* Detects whether the current browser supports the full screen standard.
*
* @returns {Boolean} true if the browser supports the full screen standard, false if not.
*
* @see Fullscreen
* @see {@link http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html|W3C Fullscreen Living Specification}
*/
FeatureDetection.supportsFullscreen = function() {
return Fullscreen.supportsFullscreen();
};
/**
* Detects whether the current browser supports typed arrays.
*
* @returns {Boolean} true if the browser supports typed arrays, false if not.
*
* @see {@link http://www.khronos.org/registry/typedarray/specs/latest/|Typed Array Specification}
*/
FeatureDetection.supportsTypedArrays = function() {
return typeof ArrayBuffer !== 'undefined';
};
/**
* Detects whether the current browser supports Web Workers.
*
* @returns {Boolean} true if the browsers supports Web Workers, false if not.
*
* @see {@link http://www.w3.org/TR/workers/}
*/
FeatureDetection.supportsWebWorkers = function() {
return typeof Worker !== 'undefined';
};
/**
* Detects whether the current browser supports Web Assembly.
*
* @returns {Boolean} true if the browsers supports Web Assembly, false if not.
*
* @see {@link https://developer.mozilla.org/en-US/docs/WebAssembly}
*/
FeatureDetection.supportsWebAssembly = function() {
return typeof WebAssembly !== 'undefined' && !FeatureDetection.isEdge();
};
/**
* A set of 4-dimensional coordinates used to represent rotation in 3-dimensional space.
* @alias Quaternion
* @constructor
*
* @param {Number} [x=0.0] The X component.
* @param {Number} [y=0.0] The Y component.
* @param {Number} [z=0.0] The Z component.
* @param {Number} [w=0.0] The W component.
*
* @see PackableForInterpolation
*/
function Quaternion(x, y, z, w) {
/**
* The X component.
* @type {Number}
* @default 0.0
*/
this.x = defaultValue.defaultValue(x, 0.0);
/**
* The Y component.
* @type {Number}
* @default 0.0
*/
this.y = defaultValue.defaultValue(y, 0.0);
/**
* The Z component.
* @type {Number}
* @default 0.0
*/
this.z = defaultValue.defaultValue(z, 0.0);
/**
* The W component.
* @type {Number}
* @default 0.0
*/
this.w = defaultValue.defaultValue(w, 0.0);
}
var fromAxisAngleScratch = new Cartesian2.Cartesian3();
/**
* Computes a quaternion representing a rotation around an axis.
*
* @param {Cartesian3} axis The axis of rotation.
* @param {Number} angle The angle in radians to rotate around the axis.
* @param {Quaternion} [result] The object onto which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if one was not provided.
*/
Quaternion.fromAxisAngle = function(axis, angle, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('axis', axis);
Check.Check.typeOf.number('angle', angle);
//>>includeEnd('debug');
var halfAngle = angle / 2.0;
var s = Math.sin(halfAngle);
fromAxisAngleScratch = Cartesian2.Cartesian3.normalize(axis, fromAxisAngleScratch);
var x = fromAxisAngleScratch.x * s;
var y = fromAxisAngleScratch.y * s;
var z = fromAxisAngleScratch.z * s;
var w = Math.cos(halfAngle);
if (!defined.defined(result)) {
return new Quaternion(x, y, z, w);
}
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
var fromRotationMatrixNext = [1, 2, 0];
var fromRotationMatrixQuat = new Array(3);
/**
* Computes a Quaternion from the provided Matrix3 instance.
*
* @param {Matrix3} matrix The rotation matrix.
* @param {Quaternion} [result] The object onto which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if one was not provided.
*
* @see Matrix3.fromQuaternion
*/
Quaternion.fromRotationMatrix = function(matrix, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('matrix', matrix);
//>>includeEnd('debug');
var root;
var x;
var y;
var z;
var w;
var m00 = matrix[Matrix3.COLUMN0ROW0];
var m11 = matrix[Matrix3.COLUMN1ROW1];
var m22 = matrix[Matrix3.COLUMN2ROW2];
var trace = m00 + m11 + m22;
if (trace > 0.0) {
// |w| > 1/2, may as well choose w > 1/2
root = Math.sqrt(trace + 1.0); // 2w
w = 0.5 * root;
root = 0.5 / root; // 1/(4w)
x = (matrix[Matrix3.COLUMN1ROW2] - matrix[Matrix3.COLUMN2ROW1]) * root;
y = (matrix[Matrix3.COLUMN2ROW0] - matrix[Matrix3.COLUMN0ROW2]) * root;
z = (matrix[Matrix3.COLUMN0ROW1] - matrix[Matrix3.COLUMN1ROW0]) * root;
} else {
// |w| <= 1/2
var next = fromRotationMatrixNext;
var i = 0;
if (m11 > m00) {
i = 1;
}
if (m22 > m00 && m22 > m11) {
i = 2;
}
var j = next[i];
var k = next[j];
root = Math.sqrt(matrix[Matrix3.getElementIndex(i, i)] - matrix[Matrix3.getElementIndex(j, j)] - matrix[Matrix3.getElementIndex(k, k)] + 1.0);
var quat = fromRotationMatrixQuat;
quat[i] = 0.5 * root;
root = 0.5 / root;
w = (matrix[Matrix3.getElementIndex(k, j)] - matrix[Matrix3.getElementIndex(j, k)]) * root;
quat[j] = (matrix[Matrix3.getElementIndex(j, i)] + matrix[Matrix3.getElementIndex(i, j)]) * root;
quat[k] = (matrix[Matrix3.getElementIndex(k, i)] + matrix[Matrix3.getElementIndex(i, k)]) * root;
x = -quat[0];
y = -quat[1];
z = -quat[2];
}
if (!defined.defined(result)) {
return new Quaternion(x, y, z, w);
}
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
var scratchHPRQuaternion = new Quaternion();
var scratchHeadingQuaternion = new Quaternion();
var scratchPitchQuaternion = new Quaternion();
var scratchRollQuaternion = new Quaternion();
/**
* Computes a rotation from the given heading, pitch and roll angles. Heading is the rotation about the
* negative z axis. Pitch is the rotation about the negative y axis. Roll is the rotation about
* the positive x axis.
*
* @param {HeadingPitchRoll} headingPitchRoll The rotation expressed as a heading, pitch and roll.
* @param {Quaternion} [result] The object onto which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if none was provided.
*/
Quaternion.fromHeadingPitchRoll = function(headingPitchRoll, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('headingPitchRoll', headingPitchRoll);
//>>includeEnd('debug');
scratchRollQuaternion = Quaternion.fromAxisAngle(Cartesian2.Cartesian3.UNIT_X, headingPitchRoll.roll, scratchHPRQuaternion);
scratchPitchQuaternion = Quaternion.fromAxisAngle(Cartesian2.Cartesian3.UNIT_Y, -headingPitchRoll.pitch, result);
result = Quaternion.multiply(scratchPitchQuaternion, scratchRollQuaternion, scratchPitchQuaternion);
scratchHeadingQuaternion = Quaternion.fromAxisAngle(Cartesian2.Cartesian3.UNIT_Z, -headingPitchRoll.heading, scratchHPRQuaternion);
return Quaternion.multiply(scratchHeadingQuaternion, result, result);
};
var sampledQuaternionAxis = new Cartesian2.Cartesian3();
var sampledQuaternionRotation = new Cartesian2.Cartesian3();
var sampledQuaternionTempQuaternion = new Quaternion();
var sampledQuaternionQuaternion0 = new Quaternion();
var sampledQuaternionQuaternion0Conjugate = new Quaternion();
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
Quaternion.packedLength = 4;
/**
* Stores the provided instance into the provided array.
*
* @param {Quaternion} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
Quaternion.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('value', value);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
array[startingIndex++] = value.x;
array[startingIndex++] = value.y;
array[startingIndex++] = value.z;
array[startingIndex] = value.w;
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {Quaternion} [result] The object into which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if one was not provided.
*/
Quaternion.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue.defaultValue(startingIndex, 0);
if (!defined.defined(result)) {
result = new Quaternion();
}
result.x = array[startingIndex];
result.y = array[startingIndex + 1];
result.z = array[startingIndex + 2];
result.w = array[startingIndex + 3];
return result;
};
/**
* The number of elements used to store the object into an array in its interpolatable form.
* @type {Number}
*/
Quaternion.packedInterpolationLength = 3;
/**
* Converts a packed array into a form suitable for interpolation.
*
* @param {Number[]} packedArray The packed array.
* @param {Number} [startingIndex=0] The index of the first element to be converted.
* @param {Number} [lastIndex=packedArray.length] The index of the last element to be converted.
* @param {Number[]} result The object into which to store the result.
*/
Quaternion.convertPackedArrayForInterpolation = function(packedArray, startingIndex, lastIndex, result) {
Quaternion.unpack(packedArray, lastIndex * 4, sampledQuaternionQuaternion0Conjugate);
Quaternion.conjugate(sampledQuaternionQuaternion0Conjugate, sampledQuaternionQuaternion0Conjugate);
for (var i = 0, len = lastIndex - startingIndex + 1; i < len; i++) {
var offset = i * 3;
Quaternion.unpack(packedArray, (startingIndex + i) * 4, sampledQuaternionTempQuaternion);
Quaternion.multiply(sampledQuaternionTempQuaternion, sampledQuaternionQuaternion0Conjugate, sampledQuaternionTempQuaternion);
if (sampledQuaternionTempQuaternion.w < 0) {
Quaternion.negate(sampledQuaternionTempQuaternion, sampledQuaternionTempQuaternion);
}
Quaternion.computeAxis(sampledQuaternionTempQuaternion, sampledQuaternionAxis);
var angle = Quaternion.computeAngle(sampledQuaternionTempQuaternion);
result[offset] = sampledQuaternionAxis.x * angle;
result[offset + 1] = sampledQuaternionAxis.y * angle;
result[offset + 2] = sampledQuaternionAxis.z * angle;
}
};
/**
* Retrieves an instance from a packed array converted with {@link convertPackedArrayForInterpolation}.
*
* @param {Number[]} array The array previously packed for interpolation.
* @param {Number[]} sourceArray The original packed array.
* @param {Number} [firstIndex=0] The firstIndex used to convert the array.
* @param {Number} [lastIndex=packedArray.length] The lastIndex used to convert the array.
* @param {Quaternion} [result] The object into which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if one was not provided.
*/
Quaternion.unpackInterpolationResult = function(array, sourceArray, firstIndex, lastIndex, result) {
if (!defined.defined(result)) {
result = new Quaternion();
}
Cartesian2.Cartesian3.fromArray(array, 0, sampledQuaternionRotation);
var magnitude = Cartesian2.Cartesian3.magnitude(sampledQuaternionRotation);
Quaternion.unpack(sourceArray, lastIndex * 4, sampledQuaternionQuaternion0);
if (magnitude === 0) {
Quaternion.clone(Quaternion.IDENTITY, sampledQuaternionTempQuaternion);
} else {
Quaternion.fromAxisAngle(sampledQuaternionRotation, magnitude, sampledQuaternionTempQuaternion);
}
return Quaternion.multiply(sampledQuaternionTempQuaternion, sampledQuaternionQuaternion0, result);
};
/**
* Duplicates a Quaternion instance.
*
* @param {Quaternion} quaternion The quaternion to duplicate.
* @param {Quaternion} [result] The object onto which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if one was not provided. (Returns undefined if quaternion is undefined)
*/
Quaternion.clone = function(quaternion, result) {
if (!defined.defined(quaternion)) {
return undefined;
}
if (!defined.defined(result)) {
return new Quaternion(quaternion.x, quaternion.y, quaternion.z, quaternion.w);
}
result.x = quaternion.x;
result.y = quaternion.y;
result.z = quaternion.z;
result.w = quaternion.w;
return result;
};
/**
* Computes the conjugate of the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to conjugate.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.conjugate = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = -quaternion.x;
result.y = -quaternion.y;
result.z = -quaternion.z;
result.w = quaternion.w;
return result;
};
/**
* Computes magnitude squared for the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to conjugate.
* @returns {Number} The magnitude squared.
*/
Quaternion.magnitudeSquared = function(quaternion) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
//>>includeEnd('debug');
return quaternion.x * quaternion.x + quaternion.y * quaternion.y + quaternion.z * quaternion.z + quaternion.w * quaternion.w;
};
/**
* Computes magnitude for the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to conjugate.
* @returns {Number} The magnitude.
*/
Quaternion.magnitude = function(quaternion) {
return Math.sqrt(Quaternion.magnitudeSquared(quaternion));
};
/**
* Computes the normalized form of the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to normalize.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.normalize = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var inverseMagnitude = 1.0 / Quaternion.magnitude(quaternion);
var x = quaternion.x * inverseMagnitude;
var y = quaternion.y * inverseMagnitude;
var z = quaternion.z * inverseMagnitude;
var w = quaternion.w * inverseMagnitude;
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Computes the inverse of the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to normalize.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.inverse = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var magnitudeSquared = Quaternion.magnitudeSquared(quaternion);
result = Quaternion.conjugate(quaternion, result);
return Quaternion.multiplyByScalar(result, 1.0 / magnitudeSquared, result);
};
/**
* Computes the componentwise sum of two quaternions.
*
* @param {Quaternion} left The first quaternion.
* @param {Quaternion} right The second quaternion.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.add = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x + right.x;
result.y = left.y + right.y;
result.z = left.z + right.z;
result.w = left.w + right.w;
return result;
};
/**
* Computes the componentwise difference of two quaternions.
*
* @param {Quaternion} left The first quaternion.
* @param {Quaternion} right The second quaternion.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.subtract = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = left.x - right.x;
result.y = left.y - right.y;
result.z = left.z - right.z;
result.w = left.w - right.w;
return result;
};
/**
* Negates the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to be negated.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.negate = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = -quaternion.x;
result.y = -quaternion.y;
result.z = -quaternion.z;
result.w = -quaternion.w;
return result;
};
/**
* Computes the dot (scalar) product of two quaternions.
*
* @param {Quaternion} left The first quaternion.
* @param {Quaternion} right The second quaternion.
* @returns {Number} The dot product.
*/
Quaternion.dot = function(left, right) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
//>>includeEnd('debug');
return left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w;
};
/**
* Computes the product of two quaternions.
*
* @param {Quaternion} left The first quaternion.
* @param {Quaternion} right The second quaternion.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.multiply = function(left, right, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('left', left);
Check.Check.typeOf.object('right', right);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var leftX = left.x;
var leftY = left.y;
var leftZ = left.z;
var leftW = left.w;
var rightX = right.x;
var rightY = right.y;
var rightZ = right.z;
var rightW = right.w;
var x = leftW * rightX + leftX * rightW + leftY * rightZ - leftZ * rightY;
var y = leftW * rightY - leftX * rightZ + leftY * rightW + leftZ * rightX;
var z = leftW * rightZ + leftX * rightY - leftY * rightX + leftZ * rightW;
var w = leftW * rightW - leftX * rightX - leftY * rightY - leftZ * rightZ;
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
};
/**
* Multiplies the provided quaternion componentwise by the provided scalar.
*
* @param {Quaternion} quaternion The quaternion to be scaled.
* @param {Number} scalar The scalar to multiply with.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.multiplyByScalar = function(quaternion, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = quaternion.x * scalar;
result.y = quaternion.y * scalar;
result.z = quaternion.z * scalar;
result.w = quaternion.w * scalar;
return result;
};
/**
* Divides the provided quaternion componentwise by the provided scalar.
*
* @param {Quaternion} quaternion The quaternion to be divided.
* @param {Number} scalar The scalar to divide by.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.divideByScalar = function(quaternion, scalar, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
Check.Check.typeOf.number('scalar', scalar);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
result.x = quaternion.x / scalar;
result.y = quaternion.y / scalar;
result.z = quaternion.z / scalar;
result.w = quaternion.w / scalar;
return result;
};
/**
* Computes the axis of rotation of the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to use.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*/
Quaternion.computeAxis = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var w = quaternion.w;
if (Math.abs(w - 1.0) < _Math.CesiumMath.EPSILON6) {
result.x = result.y = result.z = 0;
return result;
}
var scalar = 1.0 / Math.sqrt(1.0 - (w * w));
result.x = quaternion.x * scalar;
result.y = quaternion.y * scalar;
result.z = quaternion.z * scalar;
return result;
};
/**
* Computes the angle of rotation of the provided quaternion.
*
* @param {Quaternion} quaternion The quaternion to use.
* @returns {Number} The angle of rotation.
*/
Quaternion.computeAngle = function(quaternion) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
//>>includeEnd('debug');
if (Math.abs(quaternion.w - 1.0) < _Math.CesiumMath.EPSILON6) {
return 0.0;
}
return 2.0 * Math.acos(quaternion.w);
};
var lerpScratch$1 = new Quaternion();
/**
* Computes the linear interpolation or extrapolation at t using the provided quaternions.
*
* @param {Quaternion} start The value corresponding to t at 0.0.
* @param {Quaternion} end The value corresponding to t at 1.0.
* @param {Number} t The point along t at which to interpolate.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.lerp = function(start, end, t, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('start', start);
Check.Check.typeOf.object('end', end);
Check.Check.typeOf.number('t', t);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
lerpScratch$1 = Quaternion.multiplyByScalar(end, t, lerpScratch$1);
result = Quaternion.multiplyByScalar(start, 1.0 - t, result);
return Quaternion.add(lerpScratch$1, result, result);
};
var slerpEndNegated = new Quaternion();
var slerpScaledP = new Quaternion();
var slerpScaledR = new Quaternion();
/**
* Computes the spherical linear interpolation or extrapolation at t using the provided quaternions.
*
* @param {Quaternion} start The value corresponding to t at 0.0.
* @param {Quaternion} end The value corresponding to t at 1.0.
* @param {Number} t The point along t at which to interpolate.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*
* @see Quaternion#fastSlerp
*/
Quaternion.slerp = function(start, end, t, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('start', start);
Check.Check.typeOf.object('end', end);
Check.Check.typeOf.number('t', t);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var dot = Quaternion.dot(start, end);
// The angle between start must be acute. Since q and -q represent
// the same rotation, negate q to get the acute angle.
var r = end;
if (dot < 0.0) {
dot = -dot;
r = slerpEndNegated = Quaternion.negate(end, slerpEndNegated);
}
// dot > 0, as the dot product approaches 1, the angle between the
// quaternions vanishes. use linear interpolation.
if (1.0 - dot < _Math.CesiumMath.EPSILON6) {
return Quaternion.lerp(start, r, t, result);
}
var theta = Math.acos(dot);
slerpScaledP = Quaternion.multiplyByScalar(start, Math.sin((1 - t) * theta), slerpScaledP);
slerpScaledR = Quaternion.multiplyByScalar(r, Math.sin(t * theta), slerpScaledR);
result = Quaternion.add(slerpScaledP, slerpScaledR, result);
return Quaternion.multiplyByScalar(result, 1.0 / Math.sin(theta), result);
};
/**
* The logarithmic quaternion function.
*
* @param {Quaternion} quaternion The unit quaternion.
* @param {Cartesian3} result The object onto which to store the result.
* @returns {Cartesian3} The modified result parameter.
*/
Quaternion.log = function(quaternion, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('quaternion', quaternion);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var theta = _Math.CesiumMath.acosClamped(quaternion.w);
var thetaOverSinTheta = 0.0;
if (theta !== 0.0) {
thetaOverSinTheta = theta / Math.sin(theta);
}
return Cartesian2.Cartesian3.multiplyByScalar(quaternion, thetaOverSinTheta, result);
};
/**
* The exponential quaternion function.
*
* @param {Cartesian3} cartesian The cartesian.
* @param {Quaternion} result The object onto which to store the result.
* @returns {Quaternion} The modified result parameter.
*/
Quaternion.exp = function(cartesian, result) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('cartesian', cartesian);
Check.Check.typeOf.object('result', result);
//>>includeEnd('debug');
var theta = Cartesian2.Cartesian3.magnitude(cartesian);
var sinThetaOverTheta = 0.0;
if (theta !== 0.0) {
sinThetaOverTheta = Math.sin(theta) / theta;
}
result.x = cartesian.x * sinThetaOverTheta;
result.y = cartesian.y * sinThetaOverTheta;
result.z = cartesian.z * sinThetaOverTheta;
result.w = Math.cos(theta);
return result;
};
var squadScratchCartesian0 = new Cartesian2.Cartesian3();
var squadScratchCartesian1 = new Cartesian2.Cartesian3();
var squadScratchQuaternion0 = new Quaternion();
var squadScratchQuaternion1 = new Quaternion();
/**
* Computes an inner quadrangle point.
* This will compute quaternions that ensure a squad curve is C1.
* * @param {Quaternion} q0 The first quaternion. * @param {Quaternion} q1 The second quaternion. * @param {Quaternion} q2 The third quaternion. * @param {Quaternion} result The object onto which to store the result. * @returns {Quaternion} The modified result parameter. * * @see Quaternion#squad */ Quaternion.computeInnerQuadrangle = function(q0, q1, q2, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('q0', q0); Check.Check.typeOf.object('q1', q1); Check.Check.typeOf.object('q2', q2); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var qInv = Quaternion.conjugate(q1, squadScratchQuaternion0); Quaternion.multiply(qInv, q2, squadScratchQuaternion1); var cart0 = Quaternion.log(squadScratchQuaternion1, squadScratchCartesian0); Quaternion.multiply(qInv, q0, squadScratchQuaternion1); var cart1 = Quaternion.log(squadScratchQuaternion1, squadScratchCartesian1); Cartesian2.Cartesian3.add(cart0, cart1, cart0); Cartesian2.Cartesian3.multiplyByScalar(cart0, 0.25, cart0); Cartesian2.Cartesian3.negate(cart0, cart0); Quaternion.exp(cart0, squadScratchQuaternion0); return Quaternion.multiply(q1, squadScratchQuaternion0, result); }; /** * Computes the spherical quadrangle interpolation between quaternions. * * @param {Quaternion} q0 The first quaternion. * @param {Quaternion} q1 The second quaternion. * @param {Quaternion} s0 The first inner quadrangle. * @param {Quaternion} s1 The second inner quadrangle. * @param {Number} t The time in [0,1] used to interpolate. * @param {Quaternion} result The object onto which to store the result. * @returns {Quaternion} The modified result parameter. * * * @example * // 1. compute the squad interpolation between two quaternions on a curve * var s0 = Cesium.Quaternion.computeInnerQuadrangle(quaternions[i - 1], quaternions[i], quaternions[i + 1], new Cesium.Quaternion()); * var s1 = Cesium.Quaternion.computeInnerQuadrangle(quaternions[i], quaternions[i + 1], quaternions[i + 2], new Cesium.Quaternion()); * var q = Cesium.Quaternion.squad(quaternions[i], quaternions[i + 1], s0, s1, t, new Cesium.Quaternion()); * * // 2. compute the squad interpolation as above but where the first quaternion is a end point. * var s1 = Cesium.Quaternion.computeInnerQuadrangle(quaternions[0], quaternions[1], quaternions[2], new Cesium.Quaternion()); * var q = Cesium.Quaternion.squad(quaternions[0], quaternions[1], quaternions[0], s1, t, new Cesium.Quaternion()); * * @see Quaternion#computeInnerQuadrangle */ Quaternion.squad = function(q0, q1, s0, s1, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('q0', q0); Check.Check.typeOf.object('q1', q1); Check.Check.typeOf.object('s0', s0); Check.Check.typeOf.object('s1', s1); Check.Check.typeOf.number('t', t); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var slerp0 = Quaternion.slerp(q0, q1, t, squadScratchQuaternion0); var slerp1 = Quaternion.slerp(s0, s1, t, squadScratchQuaternion1); return Quaternion.slerp(slerp0, slerp1, 2.0 * t * (1.0 - t), result); }; var fastSlerpScratchQuaternion = new Quaternion(); var opmu = 1.90110745351730037; var u = FeatureDetection.supportsTypedArrays() ? new Float32Array(8) : []; var v = FeatureDetection.supportsTypedArrays() ? new Float32Array(8) : []; var bT = FeatureDetection.supportsTypedArrays() ? new Float32Array(8) : []; var bD = FeatureDetection.supportsTypedArrays() ? new Float32Array(8) : []; for (var i = 0; i < 7; ++i) { var s = i + 1.0; var t = 2.0 * s + 1.0; u[i] = 1.0 / (s * t); v[i] = s / t; } u[7] = opmu / (8.0 * 17.0); v[7] = opmu * 8.0 / 17.0; /** * Computes the spherical linear interpolation or extrapolation at t using the provided quaternions. * This implementation is faster than {@link Quaternion#slerp}, but is only accurate up to 10-6. * * @param {Quaternion} start The value corresponding to t at 0.0. * @param {Quaternion} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Quaternion} result The object onto which to store the result. * @returns {Quaternion} The modified result parameter. * * @see Quaternion#slerp */ Quaternion.fastSlerp = function(start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('start', start); Check.Check.typeOf.object('end', end); Check.Check.typeOf.number('t', t); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var x = Quaternion.dot(start, end); var sign; if (x >= 0) { sign = 1.0; } else { sign = -1.0; x = -x; } var xm1 = x - 1.0; var d = 1.0 - t; var sqrT = t * t; var sqrD = d * d; for (var i = 7; i >= 0; --i) { bT[i] = (u[i] * sqrT - v[i]) * xm1; bD[i] = (u[i] * sqrD - v[i]) * xm1; } var cT = sign * t * ( 1.0 + bT[0] * (1.0 + bT[1] * (1.0 + bT[2] * (1.0 + bT[3] * ( 1.0 + bT[4] * (1.0 + bT[5] * (1.0 + bT[6] * (1.0 + bT[7])))))))); var cD = d * ( 1.0 + bD[0] * (1.0 + bD[1] * (1.0 + bD[2] * (1.0 + bD[3] * ( 1.0 + bD[4] * (1.0 + bD[5] * (1.0 + bD[6] * (1.0 + bD[7])))))))); var temp = Quaternion.multiplyByScalar(start, cD, fastSlerpScratchQuaternion); Quaternion.multiplyByScalar(end, cT, result); return Quaternion.add(temp, result, result); }; /** * Computes the spherical quadrangle interpolation between quaternions. * An implementation that is faster than {@link Quaternion#squad}, but less accurate. * * @param {Quaternion} q0 The first quaternion. * @param {Quaternion} q1 The second quaternion. * @param {Quaternion} s0 The first inner quadrangle. * @param {Quaternion} s1 The second inner quadrangle. * @param {Number} t The time in [0,1] used to interpolate. * @param {Quaternion} result The object onto which to store the result. * @returns {Quaternion} The modified result parameter or a new instance if none was provided. * * @see Quaternion#squad */ Quaternion.fastSquad = function(q0, q1, s0, s1, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('q0', q0); Check.Check.typeOf.object('q1', q1); Check.Check.typeOf.object('s0', s0); Check.Check.typeOf.object('s1', s1); Check.Check.typeOf.number('t', t); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var slerp0 = Quaternion.fastSlerp(q0, q1, t, squadScratchQuaternion0); var slerp1 = Quaternion.fastSlerp(s0, s1, t, squadScratchQuaternion1); return Quaternion.fastSlerp(slerp0, slerp1, 2.0 * t * (1.0 - t), result); }; /** * Compares the provided quaternions componentwise and returns *true
if they are equal, false
otherwise.
*
* @param {Quaternion} [left] The first quaternion.
* @param {Quaternion} [right] The second quaternion.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
Quaternion.equals = function(left, right) {
return (left === right) ||
((defined.defined(left)) &&
(defined.defined(right)) &&
(left.x === right.x) &&
(left.y === right.y) &&
(left.z === right.z) &&
(left.w === right.w));
};
/**
* Compares the provided quaternions componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Quaternion} [left] The first quaternion.
* @param {Quaternion} [right] The second quaternion.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*/
Quaternion.equalsEpsilon = function(left, right, epsilon) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number('epsilon', epsilon);
//>>includeEnd('debug');
return (left === right) ||
((defined.defined(left)) &&
(defined.defined(right)) &&
(Math.abs(left.x - right.x) <= epsilon) &&
(Math.abs(left.y - right.y) <= epsilon) &&
(Math.abs(left.z - right.z) <= epsilon) &&
(Math.abs(left.w - right.w) <= epsilon));
};
/**
* An immutable Quaternion instance initialized to (0.0, 0.0, 0.0, 0.0).
*
* @type {Quaternion}
* @constant
*/
Quaternion.ZERO = freezeObject.freezeObject(new Quaternion(0.0, 0.0, 0.0, 0.0));
/**
* An immutable Quaternion instance initialized to (0.0, 0.0, 0.0, 1.0).
*
* @type {Quaternion}
* @constant
*/
Quaternion.IDENTITY = freezeObject.freezeObject(new Quaternion(0.0, 0.0, 0.0, 1.0));
/**
* Duplicates this Quaternion instance.
*
* @param {Quaternion} [result] The object onto which to store the result.
* @returns {Quaternion} The modified result parameter or a new Quaternion instance if one was not provided.
*/
Quaternion.prototype.clone = function(result) {
return Quaternion.clone(this, result);
};
/**
* Compares this and the provided quaternion componentwise and returns
* true
if they are equal, false
otherwise.
*
* @param {Quaternion} [right] The right hand side quaternion.
* @returns {Boolean} true
if left and right are equal, false
otherwise.
*/
Quaternion.prototype.equals = function(right) {
return Quaternion.equals(this, right);
};
/**
* Compares this and the provided quaternion componentwise and returns
* true
if they are within the provided epsilon,
* false
otherwise.
*
* @param {Quaternion} [right] The right hand side quaternion.
* @param {Number} epsilon The epsilon to use for equality testing.
* @returns {Boolean} true
if left and right are within the provided epsilon, false
otherwise.
*/
Quaternion.prototype.equalsEpsilon = function(right, epsilon) {
return Quaternion.equalsEpsilon(this, right, epsilon);
};
/**
* Returns a string representing this quaternion in the format (x, y, z, w).
*
* @returns {String} A string representing this Quaternion.
*/
Quaternion.prototype.toString = function() {
return '(' + this.x + ', ' + this.y + ', ' + this.z + ', ' + this.w + ')';
};
/**
* Finds an item in a sorted array.
*
* @exports binarySearch
* @param {Array} array The sorted array to search.
* @param {*} itemToFind The item to find in the array.
* @param {binarySearch~Comparator} comparator The function to use to compare the item to
* elements in the array.
* @returns {Number} The index of itemToFind
in the array, if it exists. If itemToFind
* does not exist, the return value is a negative number which is the bitwise complement (~)
* of the index before which the itemToFind should be inserted in order to maintain the
* sorted order of the array.
*
* @example
* // Create a comparator function to search through an array of numbers.
* function comparator(a, b) {
* return a - b;
* };
* var numbers = [0, 2, 4, 6, 8];
* var index = Cesium.binarySearch(numbers, 6, comparator); // 3
*/
function binarySearch(array, itemToFind, comparator) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('array', array);
Check.Check.defined('itemToFind', itemToFind);
Check.Check.defined('comparator', comparator);
//>>includeEnd('debug');
var low = 0;
var high = array.length - 1;
var i;
var comparison;
while (low <= high) {
i = ~~((low + high) / 2);
comparison = comparator(array[i], itemToFind);
if (comparison < 0) {
low = i + 1;
continue;
}
if (comparison > 0) {
high = i - 1;
continue;
}
return i;
}
return ~(high + 1);
}
/**
* A set of Earth Orientation Parameters (EOP) sampled at a time.
*
* @alias EarthOrientationParametersSample
* @constructor
*
* @param {Number} xPoleWander The pole wander about the X axis, in radians.
* @param {Number} yPoleWander The pole wander about the Y axis, in radians.
* @param {Number} xPoleOffset The offset to the Celestial Intermediate Pole (CIP) about the X axis, in radians.
* @param {Number} yPoleOffset The offset to the Celestial Intermediate Pole (CIP) about the Y axis, in radians.
* @param {Number} ut1MinusUtc The difference in time standards, UT1 - UTC, in seconds.
*
* @private
*/
function EarthOrientationParametersSample(xPoleWander, yPoleWander, xPoleOffset, yPoleOffset, ut1MinusUtc) {
/**
* The pole wander about the X axis, in radians.
* @type {Number}
*/
this.xPoleWander = xPoleWander;
/**
* The pole wander about the Y axis, in radians.
* @type {Number}
*/
this.yPoleWander = yPoleWander;
/**
* The offset to the Celestial Intermediate Pole (CIP) about the X axis, in radians.
* @type {Number}
*/
this.xPoleOffset = xPoleOffset;
/**
* The offset to the Celestial Intermediate Pole (CIP) about the Y axis, in radians.
* @type {Number}
*/
this.yPoleOffset = yPoleOffset;
/**
* The difference in time standards, UT1 - UTC, in seconds.
* @type {Number}
*/
this.ut1MinusUtc = ut1MinusUtc;
}
/**
@license
sprintf.js from the php.js project - https://github.com/kvz/phpjs
Directly from https://github.com/kvz/phpjs/blob/master/functions/strings/sprintf.js
php.js is copyright 2012 Kevin van Zonneveld.
Portions copyright Brett Zamir (http://brett-zamir.me), Kevin van Zonneveld
(http://kevin.vanzonneveld.net), Onno Marsman, Theriault, Michael White
(http://getsprink.com), Waldo Malqui Silva, Paulo Freitas, Jack, Jonas
Raoni Soares Silva (http://www.jsfromhell.com), Philip Peterson, Legaev
Andrey, Ates Goral (http://magnetiq.com), Alex, Ratheous, Martijn Wieringa,
Rafa? Kukawski (http://blog.kukawski.pl), lmeyrick
(https://sourceforge.net/projects/bcmath-js/), Nate, Philippe Baumann,
Enrique Gonzalez, Webtoolkit.info (http://www.webtoolkit.info/), Carlos R.
L. Rodrigues (http://www.jsfromhell.com), Ash Searle
(http://hexmen.com/blog/), Jani Hartikainen, travc, Ole Vrijenhoek,
Erkekjetter, Michael Grier, Rafa? Kukawski (http://kukawski.pl), Johnny
Mast (http://www.phpvrouwen.nl), T.Wild, d3x,
http://stackoverflow.com/questions/57803/how-to-convert-decimal-to-hex-in-javascript,
Rafa? Kukawski (http://blog.kukawski.pl/), stag019, pilus, WebDevHobo
(http://webdevhobo.blogspot.com/), marrtins, GeekFG
(http://geekfg.blogspot.com), Andrea Giammarchi
(http://webreflection.blogspot.com), Arpad Ray (mailto:arpad@php.net),
gorthaur, Paul Smith, Tim de Koning (http://www.kingsquare.nl), Joris, Oleg
Eremeev, Steve Hilder, majak, gettimeofday, KELAN, Josh Fraser
(http://onlineaspect.com/2007/06/08/auto-detect-a-time-zone-with-javascript/),
Marc Palau, Martin
(http://www.erlenwiese.de/), Breaking Par Consulting Inc
(http://www.breakingpar.com/bkp/home.nsf/0/87256B280015193F87256CFB006C45F7),
Chris, Mirek Slugen, saulius, Alfonso Jimenez
(http://www.alfonsojimenez.com), Diplom@t (http://difane.com/), felix,
Mailfaker (http://www.weedem.fr/), Tyler Akins (http://rumkin.com), Caio
Ariede (http://caioariede.com), Robin, Kankrelune
(http://www.webfaktory.info/), Karol Kowalski, Imgen Tata
(http://www.myipdf.com/), mdsjack (http://www.mdsjack.bo.it), Dreamer,
Felix Geisendoerfer (http://www.debuggable.com/felix), Lars Fischer, AJ,
David, Aman Gupta, Michael White, Public Domain
(http://www.json.org/json2.js), Steven Levithan
(http://blog.stevenlevithan.com), Sakimori, Pellentesque Malesuada,
Thunder.m, Dj (http://phpjs.org/functions/htmlentities:425#comment_134018),
Steve Clay, David James, Francois, class_exists, nobbler, T. Wild, Itsacon
(http://www.itsacon.net/), date, Ole Vrijenhoek (http://www.nervous.nl/),
Fox, Raphael (Ao RUDLER), Marco, noname, Mateusz "loonquawl" Zalega, Frank
Forte, Arno, ger, mktime, john (http://www.jd-tech.net), Nick Kolosov
(http://sammy.ru), marc andreu, Scott Cariss, Douglas Crockford
(http://javascript.crockford.com), madipta, Slawomir Kaniecki,
ReverseSyntax, Nathan, Alex Wilson, kenneth, Bayron Guevara, Adam Wallner
(http://web2.bitbaro.hu/), paulo kuong, jmweb, Lincoln Ramsay, djmix,
Pyerre, Jon Hohle, Thiago Mata (http://thiagomata.blog.com), lmeyrick
(https://sourceforge.net/projects/bcmath-js/this.), Linuxworld, duncan,
Gilbert, Sanjoy Roy, Shingo, sankai, Oskar Larsson H?gfeldt
(http://oskar-lh.name/), Denny Wardhana, 0m3r, Everlasto, Subhasis Deb,
josh, jd, Pier Paolo Ramon (http://www.mastersoup.com/), P, merabi, Soren
Hansen, Eugene Bulkin (http://doubleaw.com/), Der Simon
(http://innerdom.sourceforge.net/), echo is bad, Ozh, XoraX
(http://www.xorax.info), EdorFaus, JB, J A R, Marc Jansen, Francesco, LH,
Stoyan Kyosev (http://www.svest.org/), nord_ua, omid
(http://phpjs.org/functions/380:380#comment_137122), Brad Touesnard, MeEtc
(http://yass.meetcweb.com), Peter-Paul Koch
(http://www.quirksmode.org/js/beat.html), Olivier Louvignes
(http://mg-crea.com/), T0bsn, Tim Wiel, Bryan Elliott, Jalal Berrami,
Martin, JT, David Randall, Thomas Beaucourt (http://www.webapp.fr), taith,
vlado houba, Pierre-Luc Paour, Kristof Coomans (SCK-CEN Belgian Nucleair
Research Centre), Martin Pool, Kirk Strobeck, Rick Waldron, Brant Messenger
(http://www.brantmessenger.com/), Devan Penner-Woelk, Saulo Vallory, Wagner
B. Soares, Artur Tchernychev, Valentina De Rosa, Jason Wong
(http://carrot.org/), Christoph, Daniel Esteban, strftime, Mick@el, rezna,
Simon Willison (http://simonwillison.net), Anton Ongson, Gabriel Paderni,
Marco van Oort, penutbutterjelly, Philipp Lenssen, Bjorn Roesbeke
(http://www.bjornroesbeke.be/), Bug?, Eric Nagel, Tomasz Wesolowski,
Evertjan Garretsen, Bobby Drake, Blues (http://tech.bluesmoon.info/), Luke
Godfrey, Pul, uestla, Alan C, Ulrich, Rafal Kukawski, Yves Sucaet,
sowberry, Norman "zEh" Fuchs, hitwork, Zahlii, johnrembo, Nick Callen,
Steven Levithan (stevenlevithan.com), ejsanders, Scott Baker, Brian Tafoya
(http://www.premasolutions.com/), Philippe Jausions
(http://pear.php.net/user/jausions), Aidan Lister
(http://aidanlister.com/), Rob, e-mike, HKM, ChaosNo1, metjay, strcasecmp,
strcmp, Taras Bogach, jpfle, Alexander Ermolaev
(http://snippets.dzone.com/user/AlexanderErmolaev), DxGx, kilops, Orlando,
dptr1988, Le Torbi, James (http://www.james-bell.co.uk/), Pedro Tainha
(http://www.pedrotainha.com), James, Arnout Kazemier
(http://www.3rd-Eden.com), Chris McMacken, gabriel paderni, Yannoo,
FGFEmperor, baris ozdil, Tod Gentille, Greg Frazier, jakes, 3D-GRAF, Allan
Jensen (http://www.winternet.no), Howard Yeend, Benjamin Lupton, davook,
daniel airton wermann (http://wermann.com.br), Atli T¨®r, Maximusya, Ryan
W Tenney (http://ryan.10e.us), Alexander M Beedie, fearphage
(http://http/my.opera.com/fearphage/), Nathan Sepulveda, Victor, Matteo,
Billy, stensi, Cord, Manish, T.J. Leahy, Riddler
(http://www.frontierwebdev.com/), Rafa? Kukawski, FremyCompany, Matt
Bradley, Tim de Koning, Luis Salazar (http://www.freaky-media.com/), Diogo
Resende, Rival, Andrej Pavlovic, Garagoth, Le Torbi
(http://www.letorbi.de/), Dino, Josep Sanz (http://www.ws3.es/), rem,
Russell Walker (http://www.nbill.co.uk/), Jamie Beck
(http://www.terabit.ca/), setcookie, Michael, YUI Library:
http://developer.yahoo.com/yui/docs/YAHOO.util.DateLocale.html, Blues at
http://hacks.bluesmoon.info/strftime/strftime.js, Ben
(http://benblume.co.uk/), DtTvB
(http://dt.in.th/2008-09-16.string-length-in-bytes.html), Andreas, William,
meo, incidence, Cagri Ekin, Amirouche, Amir Habibi
(http://www.residence-mixte.com/), Luke Smith (http://lucassmith.name),
Kheang Hok Chin (http://www.distantia.ca/), Jay Klehr, Lorenzo Pisani,
Tony, Yen-Wei Liu, Greenseed, mk.keck, Leslie Hoare, dude, booeyOH, Ben
Bryan
Licensed under the MIT (MIT-LICENSE.txt) license.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL KEVIN VAN ZONNEVELD BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
*/
function sprintf () {
// http://kevin.vanzonneveld.net
// + original by: Ash Searle (http://hexmen.com/blog/)
// + namespaced by: Michael White (http://getsprink.com)
// + tweaked by: Jack
// + improved by: Kevin van Zonneveld (http://kevin.vanzonneveld.net)
// + input by: Paulo Freitas
// + improved by: Kevin van Zonneveld (http://kevin.vanzonneveld.net)
// + input by: Brett Zamir (http://brett-zamir.me)
// + improved by: Kevin van Zonneveld (http://kevin.vanzonneveld.net)
// + improved by: Dj
// + improved by: Allidylls
// * example 1: sprintf("%01.2f", 123.1);
// * returns 1: 123.10
// * example 2: sprintf("[%10s]", 'monkey');
// * returns 2: '[ monkey]'
// * example 3: sprintf("[%'#10s]", 'monkey');
// * returns 3: '[####monkey]'
// * example 4: sprintf("%d", 123456789012345);
// * returns 4: '123456789012345'
var regex = /%%|%(\d+\$)?([-+\'#0 ]*)(\*\d+\$|\*|\d+)?(\.(\*\d+\$|\*|\d+))?([scboxXuideEfFgG])/g;
var a = arguments,
i = 0,
format = a[i++];
// pad()
var pad = function (str, len, chr, leftJustify) {
if (!chr) {
chr = ' ';
}
var padding = (str.length >= len) ? '' : Array(1 + len - str.length >>> 0).join(chr);
return leftJustify ? str + padding : padding + str;
};
// justify()
var justify = function (value, prefix, leftJustify, minWidth, zeroPad, customPadChar) {
var diff = minWidth - value.length;
if (diff > 0) {
if (leftJustify || !zeroPad) {
value = pad(value, minWidth, customPadChar, leftJustify);
} else {
value = value.slice(0, prefix.length) + pad('', diff, '0', true) + value.slice(prefix.length);
}
}
return value;
};
// formatBaseX()
var formatBaseX = function (value, base, prefix, leftJustify, minWidth, precision, zeroPad) {
// Note: casts negative numbers to positive ones
var number = value >>> 0;
prefix = prefix && number && {
'2': '0b',
'8': '0',
'16': '0x'
}[base] || '';
value = prefix + pad(number.toString(base), precision || 0, '0', false);
return justify(value, prefix, leftJustify, minWidth, zeroPad);
};
// formatString()
var formatString = function (value, leftJustify, minWidth, precision, zeroPad, customPadChar) {
if (precision != null) {
value = value.slice(0, precision);
}
return justify(value, '', leftJustify, minWidth, zeroPad, customPadChar);
};
// doFormat()
var doFormat = function (substring, valueIndex, flags, minWidth, _, precision, type) {
var number;
var prefix;
var method;
var textTransform;
var value;
if (substring == '%%') {
return '%';
}
// parse flags
var leftJustify = false,
positivePrefix = '',
zeroPad = false,
prefixBaseX = false,
customPadChar = ' ';
var flagsl = flags.length;
for (var j = 0; flags && j < flagsl; j++) {
switch (flags.charAt(j)) {
case ' ':
positivePrefix = ' ';
break;
case '+':
positivePrefix = '+';
break;
case '-':
leftJustify = true;
break;
case "'":
customPadChar = flags.charAt(j + 1);
break;
case '0':
zeroPad = true;
break;
case '#':
prefixBaseX = true;
break;
}
}
// parameters may be null, undefined, empty-string or real valued
// we want to ignore null, undefined and empty-string values
if (!minWidth) {
minWidth = 0;
} else if (minWidth == '*') {
minWidth = +a[i++];
} else if (minWidth.charAt(0) == '*') {
minWidth = +a[minWidth.slice(1, -1)];
} else {
minWidth = +minWidth;
}
// Note: undocumented perl feature:
if (minWidth < 0) {
minWidth = -minWidth;
leftJustify = true;
}
if (!isFinite(minWidth)) {
throw new Error('sprintf: (minimum-)width must be finite');
}
if (!precision) {
precision = 'fFeE'.indexOf(type) > -1 ? 6 : (type == 'd') ? 0 : undefined;
} else if (precision == '*') {
precision = +a[i++];
} else if (precision.charAt(0) == '*') {
precision = +a[precision.slice(1, -1)];
} else {
precision = +precision;
}
// grab value using valueIndex if required?
value = valueIndex ? a[valueIndex.slice(0, -1)] : a[i++];
switch (type) {
case 's':
return formatString(String(value), leftJustify, minWidth, precision, zeroPad, customPadChar);
case 'c':
return formatString(String.fromCharCode(+value), leftJustify, minWidth, precision, zeroPad);
case 'b':
return formatBaseX(value, 2, prefixBaseX, leftJustify, minWidth, precision, zeroPad);
case 'o':
return formatBaseX(value, 8, prefixBaseX, leftJustify, minWidth, precision, zeroPad);
case 'x':
return formatBaseX(value, 16, prefixBaseX, leftJustify, minWidth, precision, zeroPad);
case 'X':
return formatBaseX(value, 16, prefixBaseX, leftJustify, minWidth, precision, zeroPad).toUpperCase();
case 'u':
return formatBaseX(value, 10, prefixBaseX, leftJustify, minWidth, precision, zeroPad);
case 'i':
case 'd':
number = +value || 0;
number = Math.round(number - number % 1); // Plain Math.round doesn't just truncate
prefix = number < 0 ? '-' : positivePrefix;
value = prefix + pad(String(Math.abs(number)), precision, '0', false);
return justify(value, prefix, leftJustify, minWidth, zeroPad);
case 'e':
case 'E':
case 'f': // Should handle locales (as per setlocale)
case 'F':
case 'g':
case 'G':
number = +value;
prefix = number < 0 ? '-' : positivePrefix;
method = ['toExponential', 'toFixed', 'toPrecision']['efg'.indexOf(type.toLowerCase())];
textTransform = ['toString', 'toUpperCase']['eEfFgG'.indexOf(type) % 2];
value = prefix + Math.abs(number)[method](precision);
return justify(value, prefix, leftJustify, minWidth, zeroPad)[textTransform]();
default:
return substring;
}
};
return format.replace(regex, doFormat);
}
/**
* Represents a Gregorian date in a more precise format than the JavaScript Date object.
* In addition to submillisecond precision, this object can also represent leap seconds.
* @alias GregorianDate
* @constructor
*
* @see JulianDate#toGregorianDate
*/
function GregorianDate(year, month, day, hour, minute, second, millisecond, isLeapSecond) {
/**
* Gets or sets the year as a whole number.
* @type {Number}
*/
this.year = year;
/**
* Gets or sets the month as a whole number with range [1, 12].
* @type {Number}
*/
this.month = month;
/**
* Gets or sets the day of the month as a whole number starting at 1.
* @type {Number}
*/
this.day = day;
/**
* Gets or sets the hour as a whole number with range [0, 23].
* @type {Number}
*/
this.hour = hour;
/**
* Gets or sets the minute of the hour as a whole number with range [0, 59].
* @type {Number}
*/
this.minute = minute;
/**
* Gets or sets the second of the minute as a whole number with range [0, 60], with 60 representing a leap second.
* @type {Number}
*/
this.second = second;
/**
* Gets or sets the millisecond of the second as a floating point number with range [0.0, 1000.0).
* @type {Number}
*/
this.millisecond = millisecond;
/**
* Gets or sets whether this time is during a leap second.
* @type {Boolean}
*/
this.isLeapSecond = isLeapSecond;
}
/**
* Determines if a given date is a leap year.
*
* @exports isLeapYear
*
* @param {Number} year The year to be tested.
* @returns {Boolean} True if year
is a leap year.
*
* @example
* var leapYear = Cesium.isLeapYear(2000); // true
*/
function isLeapYear(year) {
//>>includeStart('debug', pragmas.debug);
if (year === null || isNaN(year)) {
throw new Check.DeveloperError('year is required and must be a number.');
}
//>>includeEnd('debug');
return ((year % 4 === 0) && (year % 100 !== 0)) || (year % 400 === 0);
}
/**
* Describes a single leap second, which is constructed from a {@link JulianDate} and a
* numerical offset representing the number of seconds TAI is ahead of the UTC time standard.
* @alias LeapSecond
* @constructor
*
* @param {JulianDate} [date] A Julian date representing the time of the leap second.
* @param {Number} [offset] The cumulative number of seconds that TAI is ahead of UTC at the provided date.
*/
function LeapSecond(date, offset) {
/**
* Gets or sets the date at which this leap second occurs.
* @type {JulianDate}
*/
this.julianDate = date;
/**
* Gets or sets the cumulative number of seconds between the UTC and TAI time standards at the time
* of this leap second.
* @type {Number}
*/
this.offset = offset;
}
/**
* Constants for time conversions like those done by {@link JulianDate}.
*
* @exports TimeConstants
*
* @see JulianDate
*
* @private
*/
var TimeConstants = {
/**
* The number of seconds in one millisecond: 0.001
* @type {Number}
* @constant
*/
SECONDS_PER_MILLISECOND : 0.001,
/**
* The number of seconds in one minute: 60
.
* @type {Number}
* @constant
*/
SECONDS_PER_MINUTE : 60.0,
/**
* The number of minutes in one hour: 60
.
* @type {Number}
* @constant
*/
MINUTES_PER_HOUR : 60.0,
/**
* The number of hours in one day: 24
.
* @type {Number}
* @constant
*/
HOURS_PER_DAY : 24.0,
/**
* The number of seconds in one hour: 3600
.
* @type {Number}
* @constant
*/
SECONDS_PER_HOUR : 3600.0,
/**
* The number of minutes in one day: 1440
.
* @type {Number}
* @constant
*/
MINUTES_PER_DAY : 1440.0,
/**
* The number of seconds in one day, ignoring leap seconds: 86400
.
* @type {Number}
* @constant
*/
SECONDS_PER_DAY : 86400.0,
/**
* The number of days in one Julian century: 36525
.
* @type {Number}
* @constant
*/
DAYS_PER_JULIAN_CENTURY : 36525.0,
/**
* One trillionth of a second.
* @type {Number}
* @constant
*/
PICOSECOND : 0.000000001,
/**
* The number of days to subtract from a Julian date to determine the
* modified Julian date, which gives the number of days since midnight
* on November 17, 1858.
* @type {Number}
* @constant
*/
MODIFIED_JULIAN_DATE_DIFFERENCE : 2400000.5
};
var TimeConstants$1 = freezeObject.freezeObject(TimeConstants);
/**
* Provides the type of time standards which JulianDate can take as input.
*
* @exports TimeStandard
*
* @see JulianDate
*/
var TimeStandard = {
/**
* Represents the coordinated Universal Time (UTC) time standard.
*
* UTC is related to TAI according to the relationship
* UTC = TAI - deltaT
where deltaT
is the number of leap
* seconds which have been introduced as of the time in TAI.
*
* @type {Number}
* @constant
*/
UTC : 0,
/**
* Represents the International Atomic Time (TAI) time standard.
* TAI is the principal time standard to which the other time standards are related.
*
* @type {Number}
* @constant
*/
TAI : 1
};
var TimeStandard$1 = freezeObject.freezeObject(TimeStandard);
var gregorianDateScratch = new GregorianDate();
var daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];
var daysInLeapFeburary = 29;
function compareLeapSecondDates(leapSecond, dateToFind) {
return JulianDate.compare(leapSecond.julianDate, dateToFind.julianDate);
}
// we don't really need a leap second instance, anything with a julianDate property will do
var binarySearchScratchLeapSecond = new LeapSecond();
function convertUtcToTai(julianDate) {
//Even though julianDate is in UTC, we'll treat it as TAI and
//search the leap second table for it.
binarySearchScratchLeapSecond.julianDate = julianDate;
var leapSeconds = JulianDate.leapSeconds;
var index = binarySearch(leapSeconds, binarySearchScratchLeapSecond, compareLeapSecondDates);
if (index < 0) {
index = ~index;
}
if (index >= leapSeconds.length) {
index = leapSeconds.length - 1;
}
var offset = leapSeconds[index].offset;
if (index > 0) {
//Now we have the index of the closest leap second that comes on or after our UTC time.
//However, if the difference between the UTC date being converted and the TAI
//defined leap second is greater than the offset, we are off by one and need to use
//the previous leap second.
var difference = JulianDate.secondsDifference(leapSeconds[index].julianDate, julianDate);
if (difference > offset) {
index--;
offset = leapSeconds[index].offset;
}
}
JulianDate.addSeconds(julianDate, offset, julianDate);
}
function convertTaiToUtc(julianDate, result) {
binarySearchScratchLeapSecond.julianDate = julianDate;
var leapSeconds = JulianDate.leapSeconds;
var index = binarySearch(leapSeconds, binarySearchScratchLeapSecond, compareLeapSecondDates);
if (index < 0) {
index = ~index;
}
//All times before our first leap second get the first offset.
if (index === 0) {
return JulianDate.addSeconds(julianDate, -leapSeconds[0].offset, result);
}
//All times after our leap second get the last offset.
if (index >= leapSeconds.length) {
return JulianDate.addSeconds(julianDate, -leapSeconds[index - 1].offset, result);
}
//Compute the difference between the found leap second and the time we are converting.
var difference = JulianDate.secondsDifference(leapSeconds[index].julianDate, julianDate);
if (difference === 0) {
//The date is in our leap second table.
return JulianDate.addSeconds(julianDate, -leapSeconds[index].offset, result);
}
if (difference <= 1.0) {
//The requested date is during the moment of a leap second, then we cannot convert to UTC
return undefined;
}
//The time is in between two leap seconds, index is the leap second after the date
//we're converting, so we subtract one to get the correct LeapSecond instance.
return JulianDate.addSeconds(julianDate, -leapSeconds[--index].offset, result);
}
function setComponents(wholeDays, secondsOfDay, julianDate) {
var extraDays = (secondsOfDay / TimeConstants$1.SECONDS_PER_DAY) | 0;
wholeDays += extraDays;
secondsOfDay -= TimeConstants$1.SECONDS_PER_DAY * extraDays;
if (secondsOfDay < 0) {
wholeDays--;
secondsOfDay += TimeConstants$1.SECONDS_PER_DAY;
}
julianDate.dayNumber = wholeDays;
julianDate.secondsOfDay = secondsOfDay;
return julianDate;
}
function computeJulianDateComponents(year, month, day, hour, minute, second, millisecond) {
// Algorithm from page 604 of the Explanatory Supplement to the
// Astronomical Almanac (Seidelmann 1992).
var a = ((month - 14) / 12) | 0;
var b = year + 4800 + a;
var dayNumber = (((1461 * b) / 4) | 0) + (((367 * (month - 2 - 12 * a)) / 12) | 0) - (((3 * (((b + 100) / 100) | 0)) / 4) | 0) + day - 32075;
// JulianDates are noon-based
hour = hour - 12;
if (hour < 0) {
hour += 24;
}
var secondsOfDay = second + ((hour * TimeConstants$1.SECONDS_PER_HOUR) + (minute * TimeConstants$1.SECONDS_PER_MINUTE) + (millisecond * TimeConstants$1.SECONDS_PER_MILLISECOND));
if (secondsOfDay >= 43200.0) {
dayNumber -= 1;
}
return [dayNumber, secondsOfDay];
}
//Regular expressions used for ISO8601 date parsing.
//YYYY
var matchCalendarYear = /^(\d{4})$/;
//YYYY-MM (YYYYMM is invalid)
var matchCalendarMonth = /^(\d{4})-(\d{2})$/;
//YYYY-DDD or YYYYDDD
var matchOrdinalDate = /^(\d{4})-?(\d{3})$/;
//YYYY-Www or YYYYWww or YYYY-Www-D or YYYYWwwD
var matchWeekDate = /^(\d{4})-?W(\d{2})-?(\d{1})?$/;
//YYYY-MM-DD or YYYYMMDD
var matchCalendarDate = /^(\d{4})-?(\d{2})-?(\d{2})$/;
// Match utc offset
var utcOffset = /([Z+\-])?(\d{2})?:?(\d{2})?$/;
// Match hours HH or HH.xxxxx
var matchHours = /^(\d{2})(\.\d+)?/.source + utcOffset.source;
// Match hours/minutes HH:MM HHMM.xxxxx
var matchHoursMinutes = /^(\d{2}):?(\d{2})(\.\d+)?/.source + utcOffset.source;
// Match hours/minutes HH:MM:SS HHMMSS.xxxxx
var matchHoursMinutesSeconds = /^(\d{2}):?(\d{2}):?(\d{2})(\.\d+)?/.source + utcOffset.source;
var iso8601ErrorMessage = 'Invalid ISO 8601 date.';
/**
* Represents an astronomical Julian date, which is the number of days since noon on January 1, -4712 (4713 BC).
* For increased precision, this class stores the whole number part of the date and the seconds
* part of the date in separate components. In order to be safe for arithmetic and represent
* leap seconds, the date is always stored in the International Atomic Time standard
* {@link TimeStandard.TAI}.
* @alias JulianDate
* @constructor
*
* @param {Number} [julianDayNumber=0.0] The Julian Day Number representing the number of whole days. Fractional days will also be handled correctly.
* @param {Number} [secondsOfDay=0.0] The number of seconds into the current Julian Day Number. Fractional seconds, negative seconds and seconds greater than a day will be handled correctly.
* @param {TimeStandard} [timeStandard=TimeStandard.UTC] The time standard in which the first two parameters are defined.
*/
function JulianDate(julianDayNumber, secondsOfDay, timeStandard) {
/**
* Gets or sets the number of whole days.
* @type {Number}
*/
this.dayNumber = undefined;
/**
* Gets or sets the number of seconds into the current day.
* @type {Number}
*/
this.secondsOfDay = undefined;
julianDayNumber = defaultValue.defaultValue(julianDayNumber, 0.0);
secondsOfDay = defaultValue.defaultValue(secondsOfDay, 0.0);
timeStandard = defaultValue.defaultValue(timeStandard, TimeStandard$1.UTC);
//If julianDayNumber is fractional, make it an integer and add the number of seconds the fraction represented.
var wholeDays = julianDayNumber | 0;
secondsOfDay = secondsOfDay + (julianDayNumber - wholeDays) * TimeConstants$1.SECONDS_PER_DAY;
setComponents(wholeDays, secondsOfDay, this);
if (timeStandard === TimeStandard$1.UTC) {
convertUtcToTai(this);
}
}
/**
* Creates a new instance from a GregorianDate.
*
* @param {GregorianDate} date A GregorianDate.
* @param {JulianDate} [result] An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
*
* @exception {DeveloperError} date must be a valid GregorianDate.
*/
JulianDate.fromGregorianDate = function(date, result) {
//>>includeStart('debug', pragmas.debug);
if (!(date instanceof GregorianDate)) {
throw new Check.DeveloperError('date must be a valid GregorianDate.');
}
//>>includeEnd('debug');
var components = computeJulianDateComponents(date.year, date.month, date.day, date.hour, date.minute, date.second, date.millisecond);
if (!defined.defined(result)) {
return new JulianDate(components[0], components[1], TimeStandard$1.UTC);
}
setComponents(components[0], components[1], result);
convertUtcToTai(result);
return result;
};
/**
* Creates a new instance from a JavaScript Date.
*
* @param {Date} date A JavaScript Date.
* @param {JulianDate} [result] An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
*
* @exception {DeveloperError} date must be a valid JavaScript Date.
*/
JulianDate.fromDate = function(date, result) {
//>>includeStart('debug', pragmas.debug);
if (!(date instanceof Date) || isNaN(date.getTime())) {
throw new Check.DeveloperError('date must be a valid JavaScript Date.');
}
//>>includeEnd('debug');
var components = computeJulianDateComponents(date.getUTCFullYear(), date.getUTCMonth() + 1, date.getUTCDate(), date.getUTCHours(), date.getUTCMinutes(), date.getUTCSeconds(), date.getUTCMilliseconds());
if (!defined.defined(result)) {
return new JulianDate(components[0], components[1], TimeStandard$1.UTC);
}
setComponents(components[0], components[1], result);
convertUtcToTai(result);
return result;
};
/**
* Creates a new instance from a from an {@link http://en.wikipedia.org/wiki/ISO_8601|ISO 8601} date.
* This method is superior to Date.parse
because it will handle all valid formats defined by the ISO 8601
* specification, including leap seconds and sub-millisecond times, which discarded by most JavaScript implementations.
*
* @param {String} iso8601String An ISO 8601 date.
* @param {JulianDate} [result] An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
*
* @exception {DeveloperError} Invalid ISO 8601 date.
*/
JulianDate.fromIso8601 = function(iso8601String, result) {
//>>includeStart('debug', pragmas.debug);
if (typeof iso8601String !== 'string') {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug');
//Comma and decimal point both indicate a fractional number according to ISO 8601,
//start out by blanket replacing , with . which is the only valid such symbol in JS.
iso8601String = iso8601String.replace(',', '.');
//Split the string into its date and time components, denoted by a mandatory T
var tokens = iso8601String.split('T');
var year;
var month = 1;
var day = 1;
var hour = 0;
var minute = 0;
var second = 0;
var millisecond = 0;
//Lacking a time is okay, but a missing date is illegal.
var date = tokens[0];
var time = tokens[1];
var tmp;
var inLeapYear;
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(date)) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
var dashCount;
//>>includeEnd('debug');
//First match the date against possible regular expressions.
tokens = date.match(matchCalendarDate);
if (tokens !== null) {
//>>includeStart('debug', pragmas.debug);
dashCount = date.split('-').length - 1;
if (dashCount > 0 && dashCount !== 2) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug');
year = +tokens[1];
month = +tokens[2];
day = +tokens[3];
} else {
tokens = date.match(matchCalendarMonth);
if (tokens !== null) {
year = +tokens[1];
month = +tokens[2];
} else {
tokens = date.match(matchCalendarYear);
if (tokens !== null) {
year = +tokens[1];
} else {
//Not a year/month/day so it must be an ordinal date.
var dayOfYear;
tokens = date.match(matchOrdinalDate);
if (tokens !== null) {
year = +tokens[1];
dayOfYear = +tokens[2];
inLeapYear = isLeapYear(year);
//This validation is only applicable for this format.
//>>includeStart('debug', pragmas.debug);
if (dayOfYear < 1 || (inLeapYear && dayOfYear > 366) || (!inLeapYear && dayOfYear > 365)) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug')
} else {
tokens = date.match(matchWeekDate);
if (tokens !== null) {
//ISO week date to ordinal date from
//http://en.wikipedia.org/w/index.php?title=ISO_week_date&oldid=474176775
year = +tokens[1];
var weekNumber = +tokens[2];
var dayOfWeek = +tokens[3] || 0;
//>>includeStart('debug', pragmas.debug);
dashCount = date.split('-').length - 1;
if (dashCount > 0 &&
((!defined.defined(tokens[3]) && dashCount !== 1) ||
(defined.defined(tokens[3]) && dashCount !== 2))) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug')
var january4 = new Date(Date.UTC(year, 0, 4));
dayOfYear = (weekNumber * 7) + dayOfWeek - january4.getUTCDay() - 3;
} else {
//None of our regular expressions succeeded in parsing the date properly.
//>>includeStart('debug', pragmas.debug);
throw new Check.DeveloperError(iso8601ErrorMessage);
//>>includeEnd('debug')
}
}
//Split an ordinal date into month/day.
tmp = new Date(Date.UTC(year, 0, 1));
tmp.setUTCDate(dayOfYear);
month = tmp.getUTCMonth() + 1;
day = tmp.getUTCDate();
}
}
}
//Now that we have all of the date components, validate them to make sure nothing is out of range.
inLeapYear = isLeapYear(year);
//>>includeStart('debug', pragmas.debug);
if (month < 1 || month > 12 || day < 1 || ((month !== 2 || !inLeapYear) && day > daysInMonth[month - 1]) || (inLeapYear && month === 2 && day > daysInLeapFeburary)) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug')
//Now move onto the time string, which is much simpler.
//If no time is specified, it is considered the beginning of the day, UTC to match Javascript's implementation.
var offsetIndex;
if (defined.defined(time)) {
tokens = time.match(matchHoursMinutesSeconds);
if (tokens !== null) {
//>>includeStart('debug', pragmas.debug);
dashCount = time.split(':').length - 1;
if (dashCount > 0 && dashCount !== 2 && dashCount !== 3) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug')
hour = +tokens[1];
minute = +tokens[2];
second = +tokens[3];
millisecond = +(tokens[4] || 0) * 1000.0;
offsetIndex = 5;
} else {
tokens = time.match(matchHoursMinutes);
if (tokens !== null) {
//>>includeStart('debug', pragmas.debug);
dashCount = time.split(':').length - 1;
if (dashCount > 2) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug')
hour = +tokens[1];
minute = +tokens[2];
second = +(tokens[3] || 0) * 60.0;
offsetIndex = 4;
} else {
tokens = time.match(matchHours);
if (tokens !== null) {
hour = +tokens[1];
minute = +(tokens[2] || 0) * 60.0;
offsetIndex = 3;
} else {
//>>includeStart('debug', pragmas.debug);
throw new Check.DeveloperError(iso8601ErrorMessage);
//>>includeEnd('debug')
}
}
}
//Validate that all values are in proper range. Minutes and hours have special cases at 60 and 24.
//>>includeStart('debug', pragmas.debug);
if (minute >= 60 || second >= 61 || hour > 24 || (hour === 24 && (minute > 0 || second > 0 || millisecond > 0))) {
throw new Check.DeveloperError(iso8601ErrorMessage);
}
//>>includeEnd('debug');
//Check the UTC offset value, if no value exists, use local time
//a Z indicates UTC, + or - are offsets.
var offset = tokens[offsetIndex];
var offsetHours = +(tokens[offsetIndex + 1]);
var offsetMinutes = +(tokens[offsetIndex + 2] || 0);
switch (offset) {
case '+':
hour = hour - offsetHours;
minute = minute - offsetMinutes;
break;
case '-':
hour = hour + offsetHours;
minute = minute + offsetMinutes;
break;
case 'Z':
break;
default:
minute = minute + new Date(Date.UTC(year, month - 1, day, hour, minute)).getTimezoneOffset();
break;
}
}
//ISO8601 denotes a leap second by any time having a seconds component of 60 seconds.
//If that's the case, we need to temporarily subtract a second in order to build a UTC date.
//Then we add it back in after converting to TAI.
var isLeapSecond = second === 60;
if (isLeapSecond) {
second--;
}
//Even if we successfully parsed the string into its components, after applying UTC offset or
//special cases like 24:00:00 denoting midnight, we need to normalize the data appropriately.
//milliseconds can never be greater than 1000, and seconds can't be above 60, so we start with minutes
while (minute >= 60) {
minute -= 60;
hour++;
}
while (hour >= 24) {
hour -= 24;
day++;
}
tmp = (inLeapYear && month === 2) ? daysInLeapFeburary : daysInMonth[month - 1];
while (day > tmp) {
day -= tmp;
month++;
if (month > 12) {
month -= 12;
year++;
}
tmp = (inLeapYear && month === 2) ? daysInLeapFeburary : daysInMonth[month - 1];
}
//If UTC offset is at the beginning/end of the day, minutes can be negative.
while (minute < 0) {
minute += 60;
hour--;
}
while (hour < 0) {
hour += 24;
day--;
}
while (day < 1) {
month--;
if (month < 1) {
month += 12;
year--;
}
tmp = (inLeapYear && month === 2) ? daysInLeapFeburary : daysInMonth[month - 1];
day += tmp;
}
//Now create the JulianDate components from the Gregorian date and actually create our instance.
var components = computeJulianDateComponents(year, month, day, hour, minute, second, millisecond);
if (!defined.defined(result)) {
result = new JulianDate(components[0], components[1], TimeStandard$1.UTC);
} else {
setComponents(components[0], components[1], result);
convertUtcToTai(result);
}
//If we were on a leap second, add it back.
if (isLeapSecond) {
JulianDate.addSeconds(result, 1, result);
}
return result;
};
/**
* Creates a new instance that represents the current system time.
* This is equivalent to calling JulianDate.fromDate(new Date());
.
*
* @param {JulianDate} [result] An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
*/
JulianDate.now = function(result) {
return JulianDate.fromDate(new Date(), result);
};
var toGregorianDateScratch = new JulianDate(0, 0, TimeStandard$1.TAI);
/**
* Creates a {@link GregorianDate} from the provided instance.
*
* @param {JulianDate} julianDate The date to be converted.
* @param {GregorianDate} [result] An existing instance to use for the result.
* @returns {GregorianDate} The modified result parameter or a new instance if none was provided.
*/
JulianDate.toGregorianDate = function(julianDate, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
//>>includeEnd('debug');
var isLeapSecond = false;
var thisUtc = convertTaiToUtc(julianDate, toGregorianDateScratch);
if (!defined.defined(thisUtc)) {
//Conversion to UTC will fail if we are during a leap second.
//If that's the case, subtract a second and convert again.
//JavaScript doesn't support leap seconds, so this results in second 59 being repeated twice.
JulianDate.addSeconds(julianDate, -1, toGregorianDateScratch);
thisUtc = convertTaiToUtc(toGregorianDateScratch, toGregorianDateScratch);
isLeapSecond = true;
}
var julianDayNumber = thisUtc.dayNumber;
var secondsOfDay = thisUtc.secondsOfDay;
if (secondsOfDay >= 43200.0) {
julianDayNumber += 1;
}
// Algorithm from page 604 of the Explanatory Supplement to the
// Astronomical Almanac (Seidelmann 1992).
var L = (julianDayNumber + 68569) | 0;
var N = (4 * L / 146097) | 0;
L = (L - (((146097 * N + 3) / 4) | 0)) | 0;
var I = ((4000 * (L + 1)) / 1461001) | 0;
L = (L - (((1461 * I) / 4) | 0) + 31) | 0;
var J = ((80 * L) / 2447) | 0;
var day = (L - (((2447 * J) / 80) | 0)) | 0;
L = (J / 11) | 0;
var month = (J + 2 - 12 * L) | 0;
var year = (100 * (N - 49) + I + L) | 0;
var hour = (secondsOfDay / TimeConstants$1.SECONDS_PER_HOUR) | 0;
var remainingSeconds = secondsOfDay - (hour * TimeConstants$1.SECONDS_PER_HOUR);
var minute = (remainingSeconds / TimeConstants$1.SECONDS_PER_MINUTE) | 0;
remainingSeconds = remainingSeconds - (minute * TimeConstants$1.SECONDS_PER_MINUTE);
var second = remainingSeconds | 0;
var millisecond = ((remainingSeconds - second) / TimeConstants$1.SECONDS_PER_MILLISECOND);
// JulianDates are noon-based
hour += 12;
if (hour > 23) {
hour -= 24;
}
//If we were on a leap second, add it back.
if (isLeapSecond) {
second += 1;
}
if (!defined.defined(result)) {
return new GregorianDate(year, month, day, hour, minute, second, millisecond, isLeapSecond);
}
result.year = year;
result.month = month;
result.day = day;
result.hour = hour;
result.minute = minute;
result.second = second;
result.millisecond = millisecond;
result.isLeapSecond = isLeapSecond;
return result;
};
/**
* Creates a JavaScript Date from the provided instance.
* Since JavaScript dates are only accurate to the nearest millisecond and
* cannot represent a leap second, consider using {@link JulianDate.toGregorianDate} instead.
* If the provided JulianDate is during a leap second, the previous second is used.
*
* @param {JulianDate} julianDate The date to be converted.
* @returns {Date} A new instance representing the provided date.
*/
JulianDate.toDate = function(julianDate) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
//>>includeEnd('debug');
var gDate = JulianDate.toGregorianDate(julianDate, gregorianDateScratch);
var second = gDate.second;
if (gDate.isLeapSecond) {
second -= 1;
}
return new Date(Date.UTC(gDate.year, gDate.month - 1, gDate.day, gDate.hour, gDate.minute, second, gDate.millisecond));
};
/**
* Creates an ISO8601 representation of the provided date.
*
* @param {JulianDate} julianDate The date to be converted.
* @param {Number} [precision] The number of fractional digits used to represent the seconds component. By default, the most precise representation is used.
* @returns {String} The ISO8601 representation of the provided date.
*/
JulianDate.toIso8601 = function(julianDate, precision) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
//>>includeEnd('debug');
var gDate = JulianDate.toGregorianDate(julianDate, gregorianDateScratch);
var year = gDate.year;
var month = gDate.month;
var day = gDate.day;
var hour = gDate.hour;
var minute = gDate.minute;
var second = gDate.second;
var millisecond = gDate.millisecond;
// special case - Iso8601.MAXIMUM_VALUE produces a string which we can't parse unless we adjust.
// 10000-01-01T00:00:00 is the same instant as 9999-12-31T24:00:00
if (year === 10000 && month === 1 && day === 1 && hour === 0 && minute === 0 && second === 0 && millisecond === 0) {
year = 9999;
month = 12;
day = 31;
hour = 24;
}
var millisecondStr;
if (!defined.defined(precision) && millisecond !== 0) {
//Forces milliseconds into a number with at least 3 digits to whatever the default toString() precision is.
millisecondStr = (millisecond * 0.01).toString().replace('.', '');
return sprintf('%04d-%02d-%02dT%02d:%02d:%02d.%sZ', year, month, day, hour, minute, second, millisecondStr);
}
//Precision is either 0 or milliseconds is 0 with undefined precision, in either case, leave off milliseconds entirely
if (!defined.defined(precision) || precision === 0) {
return sprintf('%04d-%02d-%02dT%02d:%02d:%02dZ', year, month, day, hour, minute, second);
}
//Forces milliseconds into a number with at least 3 digits to whatever the specified precision is.
millisecondStr = (millisecond * 0.01).toFixed(precision).replace('.', '').slice(0, precision);
return sprintf('%04d-%02d-%02dT%02d:%02d:%02d.%sZ', year, month, day, hour, minute, second, millisecondStr);
};
/**
* Duplicates a JulianDate instance.
*
* @param {JulianDate} julianDate The date to duplicate.
* @param {JulianDate} [result] An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter or a new instance if none was provided. Returns undefined if julianDate is undefined.
*/
JulianDate.clone = function(julianDate, result) {
if (!defined.defined(julianDate)) {
return undefined;
}
if (!defined.defined(result)) {
return new JulianDate(julianDate.dayNumber, julianDate.secondsOfDay, TimeStandard$1.TAI);
}
result.dayNumber = julianDate.dayNumber;
result.secondsOfDay = julianDate.secondsOfDay;
return result;
};
/**
* Compares two instances.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Number} A negative value if left is less than right, a positive value if left is greater than right, or zero if left and right are equal.
*/
JulianDate.compare = function(left, right) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(left)) {
throw new Check.DeveloperError('left is required.');
}
if (!defined.defined(right)) {
throw new Check.DeveloperError('right is required.');
}
//>>includeEnd('debug');
var julianDayNumberDifference = left.dayNumber - right.dayNumber;
if (julianDayNumberDifference !== 0) {
return julianDayNumberDifference;
}
return left.secondsOfDay - right.secondsOfDay;
};
/**
* Compares two instances and returns true
if they are equal, false
otherwise.
*
* @param {JulianDate} [left] The first instance.
* @param {JulianDate} [right] The second instance.
* @returns {Boolean} true
if the dates are equal; otherwise, false
.
*/
JulianDate.equals = function(left, right) {
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
left.dayNumber === right.dayNumber &&
left.secondsOfDay === right.secondsOfDay);
};
/**
* Compares two instances and returns true
if they are within epsilon
seconds of
* each other. That is, in order for the dates to be considered equal (and for
* this function to return true
), the absolute value of the difference between them, in
* seconds, must be less than epsilon
.
*
* @param {JulianDate} [left] The first instance.
* @param {JulianDate} [right] The second instance.
* @param {Number} epsilon The maximum number of seconds that should separate the two instances.
* @returns {Boolean} true
if the two dates are within epsilon
seconds of each other; otherwise false
.
*/
JulianDate.equalsEpsilon = function(left, right, epsilon) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(epsilon)) {
throw new Check.DeveloperError('epsilon is required.');
}
//>>includeEnd('debug');
return (left === right) ||
(defined.defined(left) &&
defined.defined(right) &&
Math.abs(JulianDate.secondsDifference(left, right)) <= epsilon);
};
/**
* Computes the total number of whole and fractional days represented by the provided instance.
*
* @param {JulianDate} julianDate The date.
* @returns {Number} The Julian date as single floating point number.
*/
JulianDate.totalDays = function(julianDate) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
//>>includeEnd('debug');
return julianDate.dayNumber + (julianDate.secondsOfDay / TimeConstants$1.SECONDS_PER_DAY);
};
/**
* Computes the difference in seconds between the provided instance.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Number} The difference, in seconds, when subtracting right
from left
.
*/
JulianDate.secondsDifference = function(left, right) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(left)) {
throw new Check.DeveloperError('left is required.');
}
if (!defined.defined(right)) {
throw new Check.DeveloperError('right is required.');
}
//>>includeEnd('debug');
var dayDifference = (left.dayNumber - right.dayNumber) * TimeConstants$1.SECONDS_PER_DAY;
return (dayDifference + (left.secondsOfDay - right.secondsOfDay));
};
/**
* Computes the difference in days between the provided instance.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Number} The difference, in days, when subtracting right
from left
.
*/
JulianDate.daysDifference = function(left, right) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(left)) {
throw new Check.DeveloperError('left is required.');
}
if (!defined.defined(right)) {
throw new Check.DeveloperError('right is required.');
}
//>>includeEnd('debug');
var dayDifference = (left.dayNumber - right.dayNumber);
var secondDifference = (left.secondsOfDay - right.secondsOfDay) / TimeConstants$1.SECONDS_PER_DAY;
return dayDifference + secondDifference;
};
/**
* Computes the number of seconds the provided instance is ahead of UTC.
*
* @param {JulianDate} julianDate The date.
* @returns {Number} The number of seconds the provided instance is ahead of UTC
*/
JulianDate.computeTaiMinusUtc = function(julianDate) {
binarySearchScratchLeapSecond.julianDate = julianDate;
var leapSeconds = JulianDate.leapSeconds;
var index = binarySearch(leapSeconds, binarySearchScratchLeapSecond, compareLeapSecondDates);
if (index < 0) {
index = ~index;
--index;
if (index < 0) {
index = 0;
}
}
return leapSeconds[index].offset;
};
/**
* Adds the provided number of seconds to the provided date instance.
*
* @param {JulianDate} julianDate The date.
* @param {Number} seconds The number of seconds to add or subtract.
* @param {JulianDate} result An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter.
*/
JulianDate.addSeconds = function(julianDate, seconds, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
if (!defined.defined(seconds)) {
throw new Check.DeveloperError('seconds is required.');
}
if (!defined.defined(result)) {
throw new Check.DeveloperError('result is required.');
}
//>>includeEnd('debug');
return setComponents(julianDate.dayNumber, julianDate.secondsOfDay + seconds, result);
};
/**
* Adds the provided number of minutes to the provided date instance.
*
* @param {JulianDate} julianDate The date.
* @param {Number} minutes The number of minutes to add or subtract.
* @param {JulianDate} result An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter.
*/
JulianDate.addMinutes = function(julianDate, minutes, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
if (!defined.defined(minutes)) {
throw new Check.DeveloperError('minutes is required.');
}
if (!defined.defined(result)) {
throw new Check.DeveloperError('result is required.');
}
//>>includeEnd('debug');
var newSecondsOfDay = julianDate.secondsOfDay + (minutes * TimeConstants$1.SECONDS_PER_MINUTE);
return setComponents(julianDate.dayNumber, newSecondsOfDay, result);
};
/**
* Adds the provided number of hours to the provided date instance.
*
* @param {JulianDate} julianDate The date.
* @param {Number} hours The number of hours to add or subtract.
* @param {JulianDate} result An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter.
*/
JulianDate.addHours = function(julianDate, hours, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
if (!defined.defined(hours)) {
throw new Check.DeveloperError('hours is required.');
}
if (!defined.defined(result)) {
throw new Check.DeveloperError('result is required.');
}
//>>includeEnd('debug');
var newSecondsOfDay = julianDate.secondsOfDay + (hours * TimeConstants$1.SECONDS_PER_HOUR);
return setComponents(julianDate.dayNumber, newSecondsOfDay, result);
};
/**
* Adds the provided number of days to the provided date instance.
*
* @param {JulianDate} julianDate The date.
* @param {Number} days The number of days to add or subtract.
* @param {JulianDate} result An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter.
*/
JulianDate.addDays = function(julianDate, days, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(julianDate)) {
throw new Check.DeveloperError('julianDate is required.');
}
if (!defined.defined(days)) {
throw new Check.DeveloperError('days is required.');
}
if (!defined.defined(result)) {
throw new Check.DeveloperError('result is required.');
}
//>>includeEnd('debug');
var newJulianDayNumber = julianDate.dayNumber + days;
return setComponents(newJulianDayNumber, julianDate.secondsOfDay, result);
};
/**
* Compares the provided instances and returns true
if left
is earlier than right
, false
otherwise.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Boolean} true
if left
is earlier than right
, false
otherwise.
*/
JulianDate.lessThan = function(left, right) {
return JulianDate.compare(left, right) < 0;
};
/**
* Compares the provided instances and returns true
if left
is earlier than or equal to right
, false
otherwise.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Boolean} true
if left
is earlier than or equal to right
, false
otherwise.
*/
JulianDate.lessThanOrEquals = function(left, right) {
return JulianDate.compare(left, right) <= 0;
};
/**
* Compares the provided instances and returns true
if left
is later than right
, false
otherwise.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Boolean} true
if left
is later than right
, false
otherwise.
*/
JulianDate.greaterThan = function(left, right) {
return JulianDate.compare(left, right) > 0;
};
/**
* Compares the provided instances and returns true
if left
is later than or equal to right
, false
otherwise.
*
* @param {JulianDate} left The first instance.
* @param {JulianDate} right The second instance.
* @returns {Boolean} true
if left
is later than or equal to right
, false
otherwise.
*/
JulianDate.greaterThanOrEquals = function(left, right) {
return JulianDate.compare(left, right) >= 0;
};
/**
* Duplicates this instance.
*
* @param {JulianDate} [result] An existing instance to use for the result.
* @returns {JulianDate} The modified result parameter or a new instance if none was provided.
*/
JulianDate.prototype.clone = function(result) {
return JulianDate.clone(this, result);
};
/**
* Compares this and the provided instance and returns true
if they are equal, false
otherwise.
*
* @param {JulianDate} [right] The second instance.
* @returns {Boolean} true
if the dates are equal; otherwise, false
.
*/
JulianDate.prototype.equals = function(right) {
return JulianDate.equals(this, right);
};
/**
* Compares this and the provided instance and returns true
if they are within epsilon
seconds of
* each other. That is, in order for the dates to be considered equal (and for
* this function to return true
), the absolute value of the difference between them, in
* seconds, must be less than epsilon
.
*
* @param {JulianDate} [right] The second instance.
* @param {Number} epsilon The maximum number of seconds that should separate the two instances.
* @returns {Boolean} true
if the two dates are within epsilon
seconds of each other; otherwise false
.
*/
JulianDate.prototype.equalsEpsilon = function(right, epsilon) {
return JulianDate.equalsEpsilon(this, right, epsilon);
};
/**
* Creates a string representing this date in ISO8601 format.
*
* @returns {String} A string representing this date in ISO8601 format.
*/
JulianDate.prototype.toString = function() {
return JulianDate.toIso8601(this);
};
/**
* Gets or sets the list of leap seconds used throughout Cesium.
* @memberof JulianDate
* @type {LeapSecond[]}
*/
JulianDate.leapSeconds = [
new LeapSecond(new JulianDate(2441317, 43210.0, TimeStandard$1.TAI), 10), // January 1, 1972 00:00:00 UTC
new LeapSecond(new JulianDate(2441499, 43211.0, TimeStandard$1.TAI), 11), // July 1, 1972 00:00:00 UTC
new LeapSecond(new JulianDate(2441683, 43212.0, TimeStandard$1.TAI), 12), // January 1, 1973 00:00:00 UTC
new LeapSecond(new JulianDate(2442048, 43213.0, TimeStandard$1.TAI), 13), // January 1, 1974 00:00:00 UTC
new LeapSecond(new JulianDate(2442413, 43214.0, TimeStandard$1.TAI), 14), // January 1, 1975 00:00:00 UTC
new LeapSecond(new JulianDate(2442778, 43215.0, TimeStandard$1.TAI), 15), // January 1, 1976 00:00:00 UTC
new LeapSecond(new JulianDate(2443144, 43216.0, TimeStandard$1.TAI), 16), // January 1, 1977 00:00:00 UTC
new LeapSecond(new JulianDate(2443509, 43217.0, TimeStandard$1.TAI), 17), // January 1, 1978 00:00:00 UTC
new LeapSecond(new JulianDate(2443874, 43218.0, TimeStandard$1.TAI), 18), // January 1, 1979 00:00:00 UTC
new LeapSecond(new JulianDate(2444239, 43219.0, TimeStandard$1.TAI), 19), // January 1, 1980 00:00:00 UTC
new LeapSecond(new JulianDate(2444786, 43220.0, TimeStandard$1.TAI), 20), // July 1, 1981 00:00:00 UTC
new LeapSecond(new JulianDate(2445151, 43221.0, TimeStandard$1.TAI), 21), // July 1, 1982 00:00:00 UTC
new LeapSecond(new JulianDate(2445516, 43222.0, TimeStandard$1.TAI), 22), // July 1, 1983 00:00:00 UTC
new LeapSecond(new JulianDate(2446247, 43223.0, TimeStandard$1.TAI), 23), // July 1, 1985 00:00:00 UTC
new LeapSecond(new JulianDate(2447161, 43224.0, TimeStandard$1.TAI), 24), // January 1, 1988 00:00:00 UTC
new LeapSecond(new JulianDate(2447892, 43225.0, TimeStandard$1.TAI), 25), // January 1, 1990 00:00:00 UTC
new LeapSecond(new JulianDate(2448257, 43226.0, TimeStandard$1.TAI), 26), // January 1, 1991 00:00:00 UTC
new LeapSecond(new JulianDate(2448804, 43227.0, TimeStandard$1.TAI), 27), // July 1, 1992 00:00:00 UTC
new LeapSecond(new JulianDate(2449169, 43228.0, TimeStandard$1.TAI), 28), // July 1, 1993 00:00:00 UTC
new LeapSecond(new JulianDate(2449534, 43229.0, TimeStandard$1.TAI), 29), // July 1, 1994 00:00:00 UTC
new LeapSecond(new JulianDate(2450083, 43230.0, TimeStandard$1.TAI), 30), // January 1, 1996 00:00:00 UTC
new LeapSecond(new JulianDate(2450630, 43231.0, TimeStandard$1.TAI), 31), // July 1, 1997 00:00:00 UTC
new LeapSecond(new JulianDate(2451179, 43232.0, TimeStandard$1.TAI), 32), // January 1, 1999 00:00:00 UTC
new LeapSecond(new JulianDate(2453736, 43233.0, TimeStandard$1.TAI), 33), // January 1, 2006 00:00:00 UTC
new LeapSecond(new JulianDate(2454832, 43234.0, TimeStandard$1.TAI), 34), // January 1, 2009 00:00:00 UTC
new LeapSecond(new JulianDate(2456109, 43235.0, TimeStandard$1.TAI), 35), // July 1, 2012 00:00:00 UTC
new LeapSecond(new JulianDate(2457204, 43236.0, TimeStandard$1.TAI), 36), // July 1, 2015 00:00:00 UTC
new LeapSecond(new JulianDate(2457754, 43237.0, TimeStandard$1.TAI), 37) // January 1, 2017 00:00:00 UTC
];
/**
* @license
*
* Grauw URI utilities
*
* See: http://hg.grauw.nl/grauw-lib/file/tip/src/uri.js
*
* @author Laurens Holst (http://www.grauw.nl/)
*
* Copyright 2012 Laurens Holst
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/**
* Constructs a URI object.
* @constructor
* @class Implementation of URI parsing and base URI resolving algorithm in RFC 3986.
* @param {string|URI} uri A string or URI object to create the object from.
*/
function URI(uri) {
if (uri instanceof URI) { // copy constructor
this.scheme = uri.scheme;
this.authority = uri.authority;
this.path = uri.path;
this.query = uri.query;
this.fragment = uri.fragment;
} else if (uri) { // uri is URI string or cast to string
var c = parseRegex.exec(uri);
this.scheme = c[1];
this.authority = c[2];
this.path = c[3];
this.query = c[4];
this.fragment = c[5];
}
}
// Initial values on the prototype
URI.prototype.scheme = null;
URI.prototype.authority = null;
URI.prototype.path = '';
URI.prototype.query = null;
URI.prototype.fragment = null;
// Regular expression from RFC 3986 appendix B
var parseRegex = new RegExp('^(?:([^:/?#]+):)?(?://([^/?#]*))?([^?#]*)(?:\\?([^#]*))?(?:#(.*))?$');
/**
* Returns the scheme part of the URI.
* In "http://example.com:80/a/b?x#y" this is "http".
*/
URI.prototype.getScheme = function() {
return this.scheme;
};
/**
* Returns the authority part of the URI.
* In "http://example.com:80/a/b?x#y" this is "example.com:80".
*/
URI.prototype.getAuthority = function() {
return this.authority;
};
/**
* Returns the path part of the URI.
* In "http://example.com:80/a/b?x#y" this is "/a/b".
* In "mailto:mike@example.com" this is "mike@example.com".
*/
URI.prototype.getPath = function() {
return this.path;
};
/**
* Returns the query part of the URI.
* In "http://example.com:80/a/b?x#y" this is "x".
*/
URI.prototype.getQuery = function() {
return this.query;
};
/**
* Returns the fragment part of the URI.
* In "http://example.com:80/a/b?x#y" this is "y".
*/
URI.prototype.getFragment = function() {
return this.fragment;
};
/**
* Tests whether the URI is an absolute URI.
* See RFC 3986 section 4.3.
*/
URI.prototype.isAbsolute = function() {
return !!this.scheme && !this.fragment;
};
///**
//* Extensive validation of the URI against the ABNF in RFC 3986
//*/
//URI.prototype.validate
/**
* Tests whether the URI is a same-document reference.
* See RFC 3986 section 4.4.
*
* To perform more thorough comparison, you can normalise the URI objects.
*/
URI.prototype.isSameDocumentAs = function(uri) {
return uri.scheme == this.scheme &&
uri.authority == this.authority &&
uri.path == this.path &&
uri.query == this.query;
};
/**
* Simple String Comparison of two URIs.
* See RFC 3986 section 6.2.1.
*
* To perform more thorough comparison, you can normalise the URI objects.
*/
URI.prototype.equals = function(uri) {
return this.isSameDocumentAs(uri) && uri.fragment == this.fragment;
};
/**
* Normalizes the URI using syntax-based normalization.
* This includes case normalization, percent-encoding normalization and path segment normalization.
* XXX: Percent-encoding normalization does not escape characters that need to be escaped.
* (Although that would not be a valid URI in the first place. See validate().)
* See RFC 3986 section 6.2.2.
*/
URI.prototype.normalize = function() {
this.removeDotSegments();
if (this.scheme)
this.scheme = this.scheme.toLowerCase();
if (this.authority)
this.authority = this.authority.replace(authorityRegex, replaceAuthority).
replace(caseRegex, replaceCase);
if (this.path)
this.path = this.path.replace(caseRegex, replaceCase);
if (this.query)
this.query = this.query.replace(caseRegex, replaceCase);
if (this.fragment)
this.fragment = this.fragment.replace(caseRegex, replaceCase);
};
var caseRegex = /%[0-9a-z]{2}/gi;
var percentRegex = /[a-zA-Z0-9\-\._~]/;
var authorityRegex = /(.*@)?([^@:]*)(:.*)?/;
function replaceCase(str) {
var dec = unescape(str);
return percentRegex.test(dec) ? dec : str.toUpperCase();
}
function replaceAuthority(str, p1, p2, p3) {
return (p1 || '') + p2.toLowerCase() + (p3 || '');
}
/**
* Resolve a relative URI (this) against a base URI.
* The base URI must be an absolute URI.
* See RFC 3986 section 5.2
*/
URI.prototype.resolve = function(baseURI) {
var uri = new URI();
if (this.scheme) {
uri.scheme = this.scheme;
uri.authority = this.authority;
uri.path = this.path;
uri.query = this.query;
} else {
uri.scheme = baseURI.scheme;
if (this.authority) {
uri.authority = this.authority;
uri.path = this.path;
uri.query = this.query;
} else {
uri.authority = baseURI.authority;
if (this.path == '') {
uri.path = baseURI.path;
uri.query = this.query || baseURI.query;
} else {
if (this.path.charAt(0) == '/') {
uri.path = this.path;
uri.removeDotSegments();
} else {
if (baseURI.authority && baseURI.path == '') {
uri.path = '/' + this.path;
} else {
uri.path = baseURI.path.substring(0, baseURI.path.lastIndexOf('/') + 1) + this.path;
}
uri.removeDotSegments();
}
uri.query = this.query;
}
}
}
uri.fragment = this.fragment;
return uri;
};
/**
* Remove dot segments from path.
* See RFC 3986 section 5.2.4
* @private
*/
URI.prototype.removeDotSegments = function() {
var input = this.path.split('/'),
output = [],
segment,
absPath = input[0] == '';
if (absPath)
input.shift();
var sFirst = input[0] == '' ? input.shift() : null;
while (input.length) {
segment = input.shift();
if (segment == '..') {
output.pop();
} else if (segment != '.') {
output.push(segment);
}
}
if (segment == '.' || segment == '..')
output.push('');
if (absPath)
output.unshift('');
this.path = output.join('/');
};
// We don't like this function because it builds up a cache that is never cleared.
// /**
// * Resolves a relative URI against an absolute base URI.
// * Convenience method.
// * @param {String} uri the relative URI to resolve
// * @param {String} baseURI the base URI (must be absolute) to resolve against
// */
// URI.resolve = function(sURI, sBaseURI) {
// var uri = cache[sURI] || (cache[sURI] = new URI(sURI));
// var baseURI = cache[sBaseURI] || (cache[sBaseURI] = new URI(sBaseURI));
// return uri.resolve(baseURI).toString();
// };
// var cache = {};
/**
* Serialises the URI to a string.
*/
URI.prototype.toString = function() {
var result = '';
if (this.scheme)
result += this.scheme + ':';
if (this.authority)
result += '//' + this.authority;
result += this.path;
if (this.query)
result += '?' + this.query;
if (this.fragment)
result += '#' + this.fragment;
return result;
};
/**
* @private
*/
function appendForwardSlash(url) {
if (url.length === 0 || url[url.length - 1] !== '/') {
url = url + '/';
}
return url;
}
/**
* Clones an object, returning a new object containing the same properties.
*
* @exports clone
*
* @param {Object} object The object to clone.
* @param {Boolean} [deep=false] If true, all properties will be deep cloned recursively.
* @returns {Object} The cloned object.
*/
function clone(object, deep) {
if (object === null || typeof object !== 'object') {
return object;
}
deep = defaultValue.defaultValue(deep, false);
var result = new object.constructor();
for ( var propertyName in object) {
if (object.hasOwnProperty(propertyName)) {
var value = object[propertyName];
if (deep) {
value = clone(value, deep);
}
result[propertyName] = value;
}
}
return result;
}
/**
* Merges two objects, copying their properties onto a new combined object. When two objects have the same
* property, the value of the property on the first object is used. If either object is undefined,
* it will be treated as an empty object.
*
* @example
* var object1 = {
* propOne : 1,
* propTwo : {
* value1 : 10
* }
* }
* var object2 = {
* propTwo : 2
* }
* var final = Cesium.combine(object1, object2);
*
* // final === {
* // propOne : 1,
* // propTwo : {
* // value1 : 10
* // }
* // }
*
* @param {Object} [object1] The first object to merge.
* @param {Object} [object2] The second object to merge.
* @param {Boolean} [deep=false] Perform a recursive merge.
* @returns {Object} The combined object containing all properties from both objects.
*
* @exports combine
*/
function combine(object1, object2, deep) {
deep = defaultValue.defaultValue(deep, false);
var result = {};
var object1Defined = defined.defined(object1);
var object2Defined = defined.defined(object2);
var property;
var object1Value;
var object2Value;
if (object1Defined) {
for (property in object1) {
if (object1.hasOwnProperty(property)) {
object1Value = object1[property];
if (object2Defined && deep && typeof object1Value === 'object' && object2.hasOwnProperty(property)) {
object2Value = object2[property];
if (typeof object2Value === 'object') {
result[property] = combine(object1Value, object2Value, deep);
} else {
result[property] = object1Value;
}
} else {
result[property] = object1Value;
}
}
}
}
if (object2Defined) {
for (property in object2) {
if (object2.hasOwnProperty(property) && !result.hasOwnProperty(property)) {
object2Value = object2[property];
result[property] = object2Value;
}
}
}
return result;
}
/**
* Given a relative Uri and a base Uri, returns the absolute Uri of the relative Uri.
* @exports getAbsoluteUri
*
* @param {String} relative The relative Uri.
* @param {String} [base] The base Uri.
* @returns {String} The absolute Uri of the given relative Uri.
*
* @example
* //absolute Uri will be "https://test.com/awesome.png";
* var absoluteUri = Cesium.getAbsoluteUri('awesome.png', 'https://test.com');
*/
function getAbsoluteUri(relative, base) {
var documentObject;
if (typeof document !== 'undefined') {
documentObject = document;
}
return getAbsoluteUri._implementation(relative, base, documentObject);
}
getAbsoluteUri._implementation = function(relative, base, documentObject) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(relative)) {
throw new Check.DeveloperError('relative uri is required.');
}
//>>includeEnd('debug');
if (!defined.defined(base)) {
if (typeof documentObject === 'undefined') {
return relative;
}
base = defaultValue.defaultValue(documentObject.baseURI, documentObject.location.href);
}
var baseUri = new URI(base);
var relativeUri = new URI(relative);
return relativeUri.resolve(baseUri).toString();
};
/**
* Given a URI, returns the base path of the URI.
* @exports getBaseUri
*
* @param {String} uri The Uri.
* @param {Boolean} [includeQuery = false] Whether or not to include the query string and fragment form the uri
* @returns {String} The base path of the Uri.
*
* @example
* // basePath will be "/Gallery/";
* var basePath = Cesium.getBaseUri('/Gallery/simple.czml?value=true&example=false');
*
* // basePath will be "/Gallery/?value=true&example=false";
* var basePath = Cesium.getBaseUri('/Gallery/simple.czml?value=true&example=false', true);
*/
function getBaseUri(uri, includeQuery) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(uri)) {
throw new Check.DeveloperError('uri is required.');
}
//>>includeEnd('debug');
var basePath = '';
var i = uri.lastIndexOf('/');
if (i !== -1) {
basePath = uri.substring(0, i + 1);
}
if (!includeQuery) {
return basePath;
}
uri = new URI(uri);
if (defined.defined(uri.query)) {
basePath += '?' + uri.query;
}
if (defined.defined(uri.fragment)){
basePath += '#' + uri.fragment;
}
return basePath;
}
/**
* Given a URI, returns the extension of the URI.
* @exports getExtensionFromUri
*
* @param {String} uri The Uri.
* @returns {String} The extension of the Uri.
*
* @example
* //extension will be "czml";
* var extension = Cesium.getExtensionFromUri('/Gallery/simple.czml?value=true&example=false');
*/
function getExtensionFromUri(uri) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(uri)) {
throw new Check.DeveloperError('uri is required.');
}
//>>includeEnd('debug');
var uriObject = new URI(uri);
uriObject.normalize();
var path = uriObject.path;
var index = path.lastIndexOf('/');
if (index !== -1) {
path = path.substr(index + 1);
}
index = path.lastIndexOf('.');
if (index === -1) {
path = '';
} else {
path = path.substr(index + 1);
}
return path;
}
var blobUriRegex = /^blob:/i;
/**
* Determines if the specified uri is a blob uri.
*
* @exports isBlobUri
*
* @param {String} uri The uri to test.
* @returns {Boolean} true when the uri is a blob uri; otherwise, false.
*
* @private
*/
function isBlobUri(uri) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.string('uri', uri);
//>>includeEnd('debug');
return blobUriRegex.test(uri);
}
var a;
/**
* Given a URL, determine whether that URL is considered cross-origin to the current page.
*
* @private
*/
function isCrossOriginUrl(url) {
if (!defined.defined(a)) {
a = document.createElement('a');
}
// copy window location into the anchor to get consistent results
// when the port is default for the protocol (e.g. 80 for HTTP)
a.href = window.location.href;
// host includes both hostname and port if the port is not standard
var host = a.host;
var protocol = a.protocol;
a.href = url;
// IE only absolutizes href on get, not set
a.href = a.href; // eslint-disable-line no-self-assign
return protocol !== a.protocol || host !== a.host;
}
var dataUriRegex = /^data:/i;
/**
* Determines if the specified uri is a data uri.
*
* @exports isDataUri
*
* @param {String} uri The uri to test.
* @returns {Boolean} true when the uri is a data uri; otherwise, false.
*
* @private
*/
function isDataUri(uri) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.string('uri', uri);
//>>includeEnd('debug');
return dataUriRegex.test(uri);
}
/**
* @private
*/
function loadAndExecuteScript(url) {
var deferred = when.when.defer();
var script = document.createElement('script');
script.async = true;
script.src = url;
var head = document.getElementsByTagName('head')[0];
script.onload = function() {
script.onload = undefined;
head.removeChild(script);
deferred.resolve();
};
script.onerror = function(e) {
deferred.reject(e);
};
head.appendChild(script);
return deferred.promise;
}
/**
* Tests an object to see if it is an array.
* @exports isArray
*
* @param {*} value The value to test.
* @returns {Boolean} true if the value is an array, false otherwise.
*/
var isArray = Array.isArray;
if (!defined.defined(isArray)) {
isArray = function(value) {
return Object.prototype.toString.call(value) === '[object Array]';
};
}
var isArray$1 = isArray;
/**
* Converts an object representing a set of name/value pairs into a query string,
* with names and values encoded properly for use in a URL. Values that are arrays
* will produce multiple values with the same name.
* @exports objectToQuery
*
* @param {Object} obj The object containing data to encode.
* @returns {String} An encoded query string.
*
*
* @example
* var str = Cesium.objectToQuery({
* key1 : 'some value',
* key2 : 'a/b',
* key3 : ['x', 'y']
* });
*
* @see queryToObject
* // str will be:
* // 'key1=some%20value&key2=a%2Fb&key3=x&key3=y'
*/
function objectToQuery(obj) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(obj)) {
throw new Check.DeveloperError('obj is required.');
}
//>>includeEnd('debug');
var result = '';
for ( var propName in obj) {
if (obj.hasOwnProperty(propName)) {
var value = obj[propName];
var part = encodeURIComponent(propName) + '=';
if (isArray$1(value)) {
for (var i = 0, len = value.length; i < len; ++i) {
result += part + encodeURIComponent(value[i]) + '&';
}
} else {
result += part + encodeURIComponent(value) + '&';
}
}
}
// trim last &
result = result.slice(0, -1);
// This function used to replace %20 with + which is more compact and readable.
// However, some servers didn't properly handle + as a space.
// https://github.com/AnalyticalGraphicsInc/cesium/issues/2192
return result;
}
/**
* Parses a query string into an object, where the keys and values of the object are the
* name/value pairs from the query string, decoded. If a name appears multiple times,
* the value in the object will be an array of values.
* @exports queryToObject
*
* @param {String} queryString The query string.
* @returns {Object} An object containing the parameters parsed from the query string.
*
*
* @example
* var obj = Cesium.queryToObject('key1=some%20value&key2=a%2Fb&key3=x&key3=y');
* // obj will be:
* // {
* // key1 : 'some value',
* // key2 : 'a/b',
* // key3 : ['x', 'y']
* // }
*
* @see objectToQuery
*/
function queryToObject(queryString) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(queryString)) {
throw new Check.DeveloperError('queryString is required.');
}
//>>includeEnd('debug');
var result = {};
if (queryString === '') {
return result;
}
var parts = queryString.replace(/\+/g, '%20').split(/[&;]/);
for (var i = 0, len = parts.length; i < len; ++i) {
var subparts = parts[i].split('=');
var name = decodeURIComponent(subparts[0]);
var value = subparts[1];
if (defined.defined(value)) {
value = decodeURIComponent(value);
} else {
value = '';
}
var resultValue = result[name];
if (typeof resultValue === 'string') {
// expand the single value to an array
result[name] = [resultValue, value];
} else if (isArray$1(resultValue)) {
resultValue.push(value);
} else {
result[name] = value;
}
}
return result;
}
/**
* State of the request.
*
* @exports RequestState
*/
var RequestState = {
/**
* Initial unissued state.
*
* @type Number
* @constant
*/
UNISSUED : 0,
/**
* Issued but not yet active. Will become active when open slots are available.
*
* @type Number
* @constant
*/
ISSUED : 1,
/**
* Actual http request has been sent.
*
* @type Number
* @constant
*/
ACTIVE : 2,
/**
* Request completed successfully.
*
* @type Number
* @constant
*/
RECEIVED : 3,
/**
* Request was cancelled, either explicitly or automatically because of low priority.
*
* @type Number
* @constant
*/
CANCELLED : 4,
/**
* Request failed.
*
* @type Number
* @constant
*/
FAILED : 5
};
var RequestState$1 = freezeObject.freezeObject(RequestState);
/**
* An enum identifying the type of request. Used for finer grained logging and priority sorting.
*
* @exports RequestType
*/
var RequestType = {
/**
* Terrain request.
*
* @type Number
* @constant
*/
TERRAIN : 0,
/**
* Imagery request.
*
* @type Number
* @constant
*/
IMAGERY : 1,
/**
* 3D Tiles request.
*
* @type Number
* @constant
*/
TILES3D : 2,
/**
* Other request.
*
* @type Number
* @constant
*/
OTHER : 3
};
var RequestType$1 = freezeObject.freezeObject(RequestType);
/**
* Stores information for making a request. In general this does not need to be constructed directly.
*
* @alias Request
* @constructor
* @namespace
* @exports Request
* @param {Object} [options] An object with the following properties:
* @param {String} [options.url] The url to request.
* @param {Request~RequestCallback} [options.requestFunction] The function that makes the actual data request.
* @param {Request~CancelCallback} [options.cancelFunction] The function that is called when the request is cancelled.
* @param {Request~PriorityCallback} [options.priorityFunction] The function that is called to update the request's priority, which occurs once per frame.
* @param {Number} [options.priority=0.0] The initial priority of the request.
* @param {Boolean} [options.throttle=false] Whether to throttle and prioritize the request. If false, the request will be sent immediately. If true, the request will be throttled and sent based on priority.
* @param {Boolean} [options.throttleByServer=false] Whether to throttle the request by server.
* @param {RequestType} [options.type=RequestType.OTHER] The type of request.
*/
function Request(options) {
options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);
var throttleByServer = defaultValue.defaultValue(options.throttleByServer, false);
var throttle = defaultValue.defaultValue(options.throttle, false);
/**
* The URL to request.
*
* @type {String}
*/
this.url = options.url;
/**
* The function that makes the actual data request.
*
* @type {Request~RequestCallback}
*/
this.requestFunction = options.requestFunction;
/**
* The function that is called when the request is cancelled.
*
* @type {Request~CancelCallback}
*/
this.cancelFunction = options.cancelFunction;
/**
* The function that is called to update the request's priority, which occurs once per frame.
*
* @type {Request~PriorityCallback}
*/
this.priorityFunction = options.priorityFunction;
/**
* Priority is a unit-less value where lower values represent higher priority.
* For world-based objects, this is usually the distance from the camera.
* A request that does not have a priority function defaults to a priority of 0.
*
* If priorityFunction is defined, this value is updated every frame with the result of that call.
*
* @type {Number}
* @default 0.0
*/
this.priority = defaultValue.defaultValue(options.priority, 0.0);
/**
* Whether to throttle and prioritize the request. If false, the request will be sent immediately. If true, the
* request will be throttled and sent based on priority.
*
* @type {Boolean}
* @readonly
*
* @default false
*/
this.throttle = throttle;
/**
* Whether to throttle the request by server. Browsers typically support about 6-8 parallel connections
* for HTTP/1 servers, and an unlimited amount of connections for HTTP/2 servers. Setting this value
* to true
is preferable for requests going through HTTP/1 servers.
*
* @type {Boolean}
* @readonly
*
* @default false
*/
this.throttleByServer = throttleByServer;
/**
* Type of request.
*
* @type {RequestType}
* @readonly
*
* @default RequestType.OTHER
*/
this.type = defaultValue.defaultValue(options.type, RequestType$1.OTHER);
/**
* A key used to identify the server that a request is going to. It is derived from the url's authority and scheme.
*
* @type {String}
*
* @private
*/
this.serverKey = undefined;
/**
* The current state of the request.
*
* @type {RequestState}
* @readonly
*/
this.state = RequestState$1.UNISSUED;
/**
* The requests's deferred promise.
*
* @type {Object}
*
* @private
*/
this.deferred = undefined;
/**
* Whether the request was explicitly cancelled.
*
* @type {Boolean}
*
* @private
*/
this.cancelled = false;
}
/**
* Mark the request as cancelled.
*
* @private
*/
Request.prototype.cancel = function() {
this.cancelled = true;
};
/**
* Duplicates a Request instance.
*
* @param {Request} [result] The object onto which to store the result.
*
* @returns {Request} The modified result parameter or a new Resource instance if one was not provided.
*/
Request.prototype.clone = function(result) {
if (!defined.defined(result)) {
return new Request(this);
}
result.url = this.url;
result.requestFunction = this.requestFunction;
result.cancelFunction = this.cancelFunction;
result.priorityFunction = this.priorityFunction;
result.priority = this.priority;
result.throttle = this.throttle;
result.throttleByServer = this.throttleByServer;
result.type = this.type;
result.serverKey = this.serverKey;
// These get defaulted because the cloned request hasn't been issued
result.state = this.RequestState.UNISSUED;
result.deferred = undefined;
result.cancelled = false;
return result;
};
/**
* Parses the result of XMLHttpRequest's getAllResponseHeaders() method into
* a dictionary.
*
* @exports parseResponseHeaders
*
* @param {String} headerString The header string returned by getAllResponseHeaders(). The format is
* described here: http://www.w3.org/TR/XMLHttpRequest/#the-getallresponseheaders()-method
* @returns {Object} A dictionary of key/value pairs, where each key is the name of a header and the corresponding value
* is that header's value.
*
* @private
*/
function parseResponseHeaders(headerString) {
var headers = {};
if (!headerString) {
return headers;
}
var headerPairs = headerString.split('\u000d\u000a');
for (var i = 0; i < headerPairs.length; ++i) {
var headerPair = headerPairs[i];
// Can't use split() here because it does the wrong thing
// if the header value has the string ": " in it.
var index = headerPair.indexOf('\u003a\u0020');
if (index > 0) {
var key = headerPair.substring(0, index);
var val = headerPair.substring(index + 2);
headers[key] = val;
}
}
return headers;
}
/**
* An event that is raised when a request encounters an error.
*
* @constructor
* @alias RequestErrorEvent
*
* @param {Number} [statusCode] The HTTP error status code, such as 404.
* @param {Object} [response] The response included along with the error.
* @param {String|Object} [responseHeaders] The response headers, represented either as an object literal or as a
* string in the format returned by XMLHttpRequest's getAllResponseHeaders() function.
*/
function RequestErrorEvent(statusCode, response, responseHeaders) {
/**
* The HTTP error status code, such as 404. If the error does not have a particular
* HTTP code, this property will be undefined.
*
* @type {Number}
*/
this.statusCode = statusCode;
/**
* The response included along with the error. If the error does not include a response,
* this property will be undefined.
*
* @type {Object}
*/
this.response = response;
/**
* The headers included in the response, represented as an object literal of key/value pairs.
* If the error does not include any headers, this property will be undefined.
*
* @type {Object}
*/
this.responseHeaders = responseHeaders;
if (typeof this.responseHeaders === 'string') {
this.responseHeaders = parseResponseHeaders(this.responseHeaders);
}
}
/**
* Creates a string representing this RequestErrorEvent.
* @memberof RequestErrorEvent
*
* @returns {String} A string representing the provided RequestErrorEvent.
*/
RequestErrorEvent.prototype.toString = function() {
var str = 'Request has failed.';
if (defined.defined(this.statusCode)) {
str += ' Status Code: ' + this.statusCode;
}
return str;
};
/**
* A generic utility class for managing subscribers for a particular event.
* This class is usually instantiated inside of a container class and
* exposed as a property for others to subscribe to.
*
* @alias Event
* @constructor
* @example
* MyObject.prototype.myListener = function(arg1, arg2) {
* this.myArg1Copy = arg1;
* this.myArg2Copy = arg2;
* }
*
* var myObjectInstance = new MyObject();
* var evt = new Cesium.Event();
* evt.addEventListener(MyObject.prototype.myListener, myObjectInstance);
* evt.raiseEvent('1', '2');
* evt.removeEventListener(MyObject.prototype.myListener);
*/
function Event() {
this._listeners = [];
this._scopes = [];
this._toRemove = [];
this._insideRaiseEvent = false;
}
defineProperties.defineProperties(Event.prototype, {
/**
* The number of listeners currently subscribed to the event.
* @memberof Event.prototype
* @type {Number}
* @readonly
*/
numberOfListeners : {
get : function() {
return this._listeners.length - this._toRemove.length;
}
}
});
/**
* Registers a callback function to be executed whenever the event is raised.
* An optional scope can be provided to serve as the this
pointer
* in which the function will execute.
*
* @param {Function} listener The function to be executed when the event is raised.
* @param {Object} [scope] An optional object scope to serve as the this
* pointer in which the listener function will execute.
* @returns {Event~RemoveCallback} A function that will remove this event listener when invoked.
*
* @see Event#raiseEvent
* @see Event#removeEventListener
*/
Event.prototype.addEventListener = function(listener, scope) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.func('listener', listener);
//>>includeEnd('debug');
this._listeners.push(listener);
this._scopes.push(scope);
var event = this;
return function() {
event.removeEventListener(listener, scope);
};
};
/**
* Unregisters a previously registered callback.
*
* @param {Function} listener The function to be unregistered.
* @param {Object} [scope] The scope that was originally passed to addEventListener.
* @returns {Boolean} true
if the listener was removed; false
if the listener and scope are not registered with the event.
*
* @see Event#addEventListener
* @see Event#raiseEvent
*/
Event.prototype.removeEventListener = function(listener, scope) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.func('listener', listener);
//>>includeEnd('debug');
var listeners = this._listeners;
var scopes = this._scopes;
var index = -1;
for (var i = 0; i < listeners.length; i++) {
if (listeners[i] === listener && scopes[i] === scope) {
index = i;
break;
}
}
if (index !== -1) {
if (this._insideRaiseEvent) {
//In order to allow removing an event subscription from within
//a callback, we don't actually remove the items here. Instead
//remember the index they are at and undefined their value.
this._toRemove.push(index);
listeners[index] = undefined;
scopes[index] = undefined;
} else {
listeners.splice(index, 1);
scopes.splice(index, 1);
}
return true;
}
return false;
};
function compareNumber(a,b) {
return b - a;
}
/**
* Raises the event by calling each registered listener with all supplied arguments.
*
* @param {*} arguments This method takes any number of parameters and passes them through to the listener functions.
*
* @see Event#addEventListener
* @see Event#removeEventListener
*/
Event.prototype.raiseEvent = function() {
this._insideRaiseEvent = true;
var i;
var listeners = this._listeners;
var scopes = this._scopes;
var length = listeners.length;
for (i = 0; i < length; i++) {
var listener = listeners[i];
if (defined.defined(listener)) {
listeners[i].apply(scopes[i], arguments);
}
}
//Actually remove items removed in removeEventListener.
var toRemove = this._toRemove;
length = toRemove.length;
if (length > 0) {
toRemove.sort(compareNumber);
for (i = 0; i < length; i++) {
var index = toRemove[i];
listeners.splice(index, 1);
scopes.splice(index, 1);
}
toRemove.length = 0;
}
this._insideRaiseEvent = false;
};
/**
* Array implementation of a heap.
*
* @alias Heap
* @constructor
* @private
*
* @param {Object} options Object with the following properties:
* @param {Heap~ComparatorCallback} options.comparator The comparator to use for the heap. If comparator(a, b) is less than 0, sort a to a lower index than b, otherwise sort to a higher index.
*/
function Heap(options) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('options', options);
Check.Check.defined('options.comparator', options.comparator);
//>>includeEnd('debug');
this._comparator = options.comparator;
this._array = [];
this._length = 0;
this._maximumLength = undefined;
}
defineProperties.defineProperties(Heap.prototype, {
/**
* Gets the length of the heap.
*
* @memberof Heap.prototype
*
* @type {Number}
* @readonly
*/
length : {
get : function() {
return this._length;
}
},
/**
* Gets the internal array.
*
* @memberof Heap.prototype
*
* @type {Array}
* @readonly
*/
internalArray : {
get : function() {
return this._array;
}
},
/**
* Gets and sets the maximum length of the heap.
*
* @memberof Heap.prototype
*
* @type {Number}
*/
maximumLength : {
get : function() {
return this._maximumLength;
},
set : function(value) {
this._maximumLength = value;
if (this._length > value && value > 0) {
this._length = value;
this._array.length = value;
}
}
},
/**
* The comparator to use for the heap. If comparator(a, b) is less than 0, sort a to a lower index than b, otherwise sort to a higher index.
*
* @memberof Heap.prototype
*
* @type {Heap~ComparatorCallback}
*/
comparator : {
get : function() {
return this._comparator;
}
}
});
function swap(array, a, b) {
var temp = array[a];
array[a] = array[b];
array[b] = temp;
}
/**
* Resizes the internal array of the heap.
*
* @param {Number} [length] The length to resize internal array to. Defaults to the current length of the heap.
*/
Heap.prototype.reserve = function(length) {
length = defaultValue.defaultValue(length, this._length);
this._array.length = length;
};
/**
* Update the heap so that index and all descendants satisfy the heap property.
*
* @param {Number} [index=0] The starting index to heapify from.
*/
Heap.prototype.heapify = function(index) {
index = defaultValue.defaultValue(index, 0);
var length = this._length;
var comparator = this._comparator;
var array = this._array;
var candidate = -1;
var inserting = true;
while (inserting) {
var right = 2 * (index + 1);
var left = right - 1;
if (left < length && comparator(array[left], array[index]) < 0) {
candidate = left;
} else {
candidate = index;
}
if (right < length && comparator(array[right], array[candidate]) < 0) {
candidate = right;
}
if (candidate !== index) {
swap(array, candidate, index);
index = candidate;
} else {
inserting = false;
}
}
};
/**
* Resort the heap.
*/
Heap.prototype.resort = function() {
var length = this._length;
for (var i = Math.ceil(length / 2); i >= 0; --i) {
this.heapify(i);
}
};
/**
* Insert an element into the heap. If the length would grow greater than maximumLength
* of the heap, extra elements are removed.
*
* @param {*} element The element to insert
*
* @return {*} The element that was removed from the heap if the heap is at full capacity.
*/
Heap.prototype.insert = function(element) {
//>>includeStart('debug', pragmas.debug);
Check.Check.defined('element', element);
//>>includeEnd('debug');
var array = this._array;
var comparator = this._comparator;
var maximumLength = this._maximumLength;
var index = this._length++;
if (index < array.length) {
array[index] = element;
} else {
array.push(element);
}
while (index !== 0) {
var parent = Math.floor((index - 1) / 2);
if (comparator(array[index], array[parent]) < 0) {
swap(array, index, parent);
index = parent;
} else {
break;
}
}
var removedElement;
if (defined.defined(maximumLength) && (this._length > maximumLength)) {
removedElement = array[maximumLength];
this._length = maximumLength;
}
return removedElement;
};
/**
* Remove the element specified by index from the heap and return it.
*
* @param {Number} [index=0] The index to remove.
* @returns {*} The specified element of the heap.
*/
Heap.prototype.pop = function(index) {
index = defaultValue.defaultValue(index, 0);
if (this._length === 0) {
return undefined;
}
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.number.lessThan('index', index, this._length);
//>>includeEnd('debug');
var array = this._array;
var root = array[index];
swap(array, index, --this._length);
this.heapify(index);
return root;
};
function sortRequests(a, b) {
return a.priority - b.priority;
}
var statistics = {
numberOfAttemptedRequests : 0,
numberOfActiveRequests : 0,
numberOfCancelledRequests : 0,
numberOfCancelledActiveRequests : 0,
numberOfFailedRequests : 0,
numberOfActiveRequestsEver : 0,
lastNumberOfActiveRequests : 0
};
var priorityHeapLength = 20;
var requestHeap = new Heap({
comparator : sortRequests
});
requestHeap.maximumLength = priorityHeapLength;
requestHeap.reserve(priorityHeapLength);
var activeRequests = [];
var numberOfActiveRequestsByServer = {};
var pageUri = typeof document !== 'undefined' ? new URI(document.location.href) : new URI();
var requestCompletedEvent = new Event();
/**
* Tracks the number of active requests and prioritizes incoming requests.
*
* @exports RequestScheduler
*
* @private
*/
function RequestScheduler() {
}
/**
* The maximum number of simultaneous active requests. Un-throttled requests do not observe this limit.
* @type {Number}
* @default 50
*/
RequestScheduler.maximumRequests = 50;
/**
* The maximum number of simultaneous active requests per server. Un-throttled requests or servers specifically
* listed in requestsByServer do not observe this limit.
* @type {Number}
* @default 6
*/
RequestScheduler.maximumRequestsPerServer = 6;
/**
* A per serverKey list of overrides to use for throttling instead of maximumRequestsPerServer
*/
RequestScheduler.requestsByServer = {
'api.cesium.com:443': 18,
'assets.cesium.com:443': 18
};
/**
* Specifies if the request scheduler should throttle incoming requests, or let the browser queue requests under its control.
* @type {Boolean}
* @default true
*/
RequestScheduler.throttleRequests = true;
/**
* When true, log statistics to the console every frame
* @type {Boolean}
* @default false
*/
RequestScheduler.debugShowStatistics = false;
/**
* An event that's raised when a request is completed. Event handlers are passed
* the error object if the request fails.
*
* @type {Event}
* @default Event()
*/
RequestScheduler.requestCompletedEvent = requestCompletedEvent;
defineProperties.defineProperties(RequestScheduler, {
/**
* Returns the statistics used by the request scheduler.
*
* @memberof RequestScheduler
*
* @type Object
* @readonly
*/
statistics : {
get : function() {
return statistics;
}
},
/**
* The maximum size of the priority heap. This limits the number of requests that are sorted by priority. Only applies to requests that are not yet active.
*
* @memberof RequestScheduler
*
* @type {Number}
* @default 20
*/
priorityHeapLength : {
get : function() {
return priorityHeapLength;
},
set : function(value) {
// If the new length shrinks the heap, need to cancel some of the requests.
// Since this value is not intended to be tweaked regularly it is fine to just cancel the high priority requests.
if (value < priorityHeapLength) {
while (requestHeap.length > value) {
var request = requestHeap.pop();
cancelRequest(request);
}
}
priorityHeapLength = value;
requestHeap.maximumLength = value;
requestHeap.reserve(value);
}
}
});
function updatePriority(request) {
if (defined.defined(request.priorityFunction)) {
request.priority = request.priorityFunction();
}
}
function serverHasOpenSlots(serverKey) {
var maxRequests = defaultValue.defaultValue(RequestScheduler.requestsByServer[serverKey], RequestScheduler.maximumRequestsPerServer);
return numberOfActiveRequestsByServer[serverKey] < maxRequests;
}
function issueRequest(request) {
if (request.state === RequestState$1.UNISSUED) {
request.state = RequestState$1.ISSUED;
request.deferred = when.when.defer();
}
return request.deferred.promise;
}
function getRequestReceivedFunction(request) {
return function(results) {
if (request.state === RequestState$1.CANCELLED) {
// If the data request comes back but the request is cancelled, ignore it.
return;
}
--statistics.numberOfActiveRequests;
--numberOfActiveRequestsByServer[request.serverKey];
requestCompletedEvent.raiseEvent();
request.state = RequestState$1.RECEIVED;
request.deferred.resolve(results);
};
}
function getRequestFailedFunction(request) {
return function(error) {
if (request.state === RequestState$1.CANCELLED) {
// If the data request comes back but the request is cancelled, ignore it.
return;
}
++statistics.numberOfFailedRequests;
--statistics.numberOfActiveRequests;
--numberOfActiveRequestsByServer[request.serverKey];
requestCompletedEvent.raiseEvent(error);
request.state = RequestState$1.FAILED;
request.deferred.reject(error);
};
}
function startRequest(request) {
var promise = issueRequest(request);
request.state = RequestState$1.ACTIVE;
activeRequests.push(request);
++statistics.numberOfActiveRequests;
++statistics.numberOfActiveRequestsEver;
++numberOfActiveRequestsByServer[request.serverKey];
request.requestFunction().then(getRequestReceivedFunction(request)).otherwise(getRequestFailedFunction(request));
return promise;
}
function cancelRequest(request) {
var active = request.state === RequestState$1.ACTIVE;
request.state = RequestState$1.CANCELLED;
++statistics.numberOfCancelledRequests;
request.deferred.reject();
if (active) {
--statistics.numberOfActiveRequests;
--numberOfActiveRequestsByServer[request.serverKey];
++statistics.numberOfCancelledActiveRequests;
}
if (defined.defined(request.cancelFunction)) {
request.cancelFunction();
}
}
/**
* Sort requests by priority and start requests.
*/
RequestScheduler.update = function() {
var i;
var request;
// Loop over all active requests. Cancelled, failed, or received requests are removed from the array to make room for new requests.
var removeCount = 0;
var activeLength = activeRequests.length;
for (i = 0; i < activeLength; ++i) {
request = activeRequests[i];
if (request.cancelled) {
// Request was explicitly cancelled
cancelRequest(request);
}
if (request.state !== RequestState$1.ACTIVE) {
// Request is no longer active, remove from array
++removeCount;
continue;
}
if (removeCount > 0) {
// Shift back to fill in vacated slots from completed requests
activeRequests[i - removeCount] = request;
}
}
activeRequests.length -= removeCount;
// Update priority of issued requests and resort the heap
var issuedRequests = requestHeap.internalArray;
var issuedLength = requestHeap.length;
for (i = 0; i < issuedLength; ++i) {
updatePriority(issuedRequests[i]);
}
requestHeap.resort();
// Get the number of open slots and fill with the highest priority requests.
// Un-throttled requests are automatically added to activeRequests, so activeRequests.length may exceed maximumRequests
var openSlots = Math.max(RequestScheduler.maximumRequests - activeRequests.length, 0);
var filledSlots = 0;
while (filledSlots < openSlots && requestHeap.length > 0) {
// Loop until all open slots are filled or the heap becomes empty
request = requestHeap.pop();
if (request.cancelled) {
// Request was explicitly cancelled
cancelRequest(request);
continue;
}
if (request.throttleByServer && !serverHasOpenSlots(request.serverKey)) {
// Open slots are available, but the request is throttled by its server. Cancel and try again later.
cancelRequest(request);
continue;
}
startRequest(request);
++filledSlots;
}
updateStatistics();
};
/**
* Get the server key from a given url.
*
* @param {String} url The url.
* @returns {String} The server key.
*/
RequestScheduler.getServerKey = function(url) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.string('url', url);
//>>includeEnd('debug');
var uri = new URI(url).resolve(pageUri);
uri.normalize();
var serverKey = uri.authority;
if (!/:/.test(serverKey)) {
// If the authority does not contain a port number, add port 443 for https or port 80 for http
serverKey = serverKey + ':' + (uri.scheme === 'https' ? '443' : '80');
}
var length = numberOfActiveRequestsByServer[serverKey];
if (!defined.defined(length)) {
numberOfActiveRequestsByServer[serverKey] = 0;
}
return serverKey;
};
/**
* Issue a request. If request.throttle is false, the request is sent immediately. Otherwise the request will be
* queued and sorted by priority before being sent.
*
* @param {Request} request The request object.
*
* @returns {Promise|undefined} A Promise for the requested data, or undefined if this request does not have high enough priority to be issued.
*/
RequestScheduler.request = function(request) {
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.object('request', request);
Check.Check.typeOf.string('request.url', request.url);
Check.Check.typeOf.func('request.requestFunction', request.requestFunction);
//>>includeEnd('debug');
if (isDataUri(request.url) || isBlobUri(request.url)) {
requestCompletedEvent.raiseEvent();
request.state = RequestState$1.RECEIVED;
return request.requestFunction();
}
++statistics.numberOfAttemptedRequests;
if (!defined.defined(request.serverKey)) {
request.serverKey = RequestScheduler.getServerKey(request.url);
}
if (request.throttleByServer && !serverHasOpenSlots(request.serverKey)) {
// Server is saturated. Try again later.
return undefined;
}
if (!RequestScheduler.throttleRequests || !request.throttle) {
return startRequest(request);
}
if (activeRequests.length >= RequestScheduler.maximumRequests) {
// Active requests are saturated. Try again later.
return undefined;
}
// Insert into the priority heap and see if a request was bumped off. If this request is the lowest
// priority it will be returned.
updatePriority(request);
var removedRequest = requestHeap.insert(request);
if (defined.defined(removedRequest)) {
if (removedRequest === request) {
// Request does not have high enough priority to be issued
return undefined;
}
// A previously issued request has been bumped off the priority heap, so cancel it
cancelRequest(removedRequest);
}
return issueRequest(request);
};
function updateStatistics() {
if (!RequestScheduler.debugShowStatistics) {
return;
}
if (statistics.numberOfActiveRequests === 0 && statistics.lastNumberOfActiveRequests > 0) {
if (statistics.numberOfAttemptedRequests > 0) {
console.log('Number of attempted requests: ' + statistics.numberOfAttemptedRequests);
statistics.numberOfAttemptedRequests = 0;
}
if (statistics.numberOfCancelledRequests > 0) {
console.log('Number of cancelled requests: ' + statistics.numberOfCancelledRequests);
statistics.numberOfCancelledRequests = 0;
}
if (statistics.numberOfCancelledActiveRequests > 0) {
console.log('Number of cancelled active requests: ' + statistics.numberOfCancelledActiveRequests);
statistics.numberOfCancelledActiveRequests = 0;
}
if (statistics.numberOfFailedRequests > 0) {
console.log('Number of failed requests: ' + statistics.numberOfFailedRequests);
statistics.numberOfFailedRequests = 0;
}
}
statistics.lastNumberOfActiveRequests = statistics.numberOfActiveRequests;
}
/**
* For testing only. Clears any requests that may not have completed from previous tests.
*
* @private
*/
RequestScheduler.clearForSpecs = function() {
while (requestHeap.length > 0) {
var request = requestHeap.pop();
cancelRequest(request);
}
var length = activeRequests.length;
for (var i = 0; i < length; ++i) {
cancelRequest(activeRequests[i]);
}
activeRequests.length = 0;
numberOfActiveRequestsByServer = {};
// Clear stats
statistics.numberOfAttemptedRequests = 0;
statistics.numberOfActiveRequests = 0;
statistics.numberOfCancelledRequests = 0;
statistics.numberOfCancelledActiveRequests = 0;
statistics.numberOfFailedRequests = 0;
statistics.numberOfActiveRequestsEver = 0;
statistics.lastNumberOfActiveRequests = 0;
};
/**
* For testing only.
*
* @private
*/
RequestScheduler.numberOfActiveRequestsByServer = function(serverKey) {
return numberOfActiveRequestsByServer[serverKey];
};
/**
* For testing only.
*
* @private
*/
RequestScheduler.requestHeap = requestHeap;
/**
* A singleton that contains all of the servers that are trusted. Credentials will be sent with
* any requests to these servers.
*
* @exports TrustedServers
*
* @see {@link http://www.w3.org/TR/cors/|Cross-Origin Resource Sharing}
*/
var TrustedServers = {};
var _servers = {};
/**
* Adds a trusted server to the registry
*
* @param {String} host The host to be added.
* @param {Number} port The port used to access the host.
*
* @example
* // Add a trusted server
* TrustedServers.add('my.server.com', 80);
*/
TrustedServers.add = function(host, port) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(host)) {
throw new Check.DeveloperError('host is required.');
}
if (!defined.defined(port) || port <= 0) {
throw new Check.DeveloperError('port is required to be greater than 0.');
}
//>>includeEnd('debug');
var authority = host.toLowerCase() + ':' + port;
if (!defined.defined(_servers[authority])) {
_servers[authority] = true;
}
};
/**
* Removes a trusted server from the registry
*
* @param {String} host The host to be removed.
* @param {Number} port The port used to access the host.
*
* @example
* // Remove a trusted server
* TrustedServers.remove('my.server.com', 80);
*/
TrustedServers.remove = function(host, port) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(host)) {
throw new Check.DeveloperError('host is required.');
}
if (!defined.defined(port) || port <= 0) {
throw new Check.DeveloperError('port is required to be greater than 0.');
}
//>>includeEnd('debug');
var authority = host.toLowerCase() + ':' + port;
if (defined.defined(_servers[authority])) {
delete _servers[authority];
}
};
function getAuthority(url) {
var uri = new URI(url);
uri.normalize();
// Removes username:password@ so we just have host[:port]
var authority = uri.getAuthority();
if (!defined.defined(authority)) {
return undefined; // Relative URL
}
if (authority.indexOf('@') !== -1) {
var parts = authority.split('@');
authority = parts[1];
}
// If the port is missing add one based on the scheme
if (authority.indexOf(':') === -1) {
var scheme = uri.getScheme();
if (!defined.defined(scheme)) {
scheme = window.location.protocol;
scheme = scheme.substring(0, scheme.length-1);
}
if (scheme === 'http') {
authority += ':80';
} else if (scheme === 'https') {
authority += ':443';
} else {
return undefined;
}
}
return authority;
}
/**
* Tests whether a server is trusted or not. The server must have been added with the port if it is included in the url.
*
* @param {String} url The url to be tested against the trusted list
*
* @returns {boolean} Returns true if url is trusted, false otherwise.
*
* @example
* // Add server
* TrustedServers.add('my.server.com', 81);
*
* // Check if server is trusted
* if (TrustedServers.contains('https://my.server.com:81/path/to/file.png')) {
* // my.server.com:81 is trusted
* }
* if (TrustedServers.contains('https://my.server.com/path/to/file.png')) {
* // my.server.com isn't trusted
* }
*/
TrustedServers.contains = function(url) {
//>>includeStart('debug', pragmas.debug);
if (!defined.defined(url)) {
throw new Check.DeveloperError('url is required.');
}
//>>includeEnd('debug');
var authority = getAuthority(url);
if (defined.defined(authority) && defined.defined(_servers[authority])) {
return true;
}
return false;
};
/**
* Clears the registry
*
* @example
* // Remove a trusted server
* TrustedServers.clear();
*/
TrustedServers.clear = function() {
_servers = {};
};
var xhrBlobSupported = (function() {
try {
var xhr = new XMLHttpRequest();
xhr.open('GET', '#', true);
xhr.responseType = 'blob';
return xhr.responseType === 'blob';
} catch (e) {
return false;
}
})();
/**
* Parses a query string and returns the object equivalent.
*
* @param {Uri} uri The Uri with a query object.
* @param {Resource} resource The Resource that will be assigned queryParameters.
* @param {Boolean} merge If true, we'll merge with the resource's existing queryParameters. Otherwise they will be replaced.
* @param {Boolean} preserveQueryParameters If true duplicate parameters will be concatenated into an array. If false, keys in uri will take precedence.
*
* @private
*/
function parseQuery(uri, resource, merge, preserveQueryParameters) {
var queryString = uri.query;
if (!defined.defined(queryString) || (queryString.length === 0)) {
return {};
}
var query;
// Special case we run into where the querystring is just a string, not key/value pairs
if (queryString.indexOf('=') === -1) {
var result = {};
result[queryString] = undefined;
query = result;
} else {
query = queryToObject(queryString);
}
if (merge) {
resource._queryParameters = combineQueryParameters(query, resource._queryParameters, preserveQueryParameters);
} else {
resource._queryParameters = query;
}
uri.query = undefined;
}
/**
* Converts a query object into a string.
*
* @param {Uri} uri The Uri object that will have the query object set.
* @param {Resource} resource The resource that has queryParameters
*
* @private
*/
function stringifyQuery(uri, resource) {
var queryObject = resource._queryParameters;
var keys = Object.keys(queryObject);
// We have 1 key with an undefined value, so this is just a string, not key/value pairs
if (keys.length === 1 && !defined.defined(queryObject[keys[0]])) {
uri.query = keys[0];
} else {
uri.query = objectToQuery(queryObject);
}
}
/**
* Clones a value if it is defined, otherwise returns the default value
*
* @param {*} [val] The value to clone.
* @param {*} [defaultVal] The default value.
*
* @returns {*} A clone of val or the defaultVal.
*
* @private
*/
function defaultClone(val, defaultVal) {
if (!defined.defined(val)) {
return defaultVal;
}
return defined.defined(val.clone) ? val.clone() : clone(val);
}
/**
* Checks to make sure the Resource isn't already being requested.
*
* @param {Request} request The request to check.
*
* @private
*/
function checkAndResetRequest(request) {
if (request.state === RequestState$1.ISSUED || request.state === RequestState$1.ACTIVE) {
throw new RuntimeError.RuntimeError('The Resource is already being fetched.');
}
request.state = RequestState$1.UNISSUED;
request.deferred = undefined;
}
/**
* This combines a map of query parameters.
*
* @param {Object} q1 The first map of query parameters. Values in this map will take precedence if preserveQueryParameters is false.
* @param {Object} q2 The second map of query parameters.
* @param {Boolean} preserveQueryParameters If true duplicate parameters will be concatenated into an array. If false, keys in q1 will take precedence.
*
* @returns {Object} The combined map of query parameters.
*
* @example
* var q1 = {
* a: 1,
* b: 2
* };
* var q2 = {
* a: 3,
* c: 4
* };
* var q3 = {
* b: [5, 6],
* d: 7
* }
*
* // Returns
* // {
* // a: [1, 3],
* // b: 2,
* // c: 4
* // };
* combineQueryParameters(q1, q2, true);
*
* // Returns
* // {
* // a: 1,
* // b: 2,
* // c: 4
* // };
* combineQueryParameters(q1, q2, false);
*
* // Returns
* // {
* // a: 1,
* // b: [2, 5, 6],
* // d: 7
* // };
* combineQueryParameters(q1, q3, true);
*
* // Returns
* // {
* // a: 1,
* // b: 2,
* // d: 7
* // };
* combineQueryParameters(q1, q3, false);
*
* @private
*/
function combineQueryParameters(q1, q2, preserveQueryParameters) {
if (!preserveQueryParameters) {
return combine(q1, q2);
}
var result = clone(q1, true);
for (var param in q2) {
if (q2.hasOwnProperty(param)) {
var value = result[param];
var q2Value = q2[param];
if (defined.defined(value)) {
if (!Array.isArray(value)) {
value = result[param] = [value];
}
result[param] = value.concat(q2Value);
} else {
result[param] = Array.isArray(q2Value) ? q2Value.slice() : q2Value;
}
}
}
return result;
}
/**
* A resource that includes the location and any other parameters we need to retrieve it or create derived resources. It also provides the ability to retry requests.
*
* @alias Resource
* @constructor
*
* @param {String|Object} options A url or an object with the following properties
* @param {String} options.url The url of the resource.
* @param {Object} [options.queryParameters] An object containing query parameters that will be sent when retrieving the resource.
* @param {Object} [options.templateValues] Key/Value pairs that are used to replace template values (eg. {x}).
* @param {Object} [options.headers={}] Additional HTTP headers that will be sent.
* @param {DefaultProxy} [options.proxy] A proxy to be used when loading the resource.
* @param {Resource~RetryCallback} [options.retryCallback] The Function to call when a request for this resource fails. If it returns true, the request will be retried.
* @param {Number} [options.retryAttempts=0] The number of times the retryCallback should be called before giving up.
* @param {Request} [options.request] A Request object that will be used. Intended for internal use only.
*
* @example
* function refreshTokenRetryCallback(resource, error) {
* if (error.statusCode === 403) {
* // 403 status code means a new token should be generated
* return getNewAccessToken()
* .then(function(token) {
* resource.queryParameters.access_token = token;
* return true;
* })
* .otherwise(function() {
* return false;
* });
* }
*
* return false;
* }
*
* var resource = new Resource({
* url: 'http://server.com/path/to/resource.json',
* proxy: new DefaultProxy('/proxy/'),
* headers: {
* 'X-My-Header': 'valueOfHeader'
* },
* queryParameters: {
* 'access_token': '123-435-456-000'
* },
* retryCallback: refreshTokenRetryCallback,
* retryAttempts: 1
* });
*/
function Resource(options) {
options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);
if (typeof options === 'string') {
options = {
url: options
};
}
//>>includeStart('debug', pragmas.debug);
Check.Check.typeOf.string('options.url', options.url);
//>>includeEnd('debug');
this._url = undefined;
this._templateValues = defaultClone(options.templateValues, {});
this._queryParameters = defaultClone(options.queryParameters, {});
/**
* Additional HTTP headers that will be sent with the request.
*
* @type {Object}
*/
this.headers = defaultClone(options.headers, {});
/**
* A Request object that will be used. Intended for internal use only.
*
* @type {Request}
*/
this.request = defaultValue.defaultValue(options.request, new Request());
/**
* A proxy to be used when loading the resource.
*
* @type {DefaultProxy}
*/
this.proxy = options.proxy;
/**
* Function to call when a request for this resource fails. If it returns true or a Promise that resolves to true, the request will be retried.
*
* @type {Function}
*/
this.retryCallback = options.retryCallback;
/**
* The number of times the retryCallback should be called before giving up.
*
* @type {Number}
*/
this.retryAttempts = defaultValue.defaultValue(options.retryAttempts, 0);
this._retryCount = 0;
var uri = new URI(options.url);
parseQuery(uri, this, true, true);
// Remove the fragment as it's not sent with a request
uri.fragment = undefined;
this._url = uri.toString();
}
/**
* A helper function to create a resource depending on whether we have a String or a Resource
*
* @param {Resource|String} resource A Resource or a String to use when creating a new Resource.
*
* @returns {Resource} If resource is a String, a Resource constructed with the url and options. Otherwise the resource parameter is returned.
*
* @private
*/
Resource.createIfNeeded = function(resource) {
if (resource instanceof Resource) {
// Keep existing request object. This function is used internally to duplicate a Resource, so that it can't
// be modified outside of a class that holds it (eg. an imagery or terrain provider). Since the Request objects
// are managed outside of the providers, by the tile loading code, we want to keep the request property the same so if it is changed
// in the underlying tiling code the requests for this resource will use it.
return resource.getDerivedResource({
request: resource.request
});
}
if (typeof resource !== 'string') {
return resource;
}
return new Resource({
url: resource
});
};
var supportsImageBitmapOptionsPromise;
/**
* A helper function to check whether createImageBitmap supports passing ImageBitmapOptions.
*
* @returns {Promiserequest.throttle
is true and the request does not have high enough priority.
*
* @example
* // load a single URL asynchronously
* resource.fetchArrayBuffer().then(function(arrayBuffer) {
* // use the data
* }).otherwise(function(error) {
* // an error occurred
* });
*
* @see {@link http://www.w3.org/TR/cors/|Cross-Origin Resource Sharing}
* @see {@link http://wiki.commonjs.org/wiki/Promises/A|CommonJS Promises/A}
*/
Resource.prototype.fetchArrayBuffer = function () {
return this.fetch({
responseType : 'arraybuffer'
});
};
/**
* Creates a Resource and calls fetchArrayBuffer() on it.
*
* @param {String|Object} options A url or an object with the following properties
* @param {String} options.url The url of the resource.
* @param {Object} [options.queryParameters] An object containing query parameters that will be sent when retrieving the resource.
* @param {Object} [options.templateValues] Key/Value pairs that are used to replace template values (eg. {x}).
* @param {Object} [options.headers={}] Additional HTTP headers that will be sent.
* @param {DefaultProxy} [options.proxy] A proxy to be used when loading the resource.
* @param {Resource~RetryCallback} [options.retryCallback] The Function to call when a request for this resource fails. If it returns true, the request will be retried.
* @param {Number} [options.retryAttempts=0] The number of times the retryCallback should be called before giving up.
* @param {Request} [options.request] A Request object that will be used. Intended for internal use only.
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*/
Resource.fetchArrayBuffer = function (options) {
var resource = new Resource(options);
return resource.fetchArrayBuffer();
};
/**
* Asynchronously loads the given resource as a blob. Returns a promise that will resolve to
* a Blob once loaded, or reject if the resource failed to load. The data is loaded
* using XMLHttpRequest, which means that in order to make requests to another origin,
* the server must have Cross-Origin Resource Sharing (CORS) headers enabled.
*
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*
* @example
* // load a single URL asynchronously
* resource.fetchBlob().then(function(blob) {
* // use the data
* }).otherwise(function(error) {
* // an error occurred
* });
*
* @see {@link http://www.w3.org/TR/cors/|Cross-Origin Resource Sharing}
* @see {@link http://wiki.commonjs.org/wiki/Promises/A|CommonJS Promises/A}
*/
Resource.prototype.fetchBlob = function () {
return this.fetch({
responseType : 'blob'
});
};
/**
* Creates a Resource and calls fetchBlob() on it.
*
* @param {String|Object} options A url or an object with the following properties
* @param {String} options.url The url of the resource.
* @param {Object} [options.queryParameters] An object containing query parameters that will be sent when retrieving the resource.
* @param {Object} [options.templateValues] Key/Value pairs that are used to replace template values (eg. {x}).
* @param {Object} [options.headers={}] Additional HTTP headers that will be sent.
* @param {DefaultProxy} [options.proxy] A proxy to be used when loading the resource.
* @param {Resource~RetryCallback} [options.retryCallback] The Function to call when a request for this resource fails. If it returns true, the request will be retried.
* @param {Number} [options.retryAttempts=0] The number of times the retryCallback should be called before giving up.
* @param {Request} [options.request] A Request object that will be used. Intended for internal use only.
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*/
Resource.fetchBlob = function (options) {
var resource = new Resource(options);
return resource.fetchBlob();
};
/**
* Asynchronously loads the given image resource. Returns a promise that will resolve to
* an {@link https://developer.mozilla.org/en-US/docs/Web/API/ImageBitmap|ImageBitmap} if preferImageBitmap
is true and the browser supports createImageBitmap
or otherwise an
* {@link https://developer.mozilla.org/en-US/docs/Web/API/HTMLImageElement|Image} once loaded, or reject if the image failed to load.
*
* @param {Object} [options] An object with the following properties.
* @param {Boolean} [options.preferBlob=false] If true, we will load the image via a blob.
* @param {Boolean} [options.preferImageBitmap=false] If true, image will be decoded during fetch and an ImageBitmap
is returned.
* @param {Boolean} [options.flipY=false] If true, image will be vertically flipped during decode. Only applies if the browser supports createImageBitmap
.
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*
*
* @example
* // load a single image asynchronously
* resource.fetchImage().then(function(image) {
* // use the loaded image
* }).otherwise(function(error) {
* // an error occurred
* });
*
* // load several images in parallel
* when.all([resource1.fetchImage(), resource2.fetchImage()]).then(function(images) {
* // images is an array containing all the loaded images
* });
*
* @see {@link http://www.w3.org/TR/cors/|Cross-Origin Resource Sharing}
* @see {@link http://wiki.commonjs.org/wiki/Promises/A|CommonJS Promises/A}
*/
Resource.prototype.fetchImage = function (options) {
options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);
var preferImageBitmap = defaultValue.defaultValue(options.preferImageBitmap, false);
var preferBlob = defaultValue.defaultValue(options.preferBlob, false);
var flipY = defaultValue.defaultValue(options.flipY, false);
checkAndResetRequest(this.request);
// We try to load the image normally if
// 1. Blobs aren't supported
// 2. It's a data URI
// 3. It's a blob URI
// 4. It doesn't have request headers and we preferBlob is false
if (!xhrBlobSupported || this.isDataUri || this.isBlobUri || (!this.hasHeaders && !preferBlob)) {
return fetchImage({
resource: this,
flipY: flipY,
preferImageBitmap: preferImageBitmap
});
}
var blobPromise = this.fetchBlob();
if (!defined.defined(blobPromise)) {
return;
}
var supportsImageBitmap;
var useImageBitmap;
var generatedBlobResource;
var generatedBlob;
return Resource.supportsImageBitmapOptions()
.then(function(result) {
supportsImageBitmap = result;
useImageBitmap = supportsImageBitmap && preferImageBitmap;
return blobPromise;
})
.then(function(blob) {
if (!defined.defined(blob)) {
return;
}
generatedBlob = blob;
if (useImageBitmap) {
return Resource.createImageBitmapFromBlob(blob, {
flipY: flipY,
premultiplyAlpha: false
});
}
var blobUrl = window.URL.createObjectURL(blob);
generatedBlobResource = new Resource({
url: blobUrl
});
return fetchImage({
resource: generatedBlobResource,
flipY: flipY,
preferImageBitmap: false
});
})
.then(function(image) {
if (!defined.defined(image)) {
return;
}
// The blob object may be needed for use by a TileDiscardPolicy,
// so attach it to the image.
image.blob = generatedBlob;
if (useImageBitmap) {
return image;
}
window.URL.revokeObjectURL(generatedBlobResource.url);
return image;
})
.otherwise(function(error) {
if (defined.defined(generatedBlobResource)) {
window.URL.revokeObjectURL(generatedBlobResource.url);
}
// If the blob load succeeded but the image decode failed, attach the blob
// to the error object for use by a TileDiscardPolicy.
// In particular, BingMapsImageryProvider uses this to detect the
// zero-length response that is returned when a tile is not available.
error.blob = generatedBlob;
return when.when.reject(error);
});
};
/**
* Fetches an image and returns a promise to it.
*
* @param {Object} [options] An object with the following properties.
* @param {Resource} [options.resource] Resource object that points to an image to fetch.
* @param {Boolean} [options.preferImageBitmap] If true, image will be decoded during fetch and an ImageBitmap
is returned.
* @param {Boolean} [options.flipY] If true, image will be vertically flipped during decode. Only applies if the browser supports createImageBitmap
.
*
* @private
*/
function fetchImage(options) {
var resource = options.resource;
var flipY = options.flipY;
var preferImageBitmap = options.preferImageBitmap;
var request = resource.request;
request.url = resource.url;
request.requestFunction = function() {
var url = resource.url;
var crossOrigin = false;
// data URIs can't have crossorigin set.
if (!resource.isDataUri && !resource.isBlobUri) {
crossOrigin = resource.isCrossOriginUrl;
}
var deferred = when.when.defer();
Resource._Implementations.createImage(url, crossOrigin, deferred, flipY, preferImageBitmap);
return deferred.promise;
};
var promise = RequestScheduler.request(request);
if (!defined.defined(promise)) {
return;
}
return promise
.otherwise(function(e) {
// Don't retry cancelled or otherwise aborted requests
if (request.state !== RequestState$1.FAILED) {
return when.when.reject(e);
}
return resource.retryOnError(e)
.then(function(retry) {
if (retry) {
// Reset request so it can try again
request.state = RequestState$1.UNISSUED;
request.deferred = undefined;
return fetchImage({
resource: resource,
flipY: flipY,
preferImageBitmap: preferImageBitmap
});
}
return when.when.reject(e);
});
});
}
/**
* Creates a Resource and calls fetchImage() on it.
*
* @param {String|Object} options A url or an object with the following properties
* @param {String} options.url The url of the resource.
* @param {Object} [options.queryParameters] An object containing query parameters that will be sent when retrieving the resource.
* @param {Object} [options.templateValues] Key/Value pairs that are used to replace template values (eg. {x}).
* @param {Object} [options.headers={}] Additional HTTP headers that will be sent.
* @param {DefaultProxy} [options.proxy] A proxy to be used when loading the resource.
* @param {Boolean} [options.flipY=false] Whether to vertically flip the image during fetch and decode. Only applies when requesting an image and the browser supports createImageBitmap
.
* @param {Resource~RetryCallback} [options.retryCallback] The Function to call when a request for this resource fails. If it returns true, the request will be retried.
* @param {Number} [options.retryAttempts=0] The number of times the retryCallback should be called before giving up.
* @param {Request} [options.request] A Request object that will be used. Intended for internal use only.
* @param {Boolean} [options.preferBlob=false] If true, we will load the image via a blob.
* @param {Boolean} [options.preferImageBitmap=false] If true, image will be decoded during fetch and an ImageBitmap
is returned.
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*/
Resource.fetchImage = function (options) {
var resource = new Resource(options);
return resource.fetchImage({
flipY: options.flipY,
preferBlob: options.preferBlob,
preferImageBitmap: options.preferImageBitmap
});
};
/**
* Asynchronously loads the given resource as text. Returns a promise that will resolve to
* a String once loaded, or reject if the resource failed to load. The data is loaded
* using XMLHttpRequest, which means that in order to make requests to another origin,
* the server must have Cross-Origin Resource Sharing (CORS) headers enabled.
*
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*
* @example
* // load text from a URL, setting a custom header
* var resource = new Resource({
* url: 'http://someUrl.com/someJson.txt',
* headers: {
* 'X-Custom-Header' : 'some value'
* }
* });
* resource.fetchText().then(function(text) {
* // Do something with the text
* }).otherwise(function(error) {
* // an error occurred
* });
*
* @see {@link https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest|XMLHttpRequest}
* @see {@link http://www.w3.org/TR/cors/|Cross-Origin Resource Sharing}
* @see {@link http://wiki.commonjs.org/wiki/Promises/A|CommonJS Promises/A}
*/
Resource.prototype.fetchText = function() {
return this.fetch({
responseType : 'text'
});
};
/**
* Creates a Resource and calls fetchText() on it.
*
* @param {String|Object} options A url or an object with the following properties
* @param {String} options.url The url of the resource.
* @param {Object} [options.queryParameters] An object containing query parameters that will be sent when retrieving the resource.
* @param {Object} [options.templateValues] Key/Value pairs that are used to replace template values (eg. {x}).
* @param {Object} [options.headers={}] Additional HTTP headers that will be sent.
* @param {DefaultProxy} [options.proxy] A proxy to be used when loading the resource.
* @param {Resource~RetryCallback} [options.retryCallback] The Function to call when a request for this resource fails. If it returns true, the request will be retried.
* @param {Number} [options.retryAttempts=0] The number of times the retryCallback should be called before giving up.
* @param {Request} [options.request] A Request object that will be used. Intended for internal use only.
* @returns {Promise.request.throttle
is true and the request does not have high enough priority.
*/
Resource.fetchText = function (options) {
var resource = new Resource(options);
return resource.fetchText();
};
// note: */* below is */* but that ends the comment block early
/**
* Asynchronously loads the given resource as JSON. Returns a promise that will resolve to
* a JSON object once loaded, or reject if the resource failed to load. The data is loaded
* using XMLHttpRequest, which means that in order to make requests to another origin,
* the server must have Cross-Origin Resource Sharing (CORS) headers enabled. This function
* adds 'Accept: application/json,*/*;q=0.01' to the request headers, if not
* already specified.
*
* @returns {Promise.